llvm-6502/lib/Target/Alpha/AlphaInstrInfo.td

842 lines
42 KiB
TableGen
Raw Normal View History

//===- AlphaInstrInfo.td - The Alpha Instruction Set -------*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//
//===----------------------------------------------------------------------===//
include "AlphaInstrFormats.td"
//********************
//Custom DAG Nodes
//********************
def SDTFPUnaryOpUnC : SDTypeProfile<1, 1, [
SDTCisFP<1>, SDTCisFP<0>
]>;
def Alpha_itoft : SDNode<"AlphaISD::ITOFT_", SDTIntToFPOp, []>;
def Alpha_ftoit : SDNode<"AlphaISD::FTOIT_", SDTFPToIntOp, []>;
def Alpha_cvtqt : SDNode<"AlphaISD::CVTQT_", SDTFPUnaryOpUnC, []>;
def Alpha_cvtqs : SDNode<"AlphaISD::CVTQS_", SDTFPUnaryOpUnC, []>;
def Alpha_cvttq : SDNode<"AlphaISD::CVTTQ_", SDTFPUnaryOp, []>;
def Alpha_gprello : SDNode<"AlphaISD::GPRelLo", SDTIntBinOp, []>;
def Alpha_gprelhi : SDNode<"AlphaISD::GPRelHi", SDTIntBinOp, []>;
def Alpha_rellit : SDNode<"AlphaISD::RelLit", SDTIntBinOp, []>;
// These are target-independent nodes, but have target-specific formats.
def SDT_AlphaCallSeq : SDTypeProfile<0, 1, [ SDTCisVT<0, i64> ]>;
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_AlphaCallSeq,[SDNPHasChain]>;
def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_AlphaCallSeq,[SDNPHasChain]>;
//********************
//Paterns for matching
//********************
def invX : SDNodeXForm<imm, [{
return getI64Imm(~N->getValue());
}]>;
def immUExt8 : PatLeaf<(imm), [{
// immUExt8 predicate - True if the immediate fits in a 8-bit zero extended
// field. Used by instructions like 'addi'.
return (unsigned long)N->getValue() == (unsigned char)N->getValue();
}]>;
def immUExt8inv : PatLeaf<(imm), [{
// immUExt8inv predicate - True if the inverted immediate fits in a 8-bit zero extended
// field. Used by instructions like 'ornoti'.
return (unsigned long)~N->getValue() == (unsigned char)~N->getValue();
}], invX>;
def immSExt16 : PatLeaf<(imm), [{
// immSExt16 predicate - True if the immediate fits in a 16-bit sign extended
// field. Used by instructions like 'lda'.
return (int)N->getValue() == (short)N->getValue();
}]>;
def iZAPX : SDNodeXForm<imm, [{
// Transformation function: get the imm to ZAPi
uint64_t UImm = (uint64_t)N->getValue();
unsigned int build = 0;
for(int i = 0; i < 8; ++i)
{
if ((UImm & 0x00FF) == 0x00FF)
build |= 1 << i;
else if ((UImm & 0x00FF) != 0)
{ build = 0; break; }
