2003-10-13 03:32:08 +00:00
|
|
|
//===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
|
2005-04-21 21:13:18 +00:00
|
|
|
//
|
2003-10-20 19:43:21 +00:00
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
2005-04-21 21:13:18 +00:00
|
|
|
//
|
2003-10-20 19:43:21 +00:00
|
|
|
//===----------------------------------------------------------------------===//
|
2001-11-26 18:41:20 +00:00
|
|
|
//
|
|
|
|
// This file defines the LoopInfo class that is used to identify natural loops
|
|
|
|
// and determine the loop depth of various nodes of the CFG. Note that the
|
|
|
|
// loops identified may actually be several natural loops that share the same
|
|
|
|
// header node... not just a single natural loop.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2004-01-30 17:26:24 +00:00
|
|
|
#include "llvm/Analysis/LoopInfo.h"
|
2004-04-15 15:16:02 +00:00
|
|
|
#include "llvm/Constants.h"
|
|
|
|
#include "llvm/Instructions.h"
|
|
|
|
#include "llvm/Analysis/Dominators.h"
|
2002-07-27 01:12:17 +00:00
|
|
|
#include "llvm/Assembly/Writer.h"
|
2004-01-30 17:26:24 +00:00
|
|
|
#include "llvm/Support/CFG.h"
|
2006-11-28 22:46:12 +00:00
|
|
|
#include "llvm/Support/Streams.h"
|
2004-09-01 22:55:40 +00:00
|
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
2007-03-04 04:06:39 +00:00
|
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
2001-11-26 18:41:20 +00:00
|
|
|
#include <algorithm>
|
2006-11-28 22:46:12 +00:00
|
|
|
#include <ostream>
|
2004-04-12 20:26:17 +00:00
|
|
|
using namespace llvm;
|
2003-11-11 22:41:34 +00:00
|
|
|
|
2006-08-27 22:30:17 +00:00
|
|
|
static RegisterPass<LoopInfo>
|
2002-07-30 16:27:52 +00:00
|
|
|
X("loops", "Natural Loop Construction", true);
|
2002-01-31 00:42:27 +00:00
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
2002-04-28 16:21:30 +00:00
|
|
|
// Loop implementation
|
2002-01-31 00:42:27 +00:00
|
|
|
//
|
2002-06-03 22:10:52 +00:00
|
|
|
bool Loop::contains(const BasicBlock *BB) const {
|
2004-09-03 18:19:51 +00:00
|
|
|
return std::find(Blocks.begin(), Blocks.end(), BB) != Blocks.end();
|
2001-11-26 18:41:20 +00:00
|
|
|
}
|
|
|
|
|
2002-10-11 05:31:10 +00:00
|
|
|
bool Loop::isLoopExit(const BasicBlock *BB) const {
|
2003-09-24 22:18:35 +00:00
|
|
|
for (succ_const_iterator SI = succ_begin(BB), SE = succ_end(BB);
|
2002-10-11 05:31:10 +00:00
|
|
|
SI != SE; ++SI) {
|
2003-02-27 00:38:34 +00:00
|
|
|
if (!contains(*SI))
|
2002-10-11 05:31:10 +00:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2003-10-12 22:14:27 +00:00
|
|
|
/// getNumBackEdges - Calculate the number of back edges to the loop header.
|
|
|
|
///
|
2002-10-11 05:31:10 +00:00
|
|
|
unsigned Loop::getNumBackEdges() const {
|
2003-02-27 00:38:34 +00:00
|
|
|
unsigned NumBackEdges = 0;
|
|
|
|
BasicBlock *H = getHeader();
|
2002-10-11 05:31:10 +00:00
|
|
|
|
2003-10-12 22:14:27 +00:00
|
|
|
for (pred_iterator I = pred_begin(H), E = pred_end(H); I != E; ++I)
|
|
|
|
if (contains(*I))
|
|
|
|
++NumBackEdges;
|
|
|
|
|
2003-02-27 00:38:34 +00:00
|
|
|
return NumBackEdges;
|
2002-10-11 05:31:10 +00:00
|
|
|
}
|
|
|
|
|
2004-04-18 22:45:27 +00:00
|
|
|
/// isLoopInvariant - Return true if the specified value is loop invariant
|
|
|
|
///
|
|
|
|
bool Loop::isLoopInvariant(Value *V) const {
|
|
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
|
|
return !contains(I->getParent());
|
|
|
|
return true; // All non-instructions are loop invariant
|
|
|
|
}
|
|
|
|
|
2003-08-16 20:57:16 +00:00
|
|
|
void Loop::print(std::ostream &OS, unsigned Depth) const {
|
|
|
|
OS << std::string(Depth*2, ' ') << "Loop Containing: ";
|
2002-04-09 05:43:19 +00:00
|
|
|
|
2002-07-27 01:12:17 +00:00
|
|
|
for (unsigned i = 0; i < getBlocks().size(); ++i) {
|
|
|
|
if (i) OS << ",";
|
2003-02-27 00:38:34 +00:00
|
|
|
WriteAsOperand(OS, getBlocks()[i], false);
|
|
|
|
}
|
2002-07-27 01:12:17 +00:00
|
|
|
OS << "\n";
|
2002-04-09 05:43:19 +00:00
|
|
|
|
2004-01-08 00:09:44 +00:00
|
|
|
for (iterator I = begin(), E = end(); I != E; ++I)
|
|
|
|
(*I)->print(OS, Depth+2);
|
2002-07-27 01:12:17 +00:00
|
|
|
}
|
2002-01-31 00:42:27 +00:00
|
|
|
|
2003-02-28 16:54:45 +00:00
|
|
|
void Loop::dump() const {
|
2006-12-07 01:30:32 +00:00
|
|
|
print(cerr);
|
2003-02-28 16:54:45 +00:00
|
|
|
}
|
|
|
|
|
2003-02-22 21:33:11 +00:00
|
|
|
|
2002-01-31 00:42:27 +00:00
|
|
|
//===----------------------------------------------------------------------===//
|
2002-04-28 16:21:30 +00:00
|
|
|
// LoopInfo implementation
|
2002-01-31 00:42:27 +00:00
|
|
|
//
|
2002-06-25 16:13:24 +00:00
|
|
|
bool LoopInfo::runOnFunction(Function &) {
|
2002-04-09 05:43:19 +00:00
|
|
|
releaseMemory();
|
2006-01-11 05:08:29 +00:00
|
|
|
Calculate(getAnalysis<ETForest>()); // Update
|
2002-01-31 00:42:27 +00:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2002-07-27 01:12:17 +00:00
|
|
|
void LoopInfo::releaseMemory() {
|
|
|
|
for (std::vector<Loop*>::iterator I = TopLevelLoops.begin(),
|
|
|
|
E = TopLevelLoops.end(); I != E; ++I)
|
|
|
|
delete *I; // Delete all of the loops...
