llvm-6502/lib/Target/X86/X86ATTAsmPrinter.cpp

398 lines
13 KiB
C++
Raw Normal View History

//===-- X86ATTAsmPrinter.cpp - Convert X86 LLVM code to Intel assembly ----===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to AT&T format assembly
// language. This printer is the output mechanism used by `llc'.
//
//===----------------------------------------------------------------------===//
#include "X86ATTAsmPrinter.h"
#include "X86.h"
#include "X86TargetMachine.h"
#include "llvm/Module.h"
#include "llvm/Support/Mangler.h"
#include "llvm/Target/TargetOptions.h"
#include <iostream>
using namespace llvm;
/// runOnMachineFunction - This uses the printMachineInstruction()
/// method to print assembly for each instruction.
///
bool X86ATTAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
if (Subtarget->TargetType == X86Subtarget::isDarwin) {
// Let PassManager know we need debug information and relay
// the MachineDebugInfo address on to DwarfWriter.
DW.SetDebugInfo(&getAnalysis<MachineDebugInfo>());
}
SetupMachineFunction(MF);
O << "\n\n";
// Print out constants referenced by the function
EmitConstantPool(MF.getConstantPool());
// Print out jump tables referenced by the function
EmitJumpTableInfo(MF.getJumpTableInfo());
// Print out labels for the function.
const Function *F = MF.getFunction();
switch (F->getLinkage()) {
default: assert(0 && "Unknown linkage type!");
case Function::InternalLinkage: // Symbols default to internal.
SwitchToTextSection(DefaultTextSection, F);
EmitAlignment(4, F); // FIXME: This should be parameterized somewhere.
break;
case Function::ExternalLinkage:
SwitchToTextSection(DefaultTextSection, F);
EmitAlignment(4, F); // FIXME: This should be parameterized somewhere.
O << "\t.globl\t" << CurrentFnName << "\n";
break;
case Function::WeakLinkage:
case Function::LinkOnceLinkage:
if (Subtarget->TargetType == X86Subtarget::isDarwin) {
SwitchToTextSection(
".section __TEXT,__textcoal_nt,coalesced,pure_instructions", F);
O << "\t.globl\t" << CurrentFnName << "\n";
O << "\t.weak_definition\t" << CurrentFnName << "\n";
} else if (Subtarget->TargetType == X86Subtarget::isCygwin) {
EmitAlignment(4, F); // FIXME: This should be parameterized somewhere.
O << "\t.section\t.llvm.linkonce.t." << CurrentFnName
<< ",\"ax\"\n";
SwitchToTextSection("", F);
O << "\t.weak " << CurrentFnName << "\n";
} else {
EmitAlignment(4, F); // FIXME: This should be parameterized somewhere.
O << "\t.section\t.llvm.linkonce.t." << CurrentFnName
<< ",\"ax\",@progbits\n";
SwitchToTextSection("", F);
O << "\t.weak " << CurrentFnName << "\n";
}
break;
}
O << CurrentFnName << ":\n";
if (Subtarget->TargetType == X86Subtarget::isDarwin) {
// Emit pre-function debug information.
DW.BeginFunction(&MF);
}
// Print out code for the function.
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
I != E; ++I) {
// Print a label for the basic block.
if (I->pred_begin() != I->pred_end()) {
printBasicBlockLabel(I, true);
O << '\n';
}
for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
II != E; ++II) {
// Print the assembly for the instruction.
O << "\t";
printMachineInstruction(II);
}
}
if (HasDotTypeDotSizeDirective)
O << "\t.size " << CurrentFnName << ", .-" << CurrentFnName << "\n";
if (Subtarget->TargetType == X86Subtarget::isDarwin) {
// Emit post-function debug information.
DW.EndFunction();
}
// We didn't modify anything.