UImm >>= 8;
}
return getI64Imm(build);
}]>;
def immZAP : PatLeaf<(imm), [{
// immZAP predicate - True if the immediate fits is suitable for use in a
// ZAP instruction
uint64_t UImm = (uint64_t)N->getValue();
unsigned int build = 0;
for(int i = 0; i < 8; ++i)
{
if ((UImm & 0x00FF) == 0x00FF)
build |= 1 << i;
else if ((UImm & 0x00FF) != 0)
{ build = 0; break; }
UImm >>= 8;
}
return build != 0;
}], iZAPX>;
def intop : PatFrag<(ops node:$op), (sext_inreg node:$op, i32)>;
def add4 : PatFrag<(ops node:$op1, node:$op2),
(add (shl node:$op1, 2), node:$op2)>;
def sub4 : PatFrag<(ops node:$op1, node:$op2),
(sub (shl node:$op1, 2), node:$op2)>;
def add8 : PatFrag<(ops node:$op1, node:$op2),
(add (shl node:$op1, 3), node:$op2)>;
def sub8 : PatFrag<(ops node:$op1, node:$op2),
(sub (shl node:$op1, 3), node:$op2)>;
// //#define FP $15
// //#define RA $26
// //#define PV $27
// //#define GP $29
// //#define SP $30
def PHI : PseudoInstAlpha<(ops variable_ops), "#phi", []>;
def IDEF_I : PseudoInstAlpha<(ops GPRC:$RA), "#idef $RA",
[(set GPRC:$RA, (undef))]>;
def IDEF_F32 : PseudoInstAlpha<(ops F4RC:$RA), "#idef $RA",
[(set F4RC:$RA, (undef))]>;
def IDEF_F64 : PseudoInstAlpha<(ops F8RC:$RA), "#idef $RA",
[(set F8RC:$RA, (undef))]>;
def WTF : PseudoInstAlpha<(ops variable_ops), "#wtf", []>;
let isLoad = 1, hasCtrlDep = 1 in {
def ADJUSTSTACKUP : PseudoInstAlpha<(ops s64imm:$amt), "; ADJUP $amt",
[(callseq_start imm:$amt)]>;
def ADJUSTSTACKDOWN : PseudoInstAlpha<(ops s64imm:$amt), "; ADJDOWN $amt",
[(callseq_end imm:$amt)]>;
}
def ALTENT : PseudoInstAlpha<(ops s64imm:$TARGET), "$TARGET:\n", []>;
def PCLABEL : PseudoInstAlpha<(ops s64imm:$num), "PCMARKER_$num:\n",[]>;
def MEMLABEL : PseudoInstAlpha<(ops s64imm:$i, s64imm:$j, s64imm:$k, s64imm:$m),
"LSMARKER$$$i$$$j$$$k$$$m:\n",[]>;
//*****************
//These are shortcuts, the assembler expands them
//*****************
//AT = R28
//T0-T7 = R1 - R8
//T8-T11 = R22-R25
//An even better improvement on the Int = SetCC(FP): SelectCC!
//These are evil because they hide control flow in a MBB
//really the ISel should emit multiple MBB
let isTwoAddress = 1 in {
//Conditional move of an int based on a FP CC
def CMOVEQ_FP : PseudoInstAlpha<(ops GPRC:$RDEST, GPRC:$RSRC_F, GPRC:$RSRC_T, F8RC:$RCOND),
"fbne $RCOND, 42f\n\tbis $RSRC_T,$RSRC_T,$RDEST\n42:\n", []>;
def CMOVEQi_FP : PseudoInstAlpha<(ops GPRC:$RDEST, GPRC:$RSRC_F, u8imm:$L, F8RC:$RCOND),
