2010-02-15 08:04:42 +00:00
|
|
|
//===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "DAGISelMatcher.h"
|
|
|
|
#include "CodeGenDAGPatterns.h"
|
|
|
|
#include "Record.h"
|
|
|
|
#include "llvm/ADT/StringMap.h"
|
|
|
|
using namespace llvm;
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
class MatcherGen {
|
|
|
|
const PatternToMatch &Pattern;
|
|
|
|
const CodeGenDAGPatterns &CGP;
|
|
|
|
|
|
|
|
/// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
|
|
|
|
/// out with all of the types removed. This allows us to insert type checks
|
|
|
|
/// as we scan the tree.
|
|
|
|
TreePatternNode *PatWithNoTypes;
|
|
|
|
|
|
|
|
/// VariableMap - A map from variable names ('$dst') to the recorded operand
|
|
|
|
/// number that they were captured as. These are biased by 1 to make
|
|
|
|
/// insertion easier.
|
|
|
|
StringMap<unsigned> VariableMap;
|
|
|
|
unsigned NextRecordedOperandNo;
|
|
|
|
|
|
|
|
MatcherNodeWithChild *Matcher;
|
|
|
|
MatcherNodeWithChild *CurPredicate;
|
|
|
|
public:
|
|
|
|
MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
|
|
|
|
|
|
|
|
~MatcherGen() {
|
|
|
|
delete PatWithNoTypes;
|
|
|
|
}
|
|
|
|
|
|
|
|
void EmitMatcherCode();
|
|
|
|
|
|
|
|
MatcherNodeWithChild *GetMatcher() const { return Matcher; }
|
|
|
|
MatcherNodeWithChild *GetCurPredicate() const { return CurPredicate; }
|
|
|
|
private:
|
|
|
|
void AddMatcherNode(MatcherNodeWithChild *NewNode);
|
|
|
|
void InferPossibleTypes();
|
|
|
|
void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes);
|
|
|
|
void EmitLeafMatchCode(const TreePatternNode *N);
|
|
|
|
void EmitOperatorMatchCode(const TreePatternNode *N,
|
|
|
|
TreePatternNode *NodeNoTypes);
|
|
|
|
};
|
|
|
|
|
|
|
|
} // end anon namespace.
|
|
|
|
|
|
|
|
MatcherGen::MatcherGen(const PatternToMatch &pattern,
|
|
|
|
const CodeGenDAGPatterns &cgp)
|
|
|
|
: Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
|
|
|
|
Matcher(0), CurPredicate(0) {
|
|
|
|
// We need to produce the matcher tree for the patterns source pattern. To do
|
|
|
|
// this we need to match the structure as well as the types. To do the type
|
|
|
|
// matching, we want to figure out the fewest number of type checks we need to
|
|
|
|
// emit. For example, if there is only one integer type supported by a
|
|
|
|
// target, there should be no type comparisons at all for integer patterns!
|
|
|
|
//
|
|
|
|
// To figure out the fewest number of type checks needed, clone the pattern,
|
|
|
|
// remove the types, then perform type inference on the pattern as a whole.
|
|
|
|
// If there are unresolved types, emit an explicit check for those types,
|
|
|
|
// apply the type to the tree, then rerun type inference. Iterate until all
|
|
|
|
// types are resolved.
|
|
|
|
//
|
|
|
|
PatWithNoTypes = Pattern.getSrcPattern()->clone();
|
|
|
|
PatWithNoTypes->RemoveAllTypes();
|
|
|
|
|
|
|
|
// If there are types that are manifestly known, infer them.
|
|
|
|
InferPossibleTypes();
|
|
|
|
}
|
|
|
|
|
|
|
|
/// InferPossibleTypes - As we emit the pattern, we end up generating type
|
|
|
|
/// checks and applying them to the 'PatWithNoTypes' tree. As we do this, we
|
|
|
|
/// want to propagate implied types as far throughout the tree as possible so
|
|
|
|
/// that we avoid doing redundant type checks. This does the type propagation.
