253 lines
9.2 KiB
C++
Raw Normal View History

//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Owen Anderson and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass transforms loops by placing phi nodes at the end of the loops for
// all values that are live across the loop boundary. For example, it turns
// the left into the right code:
//
// for (...) for (...)
// if (c) if(c)
// X1 = ... X1 = ...
// else else
// X2 = ... X2 = ...
// X3 = phi(X1, X2) X3 = phi(X1, X2)
// ... = X3 + 4 X4 = phi(X3)
// ... = X4 + 4
//
// This is still valid LLVM; the extra phi nodes are purely redundant, and will
// be trivially eliminated by InstCombine. The major benefit of this
// transformation is that it makes many other loop optimizations, such as
// LoopUnswitching, simpler.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
#include "llvm/Pass.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Support/CFG.h"
#include <algorithm>
#include <iostream>
#include <map>
#include <vector>
using namespace llvm;
namespace {
static Statistic<> NumLCSSA("lcssa",
"Number of live out of a loop variables");
class LCSSA : public FunctionPass {
public:
LoopInfo *LI; // Loop information
DominatorTree *DT; // Dominator Tree for the current Loop...
DominanceFrontier *DF; // Current Dominance Frontier
virtual bool runOnFunction(Function &F);
bool visitSubloop(Loop* L);
void processInstruction(Instruction* Instr,
const std::vector<BasicBlock*>& LoopBlocks,
const std::vector<BasicBlock*>& exitBlocks);
/// This transformation requires natural loop information & requires that
/// loop preheaders be inserted into the CFG. It maintains both of these,
/// as well as the CFG. It also requires dominator information.
///
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequiredID(LoopSimplifyID);
AU.addPreservedID(LoopSimplifyID);
AU.addRequired<LoopInfo>();
AU.addPreserved<LoopInfo>();
AU.addRequired<DominatorTree>();
AU.addRequired<DominanceFrontier>();
}
private:
std::set<Instruction*> getLoopValuesUsedOutsideLoop(Loop *L,
const std::vector<BasicBlock*>& LoopBlocks);
Instruction *getValueDominatingBlock(BasicBlock *BB,
std::map<BasicBlock*, Instruction*> PotDoms);
};
RegisterOpt<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass");
}
FunctionPass *llvm::createLCSSAPass() { return new LCSSA(); }
bool LCSSA::runOnFunction(Function &F) {
bool changed = false;
LI = &getAnalysis<LoopInfo>();
DF = &getAnalysis<DominanceFrontier>();
DT = &getAnalysis<DominatorTree>();
for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) {
changed |= visitSubloop(*I);
}
return changed;
}
bool LCSSA::visitSubloop(Loop* L) {
for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
visitSubloop(*I);
// Speed up queries by creating a sorted list of blocks
std::vector<BasicBlock*> LoopBlocks(L->block_begin(), L->block_end());
std::sort(LoopBlocks.begin(), LoopBlocks.end());
std::set<Instruction*> AffectedValues = getLoopValuesUsedOutsideLoop(L,
LoopBlocks);
// If no values are affected, we can save a lot of work, since we know that
// nothing will be changed.
if (AffectedValues.empty())
return false;
std::vector<BasicBlock*> exitBlocks;
L->getExitBlocks(exitBlocks);
// Iterate over all affected values for this loop and insert Phi nodes
// for them in the appropriate exit blocks
for (std::set<Instruction*>::iterator I = AffectedValues.begin(),
E = AffectedValues.end(); I != E; ++I) {
processInstruction(*I, LoopBlocks, exitBlocks);
}
return true; // FIXME: Should be more intelligent in our return value.