"fbne $RCOND, 42f\n\taddq $$31,$L,$RDEST\n42:\n", []>;
def CMOVNE_FP : PseudoInstAlpha<(ops GPRC:$RDEST, GPRC:$RSRC_F, GPRC:$RSRC_T, F8RC:$RCOND),
"fbeq $RCOND, 42f\n\tbis $RSRC_T,$RSRC_T,$RDEST\n42:\n", []>;
def CMOVNEi_FP : PseudoInstAlpha<(ops GPRC:$RDEST, GPRC:$RSRC_F, u8imm:$L, F8RC:$RCOND),
"fbeq $RCOND, 42f\n\taddq $$31,$L,$RDEST\n42:\n", []>;
//Conditional move of an FP based on a Int CC
def FCMOVEQ_INT : PseudoInstAlpha<(ops GPRC:$RDEST, GPRC:$RSRC_F, GPRC:$RSRC_T, F8RC:$RCOND),
"bne $RCOND, 42f\n\tcpys $RSRC_T,$RSRC_T,$RDEST\n42:\n", []>;
def FCMOVNE_INT : PseudoInstAlpha<(ops GPRC:$RDEST, GPRC:$RSRC_F, GPRC:$RSRC_T, F8RC:$RCOND),
"beq $RCOND, 42f\n\tcpys $RSRC_T,$RSRC_T,$RDEST\n42:\n", []>;
}
//***********************
//Real instructions
//***********************
//Operation Form:
//conditional moves, int
def CMOVEQi : OForm4L< 0x11, 0x24, "cmoveq $RCOND,$L,$RDEST">; //CMOVE if RCOND = zero
def CMOVGEi : OForm4L< 0x11, 0x46, "cmovge $RCOND,$L,$RDEST">; //CMOVE if RCOND >= zero
def CMOVGTi : OForm4L< 0x11, 0x66, "cmovgt $RCOND,$L,$RDEST">; //CMOVE if RCOND > zero
def CMOVLBCi : OForm4L< 0x11, 0x16, "cmovlbc $RCOND,$L,$RDEST">; //CMOVE if RCOND low bit clear
def CMOVLBSi : OForm4L< 0x11, 0x14, "cmovlbs $RCOND,$L,$RDEST">; //CMOVE if RCOND low bit set
def CMOVLEi : OForm4L< 0x11, 0x64, "cmovle $RCOND,$L,$RDEST">; //CMOVE if RCOND <= zero
def CMOVLTi : OForm4L< 0x11, 0x44, "cmovlt $RCOND,$L,$RDEST">; //CMOVE if RCOND < zero
def CMOVNEi : OForm4L< 0x11, 0x26, "cmovne $RCOND,$L,$RDEST">; //CMOVE if RCOND != zero
let OperandList = (ops GPRC:$RDEST, GPRC:$RFALSE, GPRC:$RTRUE, GPRC:$RCOND) in {
def CMOVLBC : OForm4< 0x11, 0x16, "cmovlbc $RCOND,$RTRUE,$RDEST",
[(set GPRC:$RDEST, (select (xor GPRC:$RCOND, 1), GPRC:$RTRUE, GPRC:$RFALSE))]>;
def CMOVLBS : OForm4< 0x11, 0x14, "cmovlbs $RCOND,$RTRUE,$RDEST",
[(set GPRC:$RDEST, (select (and GPRC:$RCOND, 1), GPRC:$RTRUE, GPRC:$RFALSE))]>;
def CMOVEQ : OForm4< 0x11, 0x24, "cmoveq $RCOND,$RTRUE,$RDEST",
[(set GPRC:$RDEST, (select (seteq GPRC:$RCOND, 0), GPRC:$RTRUE, GPRC:$RFALSE))]>;
def CMOVGE : OForm4< 0x11, 0x46, "cmovge $RCOND,$RTRUE,$RDEST",
[(set GPRC:$RDEST, (select (setge GPRC:$RCOND, 0), GPRC:$RTRUE, GPRC:$RFALSE))]>;
def CMOVGT : OForm4< 0x11, 0x66, "cmovgt $RCOND,$RTRUE,$RDEST",
[(set GPRC:$RDEST, (select (setgt GPRC:$RCOND, 0), GPRC:$RTRUE, GPRC:$RFALSE))]>;
def CMOVLE : OForm4< 0x11, 0x64, "cmovle $RCOND,$RTRUE,$RDEST",
