llvm-6502/lib/CodeGen/MachineSink.cpp

255 lines
9.0 KiB
C++
Raw Normal View History

//===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "machine-sink"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
STATISTIC(NumSunk, "Number of machine instructions sunk");
namespace {
class VISIBILITY_HIDDEN MachineSinking : public MachineFunctionPass {
const TargetMachine *TM;
const TargetInstrInfo *TII;
MachineFunction *CurMF; // Current MachineFunction
MachineRegisterInfo *RegInfo; // Machine register information
MachineDominatorTree *DT; // Machine dominator tree for the current Loop
public:
static char ID; // Pass identification
MachineSinking() : MachineFunctionPass((intptr_t)&ID) {}
virtual bool runOnMachineFunction(MachineFunction &MF);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
MachineFunctionPass::getAnalysisUsage(AU);
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
}
private:
bool ProcessBlock(MachineBasicBlock &MBB);
bool SinkInstruction(MachineInstr *MI, bool &SawStore);
bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB) const;
};
char MachineSinking::ID = 0;
RegisterPass<MachineSinking> X("machine-sink", "Machine code sinking");
} // end anonymous namespace
FunctionPass *llvm::createMachineSinkingPass() { return new MachineSinking(); }
/// AllUsesDominatedByBlock - Return true if all uses of the specified register
/// occur in blocks dominated by the specified block.
bool MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
MachineBasicBlock *MBB) const {
assert(MRegisterInfo::isVirtualRegister(Reg) && "Only makes sense for vregs");
for (MachineRegisterInfo::reg_iterator I = RegInfo->reg_begin(Reg),
E = RegInfo->reg_end(); I != E; ++I) {
if (I.getOperand().isDef()) continue; // ignore def.
// Determine the block of the use.
MachineInstr *UseInst = &*I;
MachineBasicBlock *UseBlock = UseInst->getParent();
if (UseInst->getOpcode() == TargetInstrInfo::PHI) {
// PHI nodes use the operand in the predecessor block, not the block with
// the PHI.
UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB();
}
// Check that it dominates.
if (!DT->dominates(MBB, UseBlock))
return false;
}
return true;
}
bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
DOUT << "******** Machine Sinking ********\n";
CurMF = &MF;
TM = &CurMF->getTarget();
TII = TM->getInstrInfo();
RegInfo = &CurMF->getRegInfo();
DT = &getAnalysis<MachineDominatorTree>();
bool EverMadeChange = false;
while (1) {
bool MadeChange = false;
// Process all basic blocks.
for (MachineFunction::iterator I = CurMF->begin(), E = CurMF->end();
I != E; ++I)
MadeChange |= ProcessBlock(*I);
// If this iteration over the code changed anything, keep iterating.
if (!MadeChange) break;
EverMadeChange = true;
}
return EverMadeChange;
}
bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
bool MadeChange = false;
// Can't sink anything out of a block that has less than two successors.
if (MBB.succ_size() <= 1) return false;
// Walk the basic block bottom-up. Remember if we saw a store.
bool SawStore = false;
for (MachineBasicBlock::iterator I = MBB.end(); I != MBB.begin(); ){
MachineBasicBlock::iterator LastIt = I;
if (SinkInstruction(--I, SawStore)) {
I = LastIt;
++NumSunk;
}
}
return MadeChange;
}
/// SinkInstruction - Determine whether it is safe to sink the specified machine
/// instruction out of its current block into a successor.
bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
const TargetInstrDesc &TID = MI->getDesc();
// Ignore stuff that we obviously can't sink.
if (TID.mayStore() || TID.isCall()) {
SawStore = true;
return false;
}
if (TID.isReturn() || TID.isBranch() || TID.hasUnmodeledSideEffects())
return false;
// See if this instruction does a load. If so, we have to guarantee that the
// loaded value doesn't change between the load and the end of block. The
// check for isInvariantLoad gives the targe the chance to classify the load
// as always returning a constant, e.g. a constant pool load.
if (TID.mayLoad() && !TII->isInvariantLoad(MI)) {
// Otherwise, this is a real load. If there is a store between the load and
// end of block, we can't sink the load.
//
// FIXME: we can't do this transformation until we know that the load is
// not volatile, and machineinstrs don't keep this info. :(
//
//if (SawStore)
return false;
}
// FIXME: This should include support for sinking instructions within the
// block they are currently in to shorten the live ranges. We often get
// instructions sunk into the top of a large block, but it would be better to
// also sink them down before their first use in the block. This xform has to
// be careful not to *increase* register pressure though, e.g. sinking
// "x = y + z" down if it kills y and z would increase the live ranges of y
// and z only the shrink the live range of x.
// Loop over all the operands of the specified instruction. If there is
// anything we can't handle, bail out.
MachineBasicBlock *ParentBlock = MI->getParent();
// SuccToSinkTo - This is the successor to sink this instruction to, once we
// decide.
MachineBasicBlock *SuccToSinkTo = 0;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg()) continue; // Ignore non-register operands.
unsigned Reg = MO.getReg();
if (Reg == 0) continue;
if (MRegisterInfo::isPhysicalRegister(Reg)) {
// If this is a physical register use, we can't move it. If it is a def,
// we can move it, but only if the def is dead.
if (MO.isUse() || !MO.isDead())
return false;
} else {
// Virtual register uses are always safe to sink.
if (MO.isUse()) continue;
// FIXME: This picks a successor to sink into based on having one
// successor that dominates all the uses. However, there are cases where
// sinking can happen but where the sink point isn't a successor. For
// example:
// x = computation
// if () {} else {}
// use x
// the instruction could be sunk over the whole diamond for the
// if/then/else (or loop, etc), allowing it to be sunk into other blocks
// after that.
// Virtual register defs can only be sunk if all their uses are in blocks
// dominated by one of the successors.
if (SuccToSinkTo) {
// If a previous operand picked a block to sink to, then this operand
// must be sinkable to the same block.
if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo))
return false;
continue;
}
// Otherwise, we should look at all the successors and decide which one
// we should sink to.
for (MachineBasicBlock::succ_iterator SI = ParentBlock->succ_begin(),
E = ParentBlock->succ_end(); SI != E; ++SI) {
if (AllUsesDominatedByBlock(Reg, *SI)) {
SuccToSinkTo = *SI;
break;
}
}
// If we couldn't find a block to sink to, ignore this instruction.
if (SuccToSinkTo == 0)
return false;
}
}
// If there are no outputs, it must have side-effects.
if (SuccToSinkTo == 0)
return false;
DEBUG(cerr << "Sink instr " << *MI);
DEBUG(cerr << "to block " << *SuccToSinkTo);
// If the block has multiple predecessors, this would introduce computation on
// a path that it doesn't already exist. We could split the critical edge,
// but for now we just punt.
// FIXME: Split critical edges if not backedges.
if (SuccToSinkTo->pred_size() > 1) {
DEBUG(cerr << " *** PUNTING: Critical edge found\n");
return false;
}
// Determine where to insert into. Skip phi nodes.
MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
while (InsertPos != SuccToSinkTo->end() &&
InsertPos->getOpcode() == TargetInstrInfo::PHI)
++InsertPos;
// Move the instruction.
SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
++MachineBasicBlock::iterator(MI));
return true;
}