llvm-6502/lib/Target/TargetTransformImpl.cpp

208 lines
6.9 KiB
C++
Raw Normal View History

// llvm/Target/TargetTransformImpl.cpp - Target Loop Trans Info ---*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Target/TargetTransformImpl.h"
#include "llvm/Target/TargetLowering.h"
#include <utility>
using namespace llvm;
//===----------------------------------------------------------------------===//
//
// Calls used by scalar transformations.
//
//===----------------------------------------------------------------------===//
bool ScalarTargetTransformImpl::isLegalAddImmediate(int64_t imm) const {
return TLI->isLegalAddImmediate(imm);
}
bool ScalarTargetTransformImpl::isLegalICmpImmediate(int64_t imm) const {
return TLI->isLegalICmpImmediate(imm);
}
bool ScalarTargetTransformImpl::isLegalAddressingMode(const AddrMode &AM,
Type *Ty) const {
return TLI->isLegalAddressingMode(AM, Ty);
}
bool ScalarTargetTransformImpl::isTruncateFree(Type *Ty1, Type *Ty2) const {
return TLI->isTruncateFree(Ty1, Ty2);
}
bool ScalarTargetTransformImpl::isTypeLegal(Type *Ty) const {
EVT T = TLI->getValueType(Ty);
return TLI->isTypeLegal(T);
}
unsigned ScalarTargetTransformImpl::getJumpBufAlignment() const {
return TLI->getJumpBufAlignment();
}
unsigned ScalarTargetTransformImpl::getJumpBufSize() const {
return TLI->getJumpBufSize();
}
//===----------------------------------------------------------------------===//
//
// Calls used by the vectorizers.
//
//===----------------------------------------------------------------------===//
static int InstructionOpcodeToISD(unsigned Opcode) {
enum InstructionOpcodes {
#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
#include "llvm/Instruction.def"
};
switch (static_cast<InstructionOpcodes>(Opcode)) {
case Ret: return 0;
case Br: return 0;
case Switch: return 0;
case IndirectBr: return 0;
case Invoke: return 0;
case Resume: return 0;
case Unreachable: return 0;
case Add: return ISD::ADD;
case FAdd: return ISD::FADD;
case Sub: return ISD::SUB;
case FSub: return ISD::FSUB;
case Mul: return ISD::MUL;
case FMul: return ISD::FMUL;
case UDiv: return ISD::UDIV;
case SDiv: return ISD::UDIV;
case FDiv: return ISD::FDIV;
case URem: return ISD::UREM;
case SRem: return ISD::SREM;
case FRem: return ISD::FREM;
case Shl: return ISD::SHL;
case LShr: return ISD::SRL;
case AShr: return ISD::SRA;
case And: return ISD::AND;
case Or: return ISD::OR;
case Xor: return ISD::XOR;
case Alloca: return 0;
case Load: return ISD::LOAD;
case Store: return ISD::STORE;
case GetElementPtr: return 0;
case Fence: return 0;
case AtomicCmpXchg: return 0;
case AtomicRMW: return 0;
case Trunc: return ISD::TRUNCATE;
case ZExt: return ISD::ZERO_EXTEND;
case SExt: return ISD::SEXTLOAD;
case FPToUI: return ISD::FP_TO_UINT;
case FPToSI: return ISD::FP_TO_SINT;
case UIToFP: return ISD::UINT_TO_FP;
case SIToFP: return ISD::SINT_TO_FP;
case FPTrunc: return ISD::FP_ROUND;
case FPExt: return ISD::FP_EXTEND;
case PtrToInt: return ISD::BITCAST;
case IntToPtr: return ISD::BITCAST;
case BitCast: return ISD::BITCAST;
case ICmp: return ISD::SETCC;
case FCmp: return ISD::SETCC;
case PHI: return 0;
case Call: return 0;
case Select: return ISD::SELECT;
case UserOp1: return 0;
case UserOp2: return 0;
case VAArg: return 0;
case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
case InsertElement: return ISD::INSERT_VECTOR_ELT;
case ShuffleVector: return ISD::VECTOR_SHUFFLE;
case ExtractValue: return ISD::MERGE_VALUES;
case InsertValue: return ISD::MERGE_VALUES;
case LandingPad: return 0;
}
llvm_unreachable("Unknown instruction type encountered!");
}
std::pair<unsigned, EVT>
VectorTargetTransformImpl::getTypeLegalizationCost(LLVMContext &C,
EVT Ty) const {
unsigned Cost = 1;
// We keep legalizing the type until we find a legal kind. We assume that
// the only operation that costs anything is the split. After splitting
// we need to handle two types.
while (true) {
TargetLowering::LegalizeKind LK = TLI->getTypeConversion(C, Ty);
if (LK.first == TargetLowering::TypeLegal)
return std::make_pair(Cost, LK.second);
if (LK.first == TargetLowering::TypeSplitVector)
Cost *= 2;
// Keep legalizing the type.
Ty = LK.second;
}
}
unsigned
VectorTargetTransformImpl::getInstrCost(unsigned Opcode, Type *Ty1,
Type *Ty2) const {
// Check if any of the operands are vector operands.
int ISD = InstructionOpcodeToISD(Opcode);
// If we don't have any information about this instruction assume it costs 1.
if (ISD == 0)
return 1;
// Selects on vectors are actually vector selects.
if (ISD == ISD::SELECT) {
assert(Ty2 && "Ty2 must hold the condition type");
if (Ty2->isVectorTy())
ISD = ISD::VSELECT;
}
assert(Ty1 && "We need to have at least one type");
// From this stage we look at the legalized type.
std::pair<unsigned, EVT> LT =
getTypeLegalizationCost(Ty1->getContext(), TLI->getValueType(Ty1));
if (TLI->isOperationLegalOrCustom(ISD, LT.second)) {
// The operation is legal. Assume it costs 1. Multiply
// by the type-legalization overhead.
return LT.first * 1;
}
unsigned NumElem =
(LT.second.isVector() ? LT.second.getVectorNumElements() : 1);
// We will probably scalarize this instruction. Assume that the cost is the
// number of the vector elements.
return LT.first * NumElem * 1;
}
unsigned
VectorTargetTransformImpl::getBroadcastCost(Type *Tp) const {
return 1;
}
unsigned
VectorTargetTransformImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
unsigned Alignment,
unsigned AddressSpace) const {
// From this stage we look at the legalized type.
std::pair<unsigned, EVT> LT =
getTypeLegalizationCost(Src->getContext(), TLI->getValueType(Src));
// Assume that all loads of legal types cost 1.
return LT.first;
}
unsigned
VectorTargetTransformImpl::getNumberOfParts(Type *Tp) const {
std::pair<unsigned, EVT> LT =
getTypeLegalizationCost(Tp->getContext(), TLI->getValueType(Tp));
return LT.first;
}