[(set GPRC:$RDEST, (select (setlt GPRC:$RCOND, 0), GPRC:$RTRUE, GPRC:$RFALSE))]>;
def CMOVLT : OForm4< 0x11, 0x44, "cmovlt $RCOND,$RTRUE,$RDEST",
[(set GPRC:$RDEST, (select (setlt GPRC:$RCOND, 0), GPRC:$RTRUE, GPRC:$RFALSE))]>;
def CMOVNE : OForm4< 0x11, 0x26, "cmovne $RCOND,$RTRUE,$RDEST",
[(set GPRC:$RDEST, (select (setne GPRC:$RCOND, 0), GPRC:$RTRUE, GPRC:$RFALSE))]>;
}
//FIXME: fold setcc with select for all cases. clearly I need patterns for inverted conditions
// and constants (which require inverted conditions as legalize puts the constant in the
// wrong field for the instruction definition
def : Pat<(select GPRC:$which, GPRC:$src1, GPRC:$src2),
(CMOVNE GPRC:$src2, GPRC:$src1, GPRC:$which)>;
def ADDL : OForm< 0x10, 0x00, "addl $RA,$RB,$RC",
[(set GPRC:$RC, (intop (add GPRC:$RA, GPRC:$RB)))]>;
def ADDLi : OFormL<0x10, 0x00, "addl $RA,$L,$RC",
[(set GPRC:$RC, (intop (add GPRC:$RA, immUExt8:$L)))]>;
def ADDQ : OForm< 0x10, 0x20, "addq $RA,$RB,$RC",
[(set GPRC:$RC, (add GPRC:$RA, GPRC:$RB))]>;
def ADDQi : OFormL<0x10, 0x20, "addq $RA,$L,$RC",
[(set GPRC:$RC, (add GPRC:$RA, immUExt8:$L))]>;
def AND : OForm< 0x11, 0x00, "and $RA,$RB,$RC",
[(set GPRC:$RC, (and GPRC:$RA, GPRC:$RB))]>;
def ANDi : OFormL<0x11, 0x00, "and $RA,$L,$RC",
[(set GPRC:$RC, (and GPRC:$RA, immUExt8:$L))]>;
def BIC : OForm< 0x11, 0x08, "bic $RA,$RB,$RC",
[(set GPRC:$RC, (and GPRC:$RA, (not GPRC:$RB)))]>;
def BICi : OFormL<0x11, 0x08, "bic $RA,$L,$RC",
[(set GPRC:$RC, (and GPRC:$RA, immUExt8inv:$L))]>;
def BIS : OForm< 0x11, 0x20, "bis $RA,$RB,$RC",
[(set GPRC:$RC, (or GPRC:$RA, GPRC:$RB))]>;
def BISi : OFormL<0x11, 0x20, "bis $RA,$L,$RC",
[(set GPRC:$RC, (or GPRC:$RA, immUExt8:$L))]>;
def CTLZ : OForm2<0x1C, 0x32, "CTLZ $RB,$RC",
[(set GPRC:$RC, (ctlz GPRC:$RB))]>;
def CTPOP : OForm2<0x1C, 0x30, "CTPOP $RB,$RC",
[(set GPRC:$RC, (ctpop GPRC:$RB))]>;
def CTTZ : OForm2<0x1C, 0x33, "CTTZ $RB,$RC",
[(set GPRC:$RC, (cttz GPRC:$RB))]>;
def EQV : OForm< 0x11, 0x48, "eqv $RA,$RB,$RC",
[(set GPRC:$RC, (xor GPRC:$RA, (not GPRC:$RB)))]>;
def EQVi : OFormL<0x11, 0x48, "eqv $RA,$L,$RC",
[(set GPRC:$RC, (xor GPRC:$RA, immUExt8inv:$L))]>;
//def EXTBL : OForm< 0x12, 0x06, "EXTBL $RA,$RB,$RC", []>; //Extract byte low
//def EXTBLi : OFormL<0x12, 0x06, "EXTBL $RA,$L,$RC", []>; //Extract byte low
//def EXTLH : OForm< 0x12, 0x6A, "EXTLH $RA,$RB,$RC", []>; //Extract longword high