|
|
|
|
void MatcherGen::InferPossibleTypes() {
|
|
|
|
// TP - Get *SOME* tree pattern, we don't care which. It is only used for
|
|
|
|
// diagnostics, which we know are impossible at this point.
|
|
|
|
TreePattern &TP = *CGP.pf_begin()->second;
|
|
|
|
|
|
|
|
try {
|
|
|
|
bool MadeChange = true;
|
|
|
|
while (MadeChange)
|
|
|
|
MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
|
|
|
|
true/*Ignore reg constraints*/);
|
|
|
|
} catch (...) {
|
|
|
|
errs() << "Type constraint application shouldn't fail!";
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// AddMatcherNode - Add a matcher node to the current graph we're building.
|
|
|
|
void MatcherGen::AddMatcherNode(MatcherNodeWithChild *NewNode) {
|
|
|
|
if (CurPredicate != 0)
|
|
|
|
CurPredicate->setChild(NewNode);
|
|
|
|
else
|
|
|
|
Matcher = NewNode;
|
|
|
|
CurPredicate = NewNode;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/// EmitLeafMatchCode - Generate matching code for leaf nodes.
|
|
|
|
void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
|
|
|
|
assert(N->isLeaf() && "Not a leaf?");
|
|
|
|
// Direct match against an integer constant.
|
|
|
|
if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue()))
|
|
|
|
return AddMatcherNode(new CheckIntegerMatcherNode(II->getValue()));
|
|
|
|
|
|
|
|
DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue());
|
|
|
|
if (DI == 0) {
|
|
|
|
errs() << "Unknown leaf kind: " << *DI << "\n";
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
|
|
|
|
Record *LeafRec = DI->getDef();
|
|
|
|
if (// Handle register references. Nothing to do here, they always match.
|
|
|
|
LeafRec->isSubClassOf("RegisterClass") ||
|
|
|
|
LeafRec->isSubClassOf("PointerLikeRegClass") ||
|
|
|
|
LeafRec->isSubClassOf("Register") ||
|
|
|
|
// Place holder for SRCVALUE nodes. Nothing to do here.
|
|
|
|
LeafRec->getName() == "srcvalue")
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (LeafRec->isSubClassOf("ValueType"))
|
|
|
|
return AddMatcherNode(new CheckValueTypeMatcherNode(LeafRec->getName()));
|
|
|
|
|
|
|
|
if (LeafRec->isSubClassOf("CondCode"))
|
|
|
|
return AddMatcherNode(new CheckCondCodeMatcherNode(LeafRec->getName()));
|
|
|
|
|
|
|
|
if (LeafRec->isSubClassOf("ComplexPattern")) {
|
|
|
|
// Handle complex pattern.
|
|
|
|
const ComplexPattern &CP = CGP.getComplexPattern(LeafRec);
|
|
|
|
return AddMatcherNode(new CheckComplexPatMatcherNode(CP));
|
|
|
|
}
|
|
|
|
|
|
|
|
errs() << "Unknown leaf kind: " << *N << "\n";
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
|
|
|
|
void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
|
|
|
|
TreePatternNode *NodeNoTypes) {
|
|
|
|
assert(!N->isLeaf() && "Not an operator?");
|
|
|
|
const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
|
|
|
|
|
|
|
|
// If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
|
|
|
|
// a constant without a predicate fn that has more that one bit set, handle
|
|
|
|
// this as a special case. This is usually for targets that have special
|
|
|
|
// handling of certain large constants (e.g. alpha with it's 8/16/32-bit
|
|
|
|
// handling stuff). Using these instructions is often far more efficient
|
|
|
|
// than materializing the constant. Unfortunately, both the instcombiner
|
|
|
|
// and the dag combiner can often infer that bits are dead, and thus drop
|
|
|
|
// them from the mask in the dag. For example, it might turn 'AND X, 255'
|
|
|
|
// into 'AND X, 254' if it knows the low bit is set. Emit code that checks
|
|
|
|
// to handle this.