|
|
|
|
|
|
|
|
BBMap.clear(); // Reset internal state of analysis
|
|
|
|
TopLevelLoops.clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2006-01-14 20:55:09 +00:00
|
|
|
void LoopInfo::Calculate(ETForest &EF) {
|
2006-01-11 05:08:29 +00:00
|
|
|
BasicBlock *RootNode = EF.getRoot();
|
2001-11-26 18:41:20 +00:00
|
|
|
|
2002-04-28 00:15:57 +00:00
|
|
|
for (df_iterator<BasicBlock*> NI = df_begin(RootNode),
|
2005-04-22 04:01:18 +00:00
|
|
|
NE = df_end(RootNode); NI != NE; ++NI)
|
2006-01-11 05:08:29 +00:00
|
|
|
if (Loop *L = ConsiderForLoop(*NI, EF))
|
2001-11-26 18:41:20 +00:00
|
|
|
TopLevelLoops.push_back(L);
|
|
|
|
}
|
|
|
|
|
2002-04-28 16:21:30 +00:00
|
|
|
void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
|
2002-04-27 06:56:12 +00:00
|
|
|
AU.setPreservesAll();
|
2006-01-11 05:08:29 +00:00
|
|
|
AU.addRequired<ETForest>();
|
2002-01-31 00:42:27 +00:00
|
|
|
}
|
|
|
|
|
2004-12-07 04:03:45 +00:00
|
|
|
void LoopInfo::print(std::ostream &OS, const Module* ) const {
|
2002-09-26 16:15:54 +00:00
|
|
|
for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
|
|
|
|
TopLevelLoops[i]->print(OS);
|
2003-02-22 21:33:11 +00:00
|
|
|
#if 0
|
|
|
|
for (std::map<BasicBlock*, Loop*>::const_iterator I = BBMap.begin(),
|
|
|
|
E = BBMap.end(); I != E; ++I)
|
|
|
|
OS << "BB '" << I->first->getName() << "' level = "
|
2004-04-19 03:02:09 +00:00
|
|
|
<< I->second->getLoopDepth() << "\n";
|
2003-02-22 21:33:11 +00:00
|
|
|
#endif
|
2002-07-27 01:12:17 +00:00
|
|
|
}
|
2002-01-31 00:42:27 +00:00
|
|
|
|
2003-05-15 18:03:51 +00:00
|
|
|
static bool isNotAlreadyContainedIn(Loop *SubLoop, Loop *ParentLoop) {
|
|
|
|
if (SubLoop == 0) return true;
|
|
|
|
if (SubLoop == ParentLoop) return false;
|
|
|
|
return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
|
|
|
|
}
|
|
|
|
|
2006-01-14 20:55:09 +00:00
|
|
|
Loop *LoopInfo::ConsiderForLoop(BasicBlock *BB, ETForest &EF) {
|
2002-09-26 05:32:50 +00:00
|
|
|
if (BBMap.find(BB) != BBMap.end()) return 0; // Haven't processed this node?
|
2001-11-26 18:41:20 +00:00
|
|
|
|
2002-04-28 00:15:57 +00:00
|
|
|
std::vector<BasicBlock *> TodoStack;
|
2001-11-26 18:41:20 +00:00
|
|
|
|
|
|
|
// Scan the predecessors of BB, checking to see if BB dominates any of
|
2003-04-26 19:34:18 +00:00
|
|
|
// them. This identifies backedges which target this node...
|
2002-04-28 00:15:57 +00:00
|
|
|
for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I)
|
2006-01-11 05:08:29 +00:00
|
|
|
if (EF.dominates(BB, *I)) // If BB dominates it's predecessor...