//def EXTLHi : OFormL<0x12, 0x6A, "EXTLH $RA,$L,$RC", []>; //Extract longword high
//def EXTLL : OForm< 0x12, 0x26, "EXTLL $RA,$RB,$RC", []>; //Extract longword low
//def EXTLLi : OFormL<0x12, 0x26, "EXTLL $RA,$L,$RC", []>; //Extract longword low
//def EXTQH : OForm< 0x12, 0x7A, "EXTQH $RA,$RB,$RC", []>; //Extract quadword high
//def EXTQHi : OFormL<0x12, 0x7A, "EXTQH $RA,$L,$RC", []>; //Extract quadword high
//def EXTQ : OForm< 0x12, 0x36, "EXTQ $RA,$RB,$RC", []>; //Extract quadword low
//def EXTQi : OFormL<0x12, 0x36, "EXTQ $RA,$L,$RC", []>; //Extract quadword low
//def EXTWH : OForm< 0x12, 0x5A, "EXTWH $RA,$RB,$RC", []>; //Extract word high
//def EXTWHi : OFormL<0x12, 0x5A, "EXTWH $RA,$L,$RC", []>; //Extract word high
//def EXTWL : OForm< 0x12, 0x16, "EXTWL $RA,$RB,$RC", []>; //Extract word low
//def EXTWLi : OFormL<0x12, 0x16, "EXTWL $RA,$L,$RC", []>; //Extract word low
//def IMPLVER : OForm< 0x11, 0x6C, "IMPLVER $RA,$RB,$RC", []>; //Implementation version
//def IMPLVERi : OFormL<0x11, 0x6C, "IMPLVER $RA,$L,$RC", []>; //Implementation version
//def INSBL : OForm< 0x12, 0x0B, "INSBL $RA,$RB,$RC", []>; //Insert byte low
//def INSBLi : OFormL<0x12, 0x0B, "INSBL $RA,$L,$RC", []>; //Insert byte low
//def INSLH : OForm< 0x12, 0x67, "INSLH $RA,$RB,$RC", []>; //Insert longword high
//def INSLHi : OFormL<0x12, 0x67, "INSLH $RA,$L,$RC", []>; //Insert longword high
//def INSLL : OForm< 0x12, 0x2B, "INSLL $RA,$RB,$RC", []>; //Insert longword low
//def INSLLi : OFormL<0x12, 0x2B, "INSLL $RA,$L,$RC", []>; //Insert longword low
//def INSQH : OForm< 0x12, 0x77, "INSQH $RA,$RB,$RC", []>; //Insert quadword high
//def INSQHi : OFormL<0x12, 0x77, "INSQH $RA,$L,$RC", []>; //Insert quadword high
//def INSQL : OForm< 0x12, 0x3B, "INSQL $RA,$RB,$RC", []>; //Insert quadword low
//def INSQLi : OFormL<0x12, 0x3B, "INSQL $RA,$L,$RC", []>; //Insert quadword low
//def INSWH : OForm< 0x12, 0x57, "INSWH $RA,$RB,$RC", []>; //Insert word high
//def INSWHi : OFormL<0x12, 0x57, "INSWH $RA,$L,$RC", []>; //Insert word high
//def INSWL : OForm< 0x12, 0x1B, "INSWL $RA,$RB,$RC", []>; //Insert word low
//def INSWLi : OFormL<0x12, 0x1B, "INSWL $RA,$L,$RC", []>; //Insert word low
//def MSKBL : OForm< 0x12, 0x02, "MSKBL $RA,$RB,$RC", []>; //Mask byte low
//def MSKBLi : OFormL<0x12, 0x02, "MSKBL $RA,$L,$RC", []>; //Mask byte low
//def MSKLH : OForm< 0x12, 0x62, "MSKLH $RA,$RB,$RC", []>; //Mask longword high
