llvm-6502/include/llvm/ADT/FlatArrayMap.h

324 lines
8.5 KiB
C
Raw Normal View History

//===- llvm/ADT/FlatArrayMap.h - 'Normally small' pointer set ----*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the FlatArrayMap class.
// See FlatArrayMap doxygen comments for more details.
//
//===----------------------------------------------------------------------===//
#ifndef FLATARRAYMAP_H_
#define FLATARRAYMAP_H_
#include <algorithm>
#include <utility>
#include "llvm/Support/type_traits.h"
namespace llvm {
template <typename KeyTy, typename MappedTy>
struct FlatArrayMapTypes {
typedef KeyTy key_type;
typedef MappedTy mapped_type;
typedef typename std::pair<key_type, mapped_type> value_type;
};
template<typename KeyTy, typename MappedTy, bool IsConst = false>
class FlatArrayMapIterator;
//===--------------------------------------------------------------------===//
/// FlatArrayMap presents map container interface.
/// It uses flat array implementation inside:
/// [ <key0, value0>, <key1, value1>, ... <keyN, valueN> ]
/// It works fast for small amount of elements.
/// User should pass key type, mapped type (type of value), and maximum
/// number of elements.
/// After maximum number of elements is reached, map declines any farther
/// attempts to insert new elements ("insert" method returns <end(),false>).
///
template <typename KeyTy, typename MappedTy, unsigned MaxArraySize>
class FlatArrayMap {
public:
typedef FlatArrayMapTypes<KeyTy, MappedTy> Types;
typedef typename Types::key_type key_type;
typedef typename Types::mapped_type mapped_type;
typedef typename Types::value_type value_type;
typedef FlatArrayMapIterator<KeyTy, MappedTy> iterator;
typedef FlatArrayMapIterator<KeyTy, MappedTy, true> const_iterator;
typedef FlatArrayMap<KeyTy, MappedTy, MaxArraySize> self;
private:
enum { BadIndex = -1U };
key_type EmptyKey;
mapped_type EmptyValue;
value_type Array[MaxArraySize + 1];
unsigned NumElements;
unsigned findFor(const KeyTy Ptr) const {
// Linear search for the item.
for (const value_type *APtr = Array, *E = Array + NumElements;
APtr != E; ++APtr) {
if (APtr->first == Ptr) {
return APtr - Array;
}
}
return BadIndex;
}
bool lookupFor(const KeyTy &Ptr, const value_type*& Found) const {
unsigned FoundIdx = findFor(Ptr);
if (FoundIdx != BadIndex) {
Found = Array + FoundIdx;
return true;
}
return false;
}
bool lookupFor(const KeyTy &Ptr, value_type*& Found) {
unsigned FoundIdx = findFor(Ptr);
if (FoundIdx != BadIndex) {
Found = Array + FoundIdx;
return true;
}
return false;
}
void copyFrom(const self &RHS) {
memcpy(Array, RHS.Array, sizeof(value_type) * (MaxArraySize + 1));
NumElements = RHS.NumElements;
}
void init () {
memset(Array + MaxArraySize, 0, sizeof(value_type));
NumElements = 0;
}
bool insertInternal(KeyTy Ptr, MappedTy Val, value_type*& Item) {
// Check to see if it is already in the set.
value_type *Found;
if (lookupFor(Ptr, Found)) {
Item = Found;
return false;
}
if (NumElements < MaxArraySize) {
unsigned Idx = NumElements++;
Array[Idx] = std::make_pair(Ptr, Val);
Item = Array + Idx;
return true;
}
Item = Array + MaxArraySize; // return end()
return false;
}
public:
// Constructors
FlatArrayMap() : EmptyKey(), EmptyValue() {
init();
}
FlatArrayMap(const self &that) :
EmptyKey(), EmptyValue() {
copyFrom(that);
}
template<typename It>
FlatArrayMap(It I, It E) :
EmptyKey(), EmptyValue() {
init();
insert(I, E);
}
// Size
unsigned size() const {
return NumElements;
}
bool empty() const {
return !NumElements;
}
// Iterators
iterator begin() {
return iterator(Array);
}
const_iterator begin() const {
return const_iterator(Array);
}
iterator end() {
return iterator(Array + NumElements);
}
const_iterator end() const {
return const_iterator(Array + NumElements);
}
// Modifiers
void clear() {
for (unsigned i = 0; i < NumElements; ++i) {
Array[i].first = EmptyKey;
Array[i].second = EmptyValue;
}
NumElements = 0;
}
// The map container is extended by inserting a single new element.