|
2001-11-26 18:41:20 +00:00
|
|
|
TodoStack.push_back(*I);
|
|
|
|
|
2003-04-26 19:34:18 +00:00
|
|
|
if (TodoStack.empty()) return 0; // No backedges to this block...
|
2001-11-26 18:41:20 +00:00
|
|
|
|
|
|
|
// Create a new loop to represent this basic block...
|
|
|
|
Loop *L = new Loop(BB);
|
|
|
|
BBMap[BB] = L;
|
|
|
|
|
2003-10-22 16:41:21 +00:00
|
|
|
BasicBlock *EntryBlock = &BB->getParent()->getEntryBlock();
|
|
|
|
|
2001-11-26 18:41:20 +00:00
|
|
|
while (!TodoStack.empty()) { // Process all the nodes in the loop
|
2002-04-28 00:15:57 +00:00
|
|
|
BasicBlock *X = TodoStack.back();
|
2001-11-26 18:41:20 +00:00
|
|
|
TodoStack.pop_back();
|
|
|
|
|
2003-10-22 16:41:21 +00:00
|
|
|
if (!L->contains(X) && // As of yet unprocessed??
|
2006-01-11 05:08:29 +00:00
|
|
|
EF.dominates(EntryBlock, X)) { // X is reachable from entry block?
|
2003-04-26 19:34:18 +00:00
|
|
|
// Check to see if this block already belongs to a loop. If this occurs
|
|
|
|
// then we have a case where a loop that is supposed to be a child of the
|
|
|
|
// current loop was processed before the current loop. When this occurs,
|
|
|
|
// this child loop gets added to a part of the current loop, making it a
|
|
|
|
// sibling to the current loop. We have to reparent this loop.
|
|
|
|
if (Loop *SubLoop = const_cast<Loop*>(getLoopFor(X)))
|
2003-05-15 18:03:51 +00:00
|
|
|
if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)) {
|
2003-04-26 19:34:18 +00:00
|
|
|
// Remove the subloop from it's current parent...
|
|
|
|
assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
|
|
|
|
Loop *SLP = SubLoop->ParentLoop; // SubLoopParent
|
|
|
|
std::vector<Loop*>::iterator I =
|
|
|
|
std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
|
|
|
|
assert(I != SLP->SubLoops.end() && "SubLoop not a child of parent?");
|
|
|
|
SLP->SubLoops.erase(I); // Remove from parent...
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2003-04-26 19:34:18 +00:00
|
|
|
// Add the subloop to THIS loop...
|
|
|
|
SubLoop->ParentLoop = L;
|
|
|
|
L->SubLoops.push_back(SubLoop);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Normal case, add the block to our loop...
|
2001-11-26 18:41:20 +00:00
|
|
|
L->Blocks.push_back(X);
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2001-11-26 18:41:20 +00:00
|
|
|
// Add all of the predecessors of X to the end of the work stack...
|
2002-02-12 22:39:50 +00:00
|
|
|
TodoStack.insert(TodoStack.end(), pred_begin(X), pred_end(X));
|
2001-11-26 18:41:20 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2003-02-22 21:33:11 +00:00
|
|
|
// If there are any loops nested within this loop, create them now!
|
|
|
|
for (std::vector<BasicBlock*>::iterator I = L->Blocks.begin(),
|
2005-04-22 04:01:18 +00:00
|
|
|
E = L->Blocks.end(); I != E; ++I)
|
2006-01-11 05:08:29 +00:00
|
|
|
if (Loop *NewLoop = ConsiderForLoop(*I, EF)) {
|
2003-02-22 21:33:11 +00:00
|
|
|
L->SubLoops.push_back(NewLoop);
|
|
|
|
NewLoop->ParentLoop = L;
|
|
|
|
}
|
|
|
|
|
2001-11-26 18:41:20 +00:00
|
|
|
// Add the basic blocks that comprise this loop to the BBMap so that this
|
2003-02-22 21:33:11 +00:00
|
|
|
// loop can be found for them.
|
2001-11-26 18:41:20 +00:00
|
|
|
//
|
2003-02-22 21:33:11 +00:00
|
|
|
for (std::vector<BasicBlock*>::iterator I = L->Blocks.begin(),
|
2005-04-22 04:01:18 +00:00
|
|
|
E = L->Blocks.end(); I != E; ++I) {
|
2003-02-22 21:33:11 +00:00
|
|
|
std::map<BasicBlock*, Loop*>::iterator BBMI = BBMap.lower_bound(*I);
|
|
|
|
if (BBMI == BBMap.end() || BBMI->first != *I) // Not in map yet...
|
|
|
|
BBMap.insert(BBMI, std::make_pair(*I, L)); // Must be at this level
|
|
|
|
}
|
2001-11-26 18:41:20 +00:00
|
|
|
|
2003-08-16 20:57:16 +00:00
|
|
|
// Now that we have a list of all of the child loops of this loop, check to
|
|
|
|
// see if any of them should actually be nested inside of each other. We can
|
|
|
|
// accidentally pull loops our of their parents, so we must make sure to
|
|
|
|
// organize the loop nests correctly now.
|
|
|
|
{
|
|
|
|
std::map<BasicBlock*, Loop*> ContainingLoops;
|
|
|
|
for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
|
|
|
|
Loop *Child = L->SubLoops[i];
|
|
|
|
assert(Child->getParentLoop() == L && "Not proper child loop?");
|
|
|
|
|
|
|
|
if (Loop *ContainingLoop = ContainingLoops[Child->getHeader()]) {
|
|
|
|
// If there is already a loop which contains this loop, move this loop
|
|
|
|
// into the containing loop.