//def MSKLHi : OFormL<0x12, 0x62, "MSKLH $RA,$L,$RC", []>; //Mask longword high
//def MSKLL : OForm< 0x12, 0x22, "MSKLL $RA,$RB,$RC", []>; //Mask longword low
//def MSKLLi : OFormL<0x12, 0x22, "MSKLL $RA,$L,$RC", []>; //Mask longword low
//def MSKQH : OForm< 0x12, 0x72, "MSKQH $RA,$RB,$RC", []>; //Mask quadword high
//def MSKQHi : OFormL<0x12, 0x72, "MSKQH $RA,$L,$RC", []>; //Mask quadword high
//def MSKQL : OForm< 0x12, 0x32, "MSKQL $RA,$RB,$RC", []>; //Mask quadword low
//def MSKQLi : OFormL<0x12, 0x32, "MSKQL $RA,$L,$RC", []>; //Mask quadword low
//def MSKWH : OForm< 0x12, 0x52, "MSKWH $RA,$RB,$RC", []>; //Mask word high
//def MSKWHi : OFormL<0x12, 0x52, "MSKWH $RA,$L,$RC", []>; //Mask word high
//def MSKWL : OForm< 0x12, 0x12, "MSKWL $RA,$RB,$RC", []>; //Mask word low
//def MSKWLi : OFormL<0x12, 0x12, "MSKWL $RA,$L,$RC", []>; //Mask word low
def MULL : OForm< 0x13, 0x00, "mull $RA,$RB,$RC",
[(set GPRC:$RC, (intop (mul GPRC:$RA, GPRC:$RB)))]>;
def MULLi : OFormL<0x13, 0x00, "mull $RA,$L,$RC",
[(set GPRC:$RC, (intop (mul GPRC:$RA, immUExt8:$L)))]>;
def MULQ : OForm< 0x13, 0x20, "mulq $RA,$RB,$RC",
[(set GPRC:$RC, (mul GPRC:$RA, GPRC:$RB))]>;
def MULQi : OFormL<0x13, 0x20, "mulq $RA,$L,$RC",
[(set GPRC:$RC, (mul GPRC:$RA, immUExt8:$L))]>;
def ORNOT : OForm< 0x11, 0x28, "ornot $RA,$RB,$RC",
[(set GPRC:$RC, (or GPRC:$RA, (not GPRC:$RB)))]>;
def ORNOTi : OFormL<0x11, 0x28, "ornot $RA,$L,$RC",
[(set GPRC:$RC, (or GPRC:$RA, immUExt8inv:$L))]>;
def S4ADDL : OForm< 0x10, 0x02, "s4addl $RA,$RB,$RC",
[(set GPRC:$RC, (intop (add4 GPRC:$RA, GPRC:$RB)))]>;
def S4ADDLi : OFormL<0x10, 0x02, "s4addl $RA,$L,$RC",
[(set GPRC:$RC, (intop (add4 GPRC:$RA, immUExt8:$L)))]>;
def S4ADDQ : OForm< 0x10, 0x22, "s4addq $RA,$RB,$RC",
[(set GPRC:$RC, (add4 GPRC:$RA, GPRC:$RB))]>;
def S4ADDQi : OFormL<0x10, 0x22, "s4addq $RA,$L,$RC",
[(set GPRC:$RC, (add4 GPRC:$RA, immUExt8:$L))]>;
def S4SUBL : OForm< 0x10, 0x0B, "s4subl $RA,$RB,$RC",
[(set GPRC:$RC, (intop (sub4 GPRC:$RA, GPRC:$RB)))]>;
def S4SUBLi : OFormL<0x10, 0x0B, "s4subl $RA,$L,$RC",
[(set GPRC:$RC, (intop (sub4 GPRC:$RA, immUExt8:$L)))]>;
def S4SUBQ : OForm< 0x10, 0x2B, "s4subq $RA,$RB,$RC",
[(set GPRC:$RC, (sub4 GPRC:$RA, GPRC:$RB))]>;
def S4SUBQi : OFormL<0x10, 0x2B, "s4subq $RA,$L,$RC",
[(set GPRC:$RC, (sub4 GPRC:$RA, immUExt8:$L))]>;
def S8ADDL : OForm< 0x10, 0x12, "s8addl $RA,$RB,$RC",
[(set GPRC:$RC, (intop (add8 GPRC:$RA, GPRC:$RB)))]>;