return false;
}
void X86ATTAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo,
const char *Modifier) {
const MachineOperand &MO = MI->getOperand(OpNo);
const MRegisterInfo &RI = *TM.getRegisterInfo();
switch (MO.getType()) {
case MachineOperand::MO_Register: {
assert(MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
"Virtual registers should not make it this far!");
O << '%';
unsigned Reg = MO.getReg();
if (Modifier && strncmp(Modifier, "subreg", strlen("subreg")) == 0) {
MVT::ValueType VT = (strcmp(Modifier,"subreg16") == 0)
? MVT::i16 : MVT::i8;
Reg = getX86SubSuperRegister(Reg, VT);
}
for (const char *Name = RI.get(Reg).Name; *Name; ++Name)
O << (char)tolower(*Name);
return;
}
case MachineOperand::MO_Immediate:
if (!Modifier || strcmp(Modifier, "debug") != 0)
O << '$';
O << MO.getImmedValue();
return;
case MachineOperand::MO_MachineBasicBlock:
printBasicBlockLabel(MO.getMachineBasicBlock());
return;
case MachineOperand::MO_JumpTableIndex: {
bool isMemOp = Modifier && !strcmp(Modifier, "mem");
if (!isMemOp) O << '$';
O << PrivateGlobalPrefix << "JTI" << getFunctionNumber() << "_"
<< MO.getJumpTableIndex();
// FIXME: PIC relocation model
return;
}
case MachineOperand::MO_ConstantPoolIndex: {
bool isMemOp = Modifier && !strcmp(Modifier, "mem");
if (!isMemOp) O << '$';
O << PrivateGlobalPrefix << "CPI" << getFunctionNumber() << "_"
<< MO.getConstantPoolIndex();
if (Subtarget->TargetType == X86Subtarget::isDarwin &&
TM.getRelocationModel() == Reloc::PIC)
O << "-\"L" << getFunctionNumber() << "$pb\"";
int Offset = MO.getOffset();
if (Offset > 0)
O << "+" << Offset;
else if (Offset < 0)
O << Offset;
return;
}
case MachineOperand::MO_GlobalAddress: {
bool isCallOp = Modifier && !strcmp(Modifier, "call");
bool isMemOp = Modifier && !strcmp(Modifier, "mem");
if (!isMemOp && !isCallOp) O << '$';
// Darwin block shameless ripped from PPCAsmPrinter.cpp
if (Subtarget->TargetType == X86Subtarget::isDarwin &&
TM.getRelocationModel() != Reloc::Static) {
GlobalValue *GV = MO.getGlobal();
std::string Name = Mang->getValueName(GV);
// Link-once, External, or Weakly-linked global variables need
// non-lazily-resolved stubs
if (GV->isExternal() || GV->hasWeakLinkage() ||
GV->hasLinkOnceLinkage()) {
// Dynamically-resolved functions need a stub for the function.
if (isCallOp && isa<Function>(GV) && cast<Function>(GV)->isExternal()) {
FnStubs.insert(Name);
O << "L" << Name << "$stub";
} else {
GVStubs.insert(Name);
O << "L" << Name << "$non_lazy_ptr";
}
} else {
O << Mang->getValueName(GV);
}
if (!isCallOp && TM.getRelocationModel() == Reloc::PIC)
O << "-\"L" << getFunctionNumber() << "$pb\"";
} else
O << Mang->getValueName(MO.getGlobal());
int Offset = MO.getOffset();
if (Offset > 0)
O << "+" << Offset;
else if (Offset < 0)
O << Offset;
return;
}
case MachineOperand::MO_ExternalSymbol: {
bool isCallOp = Modifier && !strcmp(Modifier, "call");
if (isCallOp &&
Subtarget->TargetType == X86Subtarget::isDarwin &&
TM.getRelocationModel() != Reloc::Static) {
std::string Name(GlobalPrefix);
Name += MO.getSymbolName();
FnStubs.insert(Name);
O << "L" << Name << "$stub";
return;
}
if (!isCallOp) O << '$';
O << GlobalPrefix << MO.getSymbolName();
return;
}
default:
O << "<unknown operand type>"; return;
}
}
void X86ATTAsmPrinter::printSSECC(const MachineInstr *MI, unsigned Op) {
unsigned char value = MI->getOperand(Op).getImmedValue();
assert(value <= 7 && "Invalid ssecc argument!");
switch (value) {
case 0: O << "eq"; break;
case 1: O << "lt"; break;
case 2: O << "le"; break;
case 3: O << "unord"; break;
case 4: O << "neq"; break;
case 5: O << "nlt"; break;
case 6: O << "nle"; break;
case 7: O << "ord"; break;
}
}
void X86ATTAsmPrinter::printMemReference(const MachineInstr *MI, unsigned Op){
assert(isMem(MI, Op) && "Invalid memory reference!");
const MachineOperand &BaseReg = MI->getOperand(Op);
int ScaleVal = MI->getOperand(Op+1).getImmedValue();
const MachineOperand &IndexReg = MI->getOperand(Op+2);
const MachineOperand &DispSpec = MI->getOperand(Op+3);
if (BaseReg.isFrameIndex()) {
O << "[frame slot #" << BaseReg.getFrameIndex();
if (DispSpec.getImmedValue())
O << " + " << DispSpec.getImmedValue();
O << "]";
return;
}
if (DispSpec.isGlobalAddress() || DispSpec.isConstantPoolIndex()) {
printOperand(MI, Op+3, "mem");
} else {
int DispVal = DispSpec.getImmedValue();
if (DispVal || (!IndexReg.getReg() && !BaseReg.getReg()))
O << DispVal;
}
if (IndexReg.getReg() || BaseReg.getReg()) {
O << "(";
if (BaseReg.getReg())
printOperand(MI, Op);
if (IndexReg.getReg()) {
O << ",";
printOperand(MI, Op+2);
if (ScaleVal != 1)
O << "," << ScaleVal;
}
O << ")";
}
}
void X86ATTAsmPrinter::printPICLabel(const MachineInstr *MI, unsigned Op) {
O << "\"L" << getFunctionNumber() << "$pb\"\n";
O << "\"L" << getFunctionNumber() << "$pb\":";
}
bool X86ATTAsmPrinter::printAsmMRegister(const MachineOperand &MO,
const char Mode) {
const MRegisterInfo &RI = *TM.getRegisterInfo();
unsigned Reg = MO.getReg();
switch (Mode) {
default: return true; // Unknown mode.