|
|
|
|
MoveSiblingLoopInto(Child, ContainingLoop);
|
|
|
|
--i; // The loop got removed from the SubLoops list.
|
|
|
|
} else {
|
|
|
|
// This is currently considered to be a top-level loop. Check to see if
|
|
|
|
// any of the contained blocks are loop headers for subloops we have
|
|
|
|
// already processed.
|
|
|
|
for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
|
|
|
|
Loop *&BlockLoop = ContainingLoops[Child->Blocks[b]];
|
|
|
|
if (BlockLoop == 0) { // Child block not processed yet...
|
|
|
|
BlockLoop = Child;
|
|
|
|
} else if (BlockLoop != Child) {
|
2003-08-17 21:47:33 +00:00
|
|
|
Loop *SubLoop = BlockLoop;
|
|
|
|
// Reparent all of the blocks which used to belong to BlockLoops
|
|
|
|
for (unsigned j = 0, e = SubLoop->Blocks.size(); j != e; ++j)
|
|
|
|
ContainingLoops[SubLoop->Blocks[j]] = Child;
|
|
|
|
|
2003-08-16 20:57:16 +00:00
|
|
|
// There is already a loop which contains this block, that means
|
|
|
|
// that we should reparent the loop which the block is currently
|
|
|
|
// considered to belong to to be a child of this loop.
|
2003-08-17 21:47:33 +00:00
|
|
|
MoveSiblingLoopInto(SubLoop, Child);
|
2003-08-16 20:57:16 +00:00
|
|
|
--i; // We just shrunk the SubLoops list.
|
|
|
|
}
|
|
|
|
}
|
2005-04-21 21:13:18 +00:00
|
|
|
}
|
2003-08-16 20:57:16 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2001-11-26 18:41:20 +00:00
|
|
|
return L;
|
|
|
|
}
|
2002-09-26 05:32:50 +00:00
|
|
|
|
2003-08-16 20:57:16 +00:00
|
|
|
/// MoveSiblingLoopInto - This method moves the NewChild loop to live inside of
|
|
|
|
/// the NewParent Loop, instead of being a sibling of it.
|
|
|
|
void LoopInfo::MoveSiblingLoopInto(Loop *NewChild, Loop *NewParent) {
|
|
|
|
Loop *OldParent = NewChild->getParentLoop();
|
|
|
|
assert(OldParent && OldParent == NewParent->getParentLoop() &&
|
|
|
|
NewChild != NewParent && "Not sibling loops!");
|
|
|
|
|
|
|
|
// Remove NewChild from being a child of OldParent
|
|
|
|
std::vector<Loop*>::iterator I =
|
|
|
|
std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(), NewChild);
|
|
|
|
assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
|
|
|
|
OldParent->SubLoops.erase(I); // Remove from parent's subloops list
|
|
|
|
NewChild->ParentLoop = 0;
|
2005-04-21 21:13:18 +00:00
|
|
|
|
|
|
|
InsertLoopInto(NewChild, NewParent);
|
2003-08-16 20:57:16 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/// InsertLoopInto - This inserts loop L into the specified parent loop. If the
|
|
|
|
/// parent loop contains a loop which should contain L, the loop gets inserted
|
|
|
|
/// into L instead.
|
|
|
|
void LoopInfo::InsertLoopInto(Loop *L, Loop *Parent) {
|
|
|
|
BasicBlock *LHeader = L->getHeader();
|
|
|
|
assert(Parent->contains(LHeader) && "This loop should not be inserted here!");
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2003-08-16 20:57:16 +00:00
|
|
|
// Check to see if it belongs in a child loop...
|
|
|
|
for (unsigned i = 0, e = Parent->SubLoops.size(); i != e; ++i)
|
|
|
|
if (Parent->SubLoops[i]->contains(LHeader)) {
|
|
|
|
InsertLoopInto(L, Parent->SubLoops[i]);
|
|
|
|
return;
|
2005-04-21 21:13:18 +00:00
|
|
|
}
|
2003-08-16 20:57:16 +00:00
|
|
|
|
|
|
|
// If not, insert it here!
|
|
|
|
Parent->SubLoops.push_back(L);
|
|
|
|
L->ParentLoop = Parent;
|
|
|
|
}
|
|
|
|
|
2004-04-12 20:26:17 +00:00
|
|
|
/// changeLoopFor - Change the top-level loop that contains BB to the
|
|
|
|
/// specified loop. This should be used by transformations that restructure
|
|
|
|
/// the loop hierarchy tree.
|
|
|
|
void LoopInfo::changeLoopFor(BasicBlock *BB, Loop *L) {
|
|
|
|
Loop *&OldLoop = BBMap[BB];
|
|
|
|
assert(OldLoop && "Block not in a loop yet!");
|
|
|
|
OldLoop = L;
|
|
|
|
}
|
2003-08-16 20:57:16 +00:00
|
|
|
|
2004-04-12 20:26:17 +00:00
|
|
|
/// changeTopLevelLoop - Replace the specified loop in the top-level loops
|
|
|
|
/// list with the indicated loop.