|
|
|
|
if ((N->getOperator()->getName() == "and" ||
|
|
|
|
N->getOperator()->getName() == "or") &&
|
|
|
|
N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty()) {
|
|
|
|
if (IntInit *II = dynamic_cast<IntInit*>(N->getChild(1)->getLeafValue())) {
|
|
|
|
if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits.
|
|
|
|
if (N->getOperator()->getName() == "and")
|
|
|
|
AddMatcherNode(new CheckAndImmMatcherNode(II->getValue()));
|
|
|
|
else
|
|
|
|
AddMatcherNode(new CheckOrImmMatcherNode(II->getValue()));
|
|
|
|
|
|
|
|
// Match the LHS of the AND as appropriate.
|
|
|
|
AddMatcherNode(new MoveChildMatcherNode(0));
|
|
|
|
EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0));
|
|
|
|
AddMatcherNode(new MoveParentMatcherNode());
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check that the current opcode lines up.
|
|
|
|
AddMatcherNode(new CheckOpcodeMatcherNode(CInfo.getEnumName()));
|
|
|
|
|
|
|
|
// If this node has a chain, then the chain is operand #0 is the SDNode, and
|
|
|
|
// the child numbers of the node are all offset by one.
|
|
|
|
unsigned OpNo = 0;
|
|
|
|
if (N->NodeHasProperty(SDNPHasChain, CGP))
|
|
|
|
OpNo = 1;
|
|
|
|
|
2010-02-16 06:10:58 +00:00
|
|
|
// If this node is not the root and the subtree underneath it produces a
|
|
|
|
// chain, then the result of matching the node is also produce a chain.
|
|
|
|
// Beyond that, this means that we're also folding (at least) the root node
|
|
|
|
// into the node that produce the chain (for example, matching
|
|
|
|
// "(add reg, (load ptr))" as a add_with_memory on X86). This is problematic,
|
|
|
|
// if the 'reg' node also uses the load (say, its chain). Graphically:
|
|
|
|
//
|
|
|
|
// [LD]
|
|
|
|
// ^ ^
|
|
|
|
// | \ DAG's like cheese.
|
|
|
|
// / |
|
|
|
|
// / [YY]
|
|
|
|
// | ^
|
|
|
|
// [XX]--/
|
|
|
|
//
|
|
|
|
// It would be invalid to fold XX and LD. In this case, folding the two
|
|
|
|
// nodes together would induce a cycle in the DAG, making it a cyclic DAG (!).
|
|
|
|
// To prevent this, we emit a dynamic check for legality before allowing this
|
|
|
|
// to be folded.
|
|
|
|
//
|
|
|
|
const TreePatternNode *Root = Pattern.getSrcPattern();
|
|
|
|
if (N != Root && // Not the root of the pattern.
|
|
|
|
N->TreeHasProperty(SDNPHasChain, CGP)) { // Has a chain somewhere in tree.
|
2010-02-16 19:15:55 +00:00
|
|
|
|
2010-02-16 06:10:58 +00:00
|
|
|
// If this non-root node produces a chain, we may need to emit a validity
|
|
|
|
// check.
|
|
|
|
if (OpNo != 0) {
|
|
|
|
// If there is a node between the root and this node, then we definitely
|
|
|
|
// need to emit the check.
|
|
|
|
bool NeedCheck = !Root->hasChild(N);
|
|
|
|
|
|
|
|
// If it *is* an immediate child of the root, we can still need a check if
|
|
|
|
// the root SDNode has multiple inputs. For us, this means that it is an
|
|
|
|
// intrinsic, has multiple operands, or has other inputs like chain or
|
|
|
|
// flag).
|
|
|
|
if (!NeedCheck) {
|
|
|
|
const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
|
|
|
|
NeedCheck =
|
|
|
|
Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
|
|
|
|
Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
|
|
|
|
Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
|
|
|
|
PInfo.getNumOperands() > 1 ||
|
|
|
|
PInfo.hasProperty(SDNPHasChain) ||
|
|
|
|
PInfo.hasProperty(SDNPInFlag) ||
|
|
|
|
PInfo.hasProperty(SDNPOptInFlag);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (NeedCheck)
|
2010-02-16 19:15:55 +00:00
|
|
|
AddMatcherNode(new CheckFoldableChainNodeMatcherNode());
|
2010-02-16 06:10:58 +00:00
|
|
|
}
|
2010-02-15 08:04:42 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
|
|
|
|
// Get the code suitable for matching this child. Move to the child, check
|
|
|
|
// it then move back to the parent.