def S8ADDLi : OFormL<0x10, 0x12, "s8addl $RA,$L,$RC",
[(set GPRC:$RC, (intop (add8 GPRC:$RA, immUExt8:$L)))]>;
def S8ADDQ : OForm< 0x10, 0x32, "s8addq $RA,$RB,$RC",
[(set GPRC:$RC, (add8 GPRC:$RA, GPRC:$RB))]>;
def S8ADDQi : OFormL<0x10, 0x32, "s8addq $RA,$L,$RC",
[(set GPRC:$RC, (add8 GPRC:$RA, immUExt8:$L))]>;
def S8SUBL : OForm< 0x10, 0x1B, "s8subl $RA,$RB,$RC",
[(set GPRC:$RC, (intop (sub8 GPRC:$RA, GPRC:$RB)))]>;
def S8SUBLi : OFormL<0x10, 0x1B, "s8subl $RA,$L,$RC",
[(set GPRC:$RC, (intop (sub8 GPRC:$RA, immUExt8:$L)))]>;
def S8SUBQ : OForm< 0x10, 0x3B, "s8subq $RA,$RB,$RC",
[(set GPRC:$RC, (sub8 GPRC:$RA, GPRC:$RB))]>;
def S8SUBQi : OFormL<0x10, 0x3B, "s8subq $RA,$L,$RC",
[(set GPRC:$RC, (sub8 GPRC:$RA, immUExt8:$L))]>;
def SEXTB : OForm2<0x1C, 0x00, "sextb $RB,$RC",
[(set GPRC:$RC, (sext_inreg GPRC:$RB, i8))]>;
def SEXTW : OForm2<0x1C, 0x01, "sextw $RB,$RC",
[(set GPRC:$RC, (sext_inreg GPRC:$RB, i16))]>;
def SL : OForm< 0x12, 0x39, "sll $RA,$RB,$RC",
[(set GPRC:$RC, (shl GPRC:$RA, GPRC:$RB))]>;
def SLi : OFormL<0x12, 0x39, "sll $RA,$L,$RC",
[(set GPRC:$RC, (shl GPRC:$RA, immUExt8:$L))]>;
def SRA : OForm< 0x12, 0x3C, "sra $RA,$RB,$RC",
[(set GPRC:$RC, (sra GPRC:$RA, GPRC:$RB))]>;
def SRAi : OFormL<0x12, 0x3C, "sra $RA,$L,$RC",
[(set GPRC:$RC, (sra GPRC:$RA, immUExt8:$L))]>;
def SRL : OForm< 0x12, 0x34, "srl $RA,$RB,$RC",
[(set GPRC:$RC, (srl GPRC:$RA, GPRC:$RB))]>;
def SRLi : OFormL<0x12, 0x34, "srl $RA,$L,$RC",
[(set GPRC:$RC, (srl GPRC:$RA, immUExt8:$L))]>;
def SUBL : OForm< 0x10, 0x09, "subl $RA,$RB,$RC",
[(set GPRC:$RC, (intop (sub GPRC:$RA, GPRC:$RB)))]>;
def SUBLi : OFormL<0x10, 0x09, "subl $RA,$L,$RC",
[(set GPRC:$RC, (intop (sub GPRC:$RA, immUExt8:$L)))]>;
def SUBQ : OForm< 0x10, 0x29, "subq $RA,$RB,$RC",
[(set GPRC:$RC, (sub GPRC:$RA, GPRC:$RB))]>;
def SUBQi : OFormL<0x10, 0x29, "subq $RA,$L,$RC",
[(set GPRC:$RC, (sub GPRC:$RA, immUExt8:$L))]>;
def UMULH : OForm< 0x13, 0x30, "umulh $RA,$RB,$RC",
[(set GPRC:$RC, (mulhu GPRC:$RA, GPRC:$RB))]>;
def UMULHi : OFormL<0x13, 0x30, "umulh $RA,$L,$RC",
[(set GPRC:$RC, (mulhu GPRC:$RA, immUExt8:$L))]>;
def XOR : OForm< 0x11, 0x40, "xor $RA,$RB,$RC",
[(set GPRC:$RC, (xor GPRC:$RA, GPRC:$RB))]>;
def XORi : OFormL<0x11, 0x40, "xor $RA,$L,$RC",
[(set GPRC:$RC, (xor GPRC:$RA, immUExt8:$L))]>;
//FIXME: what to do about zap? the cases it catches are very complex
def ZAP : OForm< 0x12, 0x30, "zap $RA,$RB,$RC", []>; //Zero bytes