|
|
|
|
void LoopInfo::changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
|
|
|
|
std::vector<Loop*>::iterator I = std::find(TopLevelLoops.begin(),
|
|
|
|
TopLevelLoops.end(), OldLoop);
|
|
|
|
assert(I != TopLevelLoops.end() && "Old loop not at top level!");
|
|
|
|
*I = NewLoop;
|
|
|
|
assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
|
|
|
|
"Loops already embedded into a subloop!");
|
|
|
|
}
|
2003-08-16 20:57:16 +00:00
|
|
|
|
2004-04-18 05:38:05 +00:00
|
|
|
/// removeLoop - This removes the specified top-level loop from this loop info
|
|
|
|
/// object. The loop is not deleted, as it will presumably be inserted into
|
|
|
|
/// another loop.
|
|
|
|
Loop *LoopInfo::removeLoop(iterator I) {
|
|
|
|
assert(I != end() && "Cannot remove end iterator!");
|
|
|
|
Loop *L = *I;
|
|
|
|
assert(L->getParentLoop() == 0 && "Not a top-level loop!");
|
|
|
|
TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
|
|
|
|
return L;
|
|
|
|
}
|
|
|
|
|
2004-04-18 06:54:48 +00:00
|
|
|
/// removeBlock - This method completely removes BB from all data structures,
|
|
|
|
/// including all of the Loop objects it is nested in and our mapping from
|
|
|
|
/// BasicBlocks to loops.
|
|
|
|
void LoopInfo::removeBlock(BasicBlock *BB) {
|
|
|
|
std::map<BasicBlock *, Loop*>::iterator I = BBMap.find(BB);
|
|
|
|
if (I != BBMap.end()) {
|
|
|
|
for (Loop *L = I->second; L; L = L->getParentLoop())
|
|
|
|
L->removeBlockFromLoop(BB);
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-18 06:54:48 +00:00
|
|
|
BBMap.erase(I);
|
|
|
|
}
|
|
|
|
}
|
2004-04-18 05:38:05 +00:00
|
|
|
|
|
|
|
|
2004-04-15 15:16:02 +00:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// APIs for simple analysis of the loop.
|
|
|
|
//
|
|
|
|
|
2006-10-28 01:24:05 +00:00
|
|
|
/// getExitingBlocks - Return all blocks inside the loop that have successors
|
|
|
|
/// outside of the loop. These are the blocks _inside of the current loop_
|
|
|
|
/// which branch out. The returned list is always unique.
|
|
|
|
///
|
|
|
|
void Loop::getExitingBlocks(std::vector<BasicBlock*> &ExitingBlocks) const {
|
|
|
|
// Sort the blocks vector so that we can use binary search to do quick
|
|
|
|
// lookups.
|
|
|
|
std::vector<BasicBlock*> LoopBBs(block_begin(), block_end());
|
|
|
|
std::sort(LoopBBs.begin(), LoopBBs.end());
|
|
|
|
|
|
|
|
for (std::vector<BasicBlock*>::const_iterator BI = Blocks.begin(),
|
|
|
|
BE = Blocks.end(); BI != BE; ++BI)
|
|
|
|
for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I)
|
|
|
|
if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
|
|
|
|
// Not in current loop? It must be an exit block.
|
|
|
|
ExitingBlocks.push_back(*BI);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2004-04-18 22:14:10 +00:00
|
|
|
/// getExitBlocks - Return all of the successor blocks of this loop. These
|
|
|
|
/// are the blocks _outside of the current loop_ which are branched to.
|
|
|
|
///
|
2004-04-18 22:21:41 +00:00
|
|
|
void Loop::getExitBlocks(std::vector<BasicBlock*> &ExitBlocks) const {
|
2006-08-12 05:02:03 +00:00
|
|
|
// Sort the blocks vector so that we can use binary search to do quick
|
|
|
|
// lookups.
|
|
|
|
std::vector<BasicBlock*> LoopBBs(block_begin(), block_end());
|
|
|
|
std::sort(LoopBBs.begin(), LoopBBs.end());
|
|
|
|
|
2004-04-18 22:14:10 +00:00
|
|
|
for (std::vector<BasicBlock*>::const_iterator BI = Blocks.begin(),
|
2006-08-12 05:02:03 +00:00
|
|
|
BE = Blocks.end(); BI != BE; ++BI)
|
2004-04-18 22:14:10 +00:00
|
|
|
for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I)
|
2006-08-12 05:02:03 +00:00
|
|
|
if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
|
|
|
|
// Not in current loop? It must be an exit block.
|
|
|
|
ExitBlocks.push_back(*I);
|
2004-04-18 22:14:10 +00:00
|
|
|
}
|
|
|
|
|
2006-08-29 22:29:16 +00:00
|
|
|
/// getUniqueExitBlocks - Return all unique successor blocks of this loop. These
|
|
|
|
/// are the blocks _outside of the current loop_ which are branched to. This
|
|
|
|
/// assumes that loop is in canonical form.
|
|
|
|
//
|
|
|
|
void Loop::getUniqueExitBlocks(std::vector<BasicBlock*> &ExitBlocks) const {
|
|
|
|
// Sort the blocks vector so that we can use binary search to do quick
|
|
|
|
// lookups.