|
|
|
|
AddMatcherNode(new MoveChildMatcherNode(i));
|
|
|
|
EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i));
|
|
|
|
AddMatcherNode(new MoveParentMatcherNode());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void MatcherGen::EmitMatchCode(const TreePatternNode *N,
|
|
|
|
TreePatternNode *NodeNoTypes) {
|
|
|
|
// If N and NodeNoTypes don't agree on a type, then this is a case where we
|
|
|
|
// need to do a type check. Emit the check, apply the tyep to NodeNoTypes and
|
|
|
|
// reinfer any correlated types.
|
|
|
|
if (NodeNoTypes->getExtTypes() != N->getExtTypes()) {
|
|
|
|
AddMatcherNode(new CheckTypeMatcherNode(N->getTypeNum(0)));
|
|
|
|
NodeNoTypes->setTypes(N->getExtTypes());
|
|
|
|
InferPossibleTypes();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// If this node has a name associated with it, capture it in VariableMap. If
|
|
|
|
// we already saw this in the pattern, emit code to verify dagness.
|
|
|
|
if (!N->getName().empty()) {
|
|
|
|
unsigned &VarMapEntry = VariableMap[N->getName()];
|
|
|
|
if (VarMapEntry == 0) {
|
|
|
|
VarMapEntry = ++NextRecordedOperandNo;
|
|
|
|
AddMatcherNode(new RecordMatcherNode());
|
|
|
|
} else {
|
|
|
|
// If we get here, this is a second reference to a specific name. Since
|
|
|
|
// we already have checked that the first reference is valid, we don't
|
|
|
|
// have to recursively match it, just check that it's the same as the
|
|
|
|
// previously named thing.
|
|
|
|
AddMatcherNode(new CheckSameMatcherNode(VarMapEntry-1));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If there are node predicates for this node, generate their checks.
|
|
|
|
for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i)
|
|
|
|
AddMatcherNode(new CheckPredicateMatcherNode(N->getPredicateFns()[i]));
|
|
|
|
|
|
|
|
if (N->isLeaf())
|
|
|
|
EmitLeafMatchCode(N);
|
|
|
|
else
|
|
|
|
EmitOperatorMatchCode(N, NodeNoTypes);
|
|
|
|
}
|
|
|
|
|
|
|
|
void MatcherGen::EmitMatcherCode() {
|
|
|
|
// If the pattern has a predicate on it (e.g. only enabled when a subtarget
|
|
|
|
// feature is around, do the check).
|
|
|
|
if (!Pattern.getPredicateCheck().empty())
|
|
|
|
AddMatcherNode(new
|
|
|
|
CheckPatternPredicateMatcherNode(Pattern.getPredicateCheck()));
|
|
|
|
|
|
|
|
// Emit the matcher for the pattern structure and types.
|
|
|
|
EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
MatcherNode *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
|
|
|
|
const CodeGenDAGPatterns &CGP) {
|
|
|
|
MatcherGen Gen(Pattern, CGP);
|
|
|
|
|
|
|
|
// Generate the code for the matcher.
|
|
|
|
Gen.EmitMatcherCode();
|
|
|
|
|
|
|
|
// If the match succeeds, then we generate Pattern.
|
|
|
|
EmitNodeMatcherNode *Result = new EmitNodeMatcherNode(Pattern);
|
|
|
|
|
|
|
|
// Link it into the pattern.
|
|
|
|
if (MatcherNodeWithChild *Pred = Gen.GetCurPredicate()) {
|
|
|
|
Pred->setChild(Result);
|
|
|
|
return Gen.GetMatcher();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Unconditional match.
|
|
|
|
return Result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|