// The behavior is the same as the std::map::insert, except the
// case when maximum number of elements is reached;
// in this case map declines any farther attempts
// to insert new elements ("insert" method returns <end(),false>).
std::pair<iterator, bool> insert(const value_type& KV) {
value_type* Item;
bool Res = insertInternal(KV.first, KV.second, Item);
return std::make_pair(iterator(Item), Res);
}
template <typename IterT>
void insert(IterT I, IterT E) {
for (; I != E; ++I)
insert(*I);
}
void erase(key_type K) {
unsigned Found = findFor(K);
if (Found != BadIndex) {
value_type *APtr = Array + Found;
value_type *E = Array + NumElements;
*APtr = E[-1];
E[-1].first.~key_type();
E[-1].second.~mapped_type();
--NumElements;
}
}
void erase(iterator i) {
erase(i->first);
}
void swap(self& RHS) {
std::swap_ranges(Array, Array+MaxArraySize, RHS.Array);
std::swap(this->NumElements, RHS.NumElements);
}
// Search operations
iterator find(const key_type& K) {
value_type *Found;
if (lookupFor(K, Found))
return iterator(Found);
return end();
}
const_iterator find(const key_type& K) const {
const value_type *Found;
if (lookupFor(K, Found))
return const_iterator(Found);
return end();
}
bool count(const key_type& K) const {
return find(K) != end();
}
mapped_type &operator[](const key_type &Key) {
std::pair<iterator, bool> res = insert(Key, mapped_type());
return res.first->second;
}
// Other operations
self& operator=(const self& other) {
clear();
copyFrom(other);
return *this;
}
/// isPointerIntoBucketsArray - Return true if the specified pointer points
/// somewhere into the map's array of buckets (i.e. either to a key or
/// value).
bool isPointerIntoBucketsArray(const void *Ptr) const {
return Ptr >= Array && Ptr < Array + NumElements;
}
/// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
/// array.
const void *getPointerIntoBucketsArray() const { return Array; }
};
template<typename KeyTy, typename MappedTy, bool IsConst>
class FlatArrayMapIterator {
typedef FlatArrayMapTypes<KeyTy, MappedTy> Types;
typedef typename conditional<IsConst,
const typename Types::value_type,
typename Types::value_type>::type value_type;
typedef value_type *pointer;
typedef value_type &reference;
typedef FlatArrayMapIterator<KeyTy, MappedTy, IsConst> self;
typedef FlatArrayMapIterator<KeyTy, MappedTy, false> non_const_self;
typedef FlatArrayMapIterator<KeyTy, MappedTy, true> const_self;
friend class FlatArrayMapIterator<KeyTy, MappedTy, false>;
friend class FlatArrayMapIterator<KeyTy, MappedTy, true>;
pointer TheBucket;
public:
FlatArrayMapIterator() : TheBucket(0) {}
explicit FlatArrayMapIterator(pointer BP) :
TheBucket(BP) {}
// If IsConst is true this is a converting constructor from iterator to
// const_iterator and the default copy constructor is used.
// Otherwise this is a copy constructor for iterator.
FlatArrayMapIterator(const non_const_self& I)
: TheBucket(I.TheBucket) {}
bool operator==(const const_self &RHS) const {
return TheBucket->first == RHS.TheBucket->first;
}
bool operator!=(const const_self &RHS) const {
return TheBucket->first != RHS.TheBucket->first;
}
reference operator*() const {
return *TheBucket;
}
pointer operator->() const {
return TheBucket;
}
inline self& operator++() { // Preincrement
++TheBucket;
return *this;
}
self operator++(int) { // Postincrement
FlatArrayMapIterator tmp = *this; ++*this; return tmp;
}
};
}
#endif /* FLATARRAYMAP_H_ */