case 'b': // Print QImode register
Reg = getX86SubSuperRegister(Reg, MVT::i8);
break;
case 'h': // Print QImode high register
Reg = getX86SubSuperRegister(Reg, MVT::i8, true);
break;
case 'w': // Print HImode register
Reg = getX86SubSuperRegister(Reg, MVT::i16);
break;
case 'k': // Print SImode register
Reg = getX86SubSuperRegister(Reg, MVT::i32);
break;
}
O << '%';
for (const char *Name = RI.get(Reg).Name; *Name; ++Name)
O << (char)tolower(*Name);
return false;
}
/// PrintAsmOperand - Print out an operand for an inline asm expression.
///
bool X86ATTAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode) {
// Does this asm operand have a single letter operand modifier?
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
switch (ExtraCode[0]) {
default: return true; // Unknown modifier.
case 'b': // Print QImode register
case 'h': // Print QImode high register
case 'w': // Print HImode register
case 'k': // Print SImode register
return printAsmMRegister(MI->getOperand(OpNo), ExtraCode[0]);
}
}
printOperand(MI, OpNo);
return false;
}
bool X86ATTAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode) {
if (ExtraCode && ExtraCode[0])
return true; // Unknown modifier.
printMemReference(MI, OpNo);
return false;
}
/// printMachineInstruction -- Print out a single X86 LLVM instruction
/// MI in Intel syntax to the current output stream.
///
void X86ATTAsmPrinter::printMachineInstruction(const MachineInstr *MI) {
++EmittedInsts;
// This works around some Darwin assembler bugs.
if (Subtarget->TargetType == X86Subtarget::isDarwin) {
switch (MI->getOpcode()) {
case X86::REP_MOVSB:
O << "rep/movsb (%esi),(%edi)\n";
return;
case X86::REP_MOVSD:
O << "rep/movsl (%esi),(%edi)\n";
return;
case X86::REP_MOVSW:
O << "rep/movsw (%esi),(%edi)\n";
return;
case X86::REP_STOSB:
O << "rep/stosb\n";
return;
case X86::REP_STOSD:
O << "rep/stosl\n";
return;
case X86::REP_STOSW:
O << "rep/stosw\n";
return;
default:
break;
}
}
// See if a truncate instruction can be turned into a nop.
switch (MI->getOpcode()) {
default: break;
case X86::TRUNC_GR32_GR16:
case X86::TRUNC_GR32_GR8:
case X86::TRUNC_GR16_GR8: {
const MachineOperand &MO0 = MI->getOperand(0);
const MachineOperand &MO1 = MI->getOperand(1);
unsigned Reg0 = MO0.getReg();
unsigned Reg1 = MO1.getReg();
if (MI->getOpcode() == X86::TRUNC_GR32_GR16)
Reg1 = getX86SubSuperRegister(Reg1, MVT::i16);
else
Reg1 = getX86SubSuperRegister(Reg1, MVT::i8);
O << CommentString << " TRUNCATE ";
if (Reg0 != Reg1)
O << "\n\t";
break;
}
}
// Call the autogenerated instruction printer routines.
printInstruction(MI);
}
// Include the auto-generated portion of the assembly writer.
#include "X86GenAsmWriter.inc"