|
|
|
|
std::vector<BasicBlock*> LoopBBs(block_begin(), block_end());
|
|
|
|
std::sort(LoopBBs.begin(), LoopBBs.end());
|
|
|
|
|
|
|
|
std::vector<BasicBlock*> switchExitBlocks;
|
|
|
|
|
|
|
|
for (std::vector<BasicBlock*>::const_iterator BI = Blocks.begin(),
|
|
|
|
BE = Blocks.end(); BI != BE; ++BI) {
|
|
|
|
|
|
|
|
BasicBlock *current = *BI;
|
|
|
|
switchExitBlocks.clear();
|
|
|
|
|
|
|
|
for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) {
|
|
|
|
if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
|
|
|
|
// If block is inside the loop then it is not a exit block.
|
|
|
|
continue;
|
|
|
|
|
|
|
|
pred_iterator PI = pred_begin(*I);
|
|
|
|
BasicBlock *firstPred = *PI;
|
|
|
|
|
|
|
|
// If current basic block is this exit block's first predecessor
|
|
|
|
// then only insert exit block in to the output ExitBlocks vector.
|
|
|
|
// This ensures that same exit block is not inserted twice into
|
|
|
|
// ExitBlocks vector.
|
|
|
|
if (current != firstPred)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// If a terminator has more then two successors, for example SwitchInst,
|
|
|
|
// then it is possible that there are multiple edges from current block
|
|
|
|
// to one exit block.
|
|
|
|
if (current->getTerminator()->getNumSuccessors() <= 2) {
|
|
|
|
ExitBlocks.push_back(*I);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// In case of multiple edges from current block to exit block, collect
|
|
|
|
// only one edge in ExitBlocks. Use switchExitBlocks to keep track of
|
|
|
|
// duplicate edges.
|
|
|
|
if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
|
|
|
|
== switchExitBlocks.end()) {
|
|
|
|
switchExitBlocks.push_back(*I);
|
|
|
|
ExitBlocks.push_back(*I);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2004-04-18 22:14:10 +00:00
|
|
|
|
2002-09-26 05:32:50 +00:00
|
|
|
/// getLoopPreheader - If there is a preheader for this loop, return it. A
|
|
|
|
/// loop has a preheader if there is only one edge to the header of the loop
|
|
|
|
/// from outside of the loop. If this is the case, the block branching to the
|
2004-04-15 15:16:02 +00:00
|
|
|
/// header of the loop is the preheader node.
|
2002-09-26 05:32:50 +00:00
|
|
|
///
|
2004-04-15 15:16:02 +00:00
|
|
|
/// This method returns null if there is no preheader for the loop.
|
2002-09-26 05:32:50 +00:00
|
|
|
///
|
|
|
|
BasicBlock *Loop::getLoopPreheader() const {
|
|
|
|
// Keep track of nodes outside the loop branching to the header...
|
|
|
|
BasicBlock *Out = 0;
|
|
|
|
|
|
|
|
// Loop over the predecessors of the header node...
|
|
|
|
BasicBlock *Header = getHeader();
|
|
|
|
for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
|
|
|
|
PI != PE; ++PI)
|
2002-09-29 22:59:29 +00:00
|
|
|
if (!contains(*PI)) { // If the block is not in the loop...
|
|
|
|
if (Out && Out != *PI)
|
|
|
|
return 0; // Multiple predecessors outside the loop
|
2002-09-26 05:32:50 +00:00
|
|
|
Out = *PI;
|
|
|
|
}
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2006-02-14 20:14:17 +00:00
|
|
|
// Make sure there is only one exit out of the preheader.
|
|
|
|
assert(Out && "Header of loop has no predecessors from outside loop?");
|
2003-02-27 21:51:38 +00:00
|
|
|
succ_iterator SI = succ_begin(Out);
|
|
|
|
++SI;
|
|
|
|
if (SI != succ_end(Out))
|
|
|
|
return 0; // Multiple exits from the block, must not be a preheader.
|
|
|
|
|
2002-09-26 05:32:50 +00:00
|
|
|
// If there is exactly one preheader, return it. If there was zero, then Out
|
|
|
|
// is still null.
|
|
|
|
return Out;
|
|
|
|
}
|
|
|
|
|
2005-09-12 17:03:55 +00:00
|
|
|
/// getLoopLatch - If there is a latch block for this loop, return it. A
|
|
|
|
/// latch block is the canonical backedge for a loop. A loop header in normal
|
|
|
|
/// form has two edges into it: one from a preheader and one from a latch
|
|
|
|
/// block.
|
|
|
|
BasicBlock *Loop::getLoopLatch() const {
|
|
|
|
BasicBlock *Header = getHeader();
|
|
|
|
pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
|
|
|
|
if (PI == PE) return 0; // no preds?
|
|
|
|
|
|
|
|
BasicBlock *Latch = 0;
|
|
|
|
if (contains(*PI))
|
|
|
|
Latch = *PI;
|
|
|
|
++PI;
|
|
|
|
if (PI == PE) return 0; // only one pred?
|
|
|
|
|
|
|
|
if (contains(*PI)) {
|
|
|
|
if (Latch) return 0; // multiple backedges
|
|
|
|
Latch = *PI;
|
|
|
|
}
|
|
|
|
++PI;
|
|
|
|
if (PI != PE) return 0; // more than two preds
|
|
|
|
|
|
|
|
return Latch;
|
|
|
|
}
|
|
|
|
|
2004-04-15 15:16:02 +00:00
|
|
|
/// getCanonicalInductionVariable - Check to see if the loop has a canonical
|
|
|
|
/// induction variable: an integer recurrence that starts at 0 and increments by
|
|
|
|
/// one each time through the loop. If so, return the phi node that corresponds
|
|
|
|
/// to it.