}
/// processInstruction -
void LCSSA::processInstruction(Instruction* Instr,
const std::vector<BasicBlock*>& LoopBlocks,
const std::vector<BasicBlock*>& exitBlocks)
{
++NumLCSSA; // We are applying the transformation
std::map<BasicBlock*, Instruction*> Phis;
Phis[Instr->getParent()] = Instr;
// Phi nodes that need to be IDF-processed
std::vector<PHINode*> workList;
for (std::vector<BasicBlock*>::const_iterator BBI = exitBlocks.begin(),
BBE = exitBlocks.end(); BBI != BBE; ++BBI) {
PHINode *phi = new PHINode(Instr->getType(), "lcssa", (*BBI)->begin());
workList.push_back(phi);
Phis[*BBI] = phi;
// Since LoopSimplify has been run, we know that all of these predecessors
// are in the loop, so just hook them up in the obvious manner.
//for (pred_iterator PI = pred_begin(*BBI), PE = pred_end(*BBI); PI != PE;
// ++PI)
// phi->addIncoming(Instr, *PI);
}
// Calculate the IDF of these LCSSA Phi nodes, inserting new Phi's where
// necessary. Keep track of these new Phi's in Phis.
while (!workList.empty()) {
PHINode *CurPHI = workList.back();
workList.pop_back();
// Get the current Phi's DF, and insert Phi nodes. Add these new
// nodes to our worklist.
DominanceFrontier::const_iterator it = DF->find(CurPHI->getParent());
if (it != DF->end()) {
const DominanceFrontier::DomSetType &S = it->second;
for (DominanceFrontier::DomSetType::const_iterator P = S.begin(),
PE = S.end(); P != PE; ++P) {
if (Phis[*P] == 0) {
// Still doesn't have operands...
PHINode *phi = new PHINode(Instr->getType(), "lcssa");
(*P)->getInstList().insert((*P)->front(), phi);
Phis[*P] = phi;
workList.push_back(phi);
}
}
}
// Get the predecessor blocks of the current Phi, and use them to hook up
// the operands of the current Phi to any members of DFPhis that dominate
// it. This is a nop for the Phis inserted directly in the exit blocks,
// since they are not dominated by any members of DFPhis.
for (pred_iterator PI = pred_begin(CurPHI->getParent()),
E = pred_end(CurPHI->getParent()); PI != E; ++PI)
CurPHI->addIncoming(getValueDominatingBlock(*PI, Phis),
*PI);
}
// Find all uses of the affected value, and replace them with the
// appropriate Phi.
std::vector<Instruction*> Uses;
for (Instruction::use_iterator UI = Instr->use_begin(), UE = Instr->use_end();
UI != UE; ++UI) {
Instruction* use = cast<Instruction>(*UI);
// Don't need to update uses within the loop body
if (!std::binary_search(LoopBlocks.begin(), LoopBlocks.end(),
use->getParent()) &&
!(std::binary_search(exitBlocks.begin(), exitBlocks.end(),
use->getParent()) && isa<PHINode>(use)))
Uses.push_back(use);
}
// Deliberately remove the initial instruction from Phis set.
Phis.erase(Instr->getParent());
for (std::vector<Instruction*>::iterator II = Uses.begin(), IE = Uses.end();
II != IE; ++II) {
(*II)->replaceUsesOfWith(Instr, getValueDominatingBlock((*II)->getParent(),
Phis));
}
}
/// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that
/// are used by instructions outside of it.
std::set<Instruction*> LCSSA::getLoopValuesUsedOutsideLoop(Loop *L,
const std::vector<BasicBlock*>& LoopBlocks) {
// FIXME: For large loops, we may be able to avoid a lot of use-scanning
// by using dominance information. In particular, if a block does not
// dominate any of the loop exits, then none of the values defined in the
// block could be used outside the loop.
std::set<Instruction*> AffectedValues;
for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
BB != E; ++BB) {
for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I)
for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
++UI) {
BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
if (!std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), UserBB)) {
AffectedValues.insert(I);
break;
}
}
}
return AffectedValues;
}
Instruction *LCSSA::getValueDominatingBlock(BasicBlock *BB,
std::map<BasicBlock*, Instruction*> PotDoms) {
for (std::map<BasicBlock*, Instruction*>::iterator MI = PotDoms.begin(),
ME = PotDoms.end(); MI != ME; ++MI)
if (DT->getNode((*MI).first)->dominates(DT->getNode(BB)))
return (*MI).second;
// FIXME: Should assert false
return 0;
}