|
|
|
|
///
|
|
|
|
PHINode *Loop::getCanonicalInductionVariable() const {
|
|
|
|
BasicBlock *H = getHeader();
|
|
|
|
|
|
|
|
BasicBlock *Incoming = 0, *Backedge = 0;
|
|
|
|
pred_iterator PI = pred_begin(H);
|
|
|
|
assert(PI != pred_end(H) && "Loop must have at least one backedge!");
|
|
|
|
Backedge = *PI++;
|
|
|
|
if (PI == pred_end(H)) return 0; // dead loop
|
|
|
|
Incoming = *PI++;
|
|
|
|
if (PI != pred_end(H)) return 0; // multiple backedges?
|
|
|
|
|
|
|
|
if (contains(Incoming)) {
|
|
|
|
if (contains(Backedge))
|
|
|
|
return 0;
|
|
|
|
std::swap(Incoming, Backedge);
|
|
|
|
} else if (!contains(Backedge))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
// Loop over all of the PHI nodes, looking for a canonical indvar.
|
2004-09-15 17:06:42 +00:00
|
|
|
for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
|
|
|
|
PHINode *PN = cast<PHINode>(I);
|
2004-04-15 15:16:02 +00:00
|
|
|
if (Instruction *Inc =
|
|
|
|
dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
|
|
|
|
if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN)
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
|
|
|
|
if (CI->equalsInt(1))
|
|
|
|
return PN;
|
2004-09-15 17:06:42 +00:00
|
|
|
}
|
2004-04-15 15:16:02 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
|
|
|
|
/// the canonical induction variable value for the "next" iteration of the loop.
|
|
|
|
/// This always succeeds if getCanonicalInductionVariable succeeds.
|
|
|
|
///
|
|
|
|
Instruction *Loop::getCanonicalInductionVariableIncrement() const {
|
|
|
|
if (PHINode *PN = getCanonicalInductionVariable()) {
|
|
|
|
bool P1InLoop = contains(PN->getIncomingBlock(1));
|
|
|
|
return cast<Instruction>(PN->getIncomingValue(P1InLoop));
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// getTripCount - Return a loop-invariant LLVM value indicating the number of
|
|
|
|
/// times the loop will be executed. Note that this means that the backedge of
|
|
|
|
/// the loop executes N-1 times. If the trip-count cannot be determined, this
|
|
|
|
/// returns null.
|
|
|
|
///
|
|
|
|
Value *Loop::getTripCount() const {
|
2006-12-23 06:05:41 +00:00
|
|
|
// Canonical loops will end with a 'cmp ne I, V', where I is the incremented
|
2004-04-15 15:16:02 +00:00
|
|
|
// canonical induction variable and V is the trip count of the loop.
|
|
|
|
Instruction *Inc = getCanonicalInductionVariableIncrement();
|
2004-04-18 05:38:05 +00:00
|
|
|
if (Inc == 0) return 0;
|
2004-04-15 15:16:02 +00:00
|
|
|
PHINode *IV = cast<PHINode>(Inc->getOperand(0));
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-15 15:16:02 +00:00
|
|
|
BasicBlock *BackedgeBlock =
|
|
|
|
IV->getIncomingBlock(contains(IV->getIncomingBlock(1)));
|
|
|
|
|
|
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator()))
|
2006-12-23 06:05:41 +00:00
|
|
|
if (BI->isConditional()) {
|
|
|
|
if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
|
|
|
|
if (ICI->getOperand(0) == Inc)
|
2004-06-08 21:50:30 +00:00
|
|
|
if (BI->getSuccessor(0) == getHeader()) {
|
2006-12-23 06:05:41 +00:00
|
|
|
if (ICI->getPredicate() == ICmpInst::ICMP_NE)
|
|
|
|
return ICI->getOperand(1);
|
|
|
|
} else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
|
|
|
|
return ICI->getOperand(1);
|
2004-06-08 21:50:30 +00:00
|
|
|
}
|
2006-12-23 06:05:41 +00:00
|
|
|
}
|
|
|
|
}
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-15 15:16:02 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2006-06-11 19:22:28 +00:00
|
|
|
/// isLCSSAForm - Return true if the Loop is in LCSSA form
|
2006-08-02 00:14:16 +00:00
|
|
|
bool Loop::isLCSSAForm() const {
|
|
|
|
// Sort the blocks vector so that we can use binary search to do quick
|
|
|
|
// lookups.
|
2007-03-04 04:06:39 +00:00
|
|
|
SmallPtrSet<BasicBlock*, 16> LoopBBs(block_begin(), block_end());
|
2006-08-02 00:14:16 +00:00
|
|
|
|
2007-03-04 04:06:39 +00:00
|
|
|
for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
|
|
|
|
BasicBlock *BB = *BI;
|
2006-08-02 00:14:16 +00:00
|
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
|
2006-06-11 19:22:28 +00:00
|
|
|
for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
|
|
|
|
++UI) {
|
|
|
|
BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
|
2007-03-04 04:06:39 +00:00
|
|
|
if (PHINode *P = dyn_cast<PHINode>(*UI)) {
|
2006-06-13 20:45:22 +00:00
|
|
|
unsigned OperandNo = UI.getOperandNo();
|
2007-03-04 04:06:39 +00:00
|
|
|
UserBB = P->getIncomingBlock(OperandNo/2);
|
2006-06-13 20:45:22 +00:00
|
|
|
}
|
|
|
|
|
2006-08-02 00:14:16 +00:00
|
|
|
// Check the current block, as a fast-path. Most values are used in the
|
|
|
|
// same block they are defined in.
|
2007-03-04 04:06:39 +00:00
|
|
|
if (UserBB != BB && !LoopBBs.count(UserBB))
|
2006-06-11 19:22:28 +00:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
2004-04-15 15:16:02 +00:00
|
|
|
|
|
|
|
//===-------------------------------------------------------------------===//
|
|
|
|
// APIs for updating loop information after changing the CFG
|
|
|
|
//
|
|
|
|
|
2002-09-26 05:32:50 +00:00
|
|
|
/// addBasicBlockToLoop - This function is used by other analyses to update loop
|
|
|
|
/// information. NewBB is set to be a new member of the current loop. Because
|
|
|
|
/// of this, it is added as a member of all parent loops, and is added to the
|
|
|
|
/// specified LoopInfo object as being in the current basic block. It is not
|
|
|
|
/// valid to replace the loop header with this method.
|
|
|
|
///
|
|
|
|
void Loop::addBasicBlockToLoop(BasicBlock *NewBB, LoopInfo &LI) {
|
2004-04-12 20:26:17 +00:00
|
|
|
assert((Blocks.empty() || LI[getHeader()] == this) &&
|
|
|
|
"Incorrect LI specified for this loop!");
|
2002-09-26 05:32:50 +00:00
|
|
|
assert(NewBB && "Cannot add a null basic block to the loop!");
|
|
|
|
assert(LI[NewBB] == 0 && "BasicBlock already in the loop!");
|
|
|
|
|
|
|
|
// Add the loop mapping to the LoopInfo object...
|
|
|
|
LI.BBMap[NewBB] = this;
|
|
|
|
|
|
|
|
// Add the basic block to this loop and all parent loops...
|
|
|
|
Loop *L = this;
|
|
|
|
while (L) {
|
|
|
|
L->Blocks.push_back(NewBB);
|
|
|
|
L = L->getParentLoop();
|
|
|
|
}
|
|
|
|
}
|
2003-02-27 00:38:34 +00:00
|
|
|
|
2004-04-12 20:26:17 +00:00
|
|
|
/// replaceChildLoopWith - This is used when splitting loops up. It replaces
|
|
|
|
/// the OldChild entry in our children list with NewChild, and updates the
|
|
|
|
/// parent pointers of the two loops as appropriate.
|
|
|
|
void Loop::replaceChildLoopWith(Loop *OldChild, Loop *NewChild) {
|
|
|
|
assert(OldChild->ParentLoop == this && "This loop is already broken!");
|
|
|
|
assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
|
|
|
|
std::vector<Loop*>::iterator I = std::find(SubLoops.begin(), SubLoops.end(),
|
|
|
|
OldChild);
|
|
|
|
assert(I != SubLoops.end() && "OldChild not in loop!");
|
|
|
|
*I = NewChild;
|
|
|
|
OldChild->ParentLoop = 0;
|
|
|
|
NewChild->ParentLoop = this;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// addChildLoop - Add the specified loop to be a child of this loop.
|
|
|
|
///
|
|
|
|
void Loop::addChildLoop(Loop *NewChild) {
|
|
|
|
assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
|
|
|
|
NewChild->ParentLoop = this;
|
|
|
|
SubLoops.push_back(NewChild);
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename T>
|
|
|
|
static void RemoveFromVector(std::vector<T*> &V, T *N) {
|
|
|
|
typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
|
|
|
|
assert(I != V.end() && "N is not in this list!");
|
|
|
|
V.erase(I);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// removeChildLoop - This removes the specified child from being a subloop of
|
|
|
|
/// this loop. The loop is not deleted, as it will presumably be inserted
|
|
|
|
/// into another loop.
|
|
|
|
Loop *Loop::removeChildLoop(iterator I) {
|
|
|
|
assert(I != SubLoops.end() && "Cannot remove end iterator!");
|
|
|
|
Loop *Child = *I;
|
|
|
|
assert(Child->ParentLoop == this && "Child is not a child of this loop!");
|
|
|
|
SubLoops.erase(SubLoops.begin()+(I-begin()));
|
|
|
|
Child->ParentLoop = 0;
|
|
|
|
return Child;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// removeBlockFromLoop - This removes the specified basic block from the
|
|
|
|
/// current loop, updating the Blocks and ExitBlocks lists as appropriate. This
|
|
|
|
/// does not update the mapping in the LoopInfo class.
|
|
|
|
void Loop::removeBlockFromLoop(BasicBlock *BB) {
|
|
|
|
RemoveFromVector(Blocks, BB);
|
|
|
|
}
|
2006-06-07 22:00:26 +00:00
|
|
|
|
|
|
|
// Ensure this file gets linked when LoopInfo.h is used.
|
|
|
|
DEFINING_FILE_FOR(LoopInfo)
|