//ZAPi is useless give ZAPNOTi
def ZAPi : OFormL<0x12, 0x30, "zap $RA,$L,$RC", []>; //Zero bytes
//FIXME: what to do about zapnot? see ZAP :)
def ZAPNOT : OForm< 0x12, 0x31, "zapnot $RA,$RB,$RC", []>; //Zero bytes not
def ZAPNOTi : OFormL<0x12, 0x31, "zapnot $RA,$L,$RC",
[(set GPRC:$RC, (and GPRC:$RA, immZAP:$L))]>;
//Comparison, int
//So this is a waste of what this instruction can do, but it still saves something
def CMPBGE : OForm< 0x10, 0x0F, "cmpbge $RA,$RB,$RC",
[(set GPRC:$RC, (setuge (and GPRC:$RA, 255), (and GPRC:$RB, 255)))]>;
def CMPBGEi : OFormL<0x10, 0x0F, "cmpbge $RA,$L,$RC",
[(set GPRC:$RC, (setuge (and GPRC:$RA, 255), immUExt8:$L))]>;
def CMPEQ : OForm< 0x10, 0x2D, "cmpeq $RA,$RB,$RC",
[(set GPRC:$RC, (seteq GPRC:$RA, GPRC:$RB))]>;
def CMPEQi : OFormL<0x10, 0x2D, "cmpeq $RA,$L,$RC",
[(set GPRC:$RC, (seteq GPRC:$RA, immUExt8:$L))]>;
def CMPLE : OForm< 0x10, 0x6D, "cmple $RA,$RB,$RC",
[(set GPRC:$RC, (setle GPRC:$RA, GPRC:$RB))]>;
def CMPLEi : OFormL<0x10, 0x6D, "cmple $RA,$L,$RC",
[(set GPRC:$RC, (setle GPRC:$RA, immUExt8:$L))]>;
def CMPLT : OForm< 0x10, 0x4D, "cmplt $RA,$RB,$RC",
[(set GPRC:$RC, (setlt GPRC:$RA, GPRC:$RB))]>;
def CMPLTi : OFormL<0x10, 0x4D, "cmplt $RA,$L,$RC",
[(set GPRC:$RC, (setlt GPRC:$RA, immUExt8:$L))]>;
def CMPULE : OForm< 0x10, 0x3D, "cmpule $RA,$RB,$RC",
[(set GPRC:$RC, (setule GPRC:$RA, GPRC:$RB))]>;
def CMPULEi : OFormL<0x10, 0x3D, "cmpule $RA,$L,$RC",
[(set GPRC:$RC, (setule GPRC:$RA, immUExt8:$L))]>;
def CMPULT : OForm< 0x10, 0x1D, "cmpult $RA,$RB,$RC",
[(set GPRC:$RC, (setult GPRC:$RA, GPRC:$RB))]>;
def CMPULTi : OFormL<0x10, 0x1D, "cmpult $RA,$L,$RC",
[(set GPRC:$RC, (setult GPRC:$RA, immUExt8:$L))]>;
//Patterns for unsupported int comparisons
def : Pat<(setueq GPRC:$X, GPRC:$Y), (CMPEQ GPRC:$X, GPRC:$Y)>;
def : Pat<(setueq GPRC:$X, immUExt8:$Y), (CMPEQi GPRC:$X, immUExt8:$Y)>;
def : Pat<(setugt GPRC:$X, GPRC:$Y), (CMPULT GPRC:$Y, GPRC:$X)>;
def : Pat<(setugt immUExt8:$X, GPRC:$Y), (CMPULTi GPRC:$Y, immUExt8:$X)>;
def : Pat<(setuge GPRC:$X, GPRC:$Y), (CMPULE GPRC:$Y, GPRC:$X)>;
def : Pat<(setuge immUExt8:$X, GPRC:$Y), (CMPULEi GPRC:$Y, immUExt8:$X)>;
def : Pat<(setgt GPRC:$X, GPRC:$Y), (CMPLT GPRC:$Y, GPRC:$X)>;
def : Pat<(setgt immUExt8:$X, GPRC:$Y), (CMPLTi GPRC:$Y, immUExt8:$X)>;
def : Pat<(setge GPRC:$X, GPRC:$Y), (CMPLE GPRC:$Y, GPRC:$X)>;
def : Pat<(setge immUExt8:$X, GPRC:$Y), (CMPLEi GPRC:$Y, immUExt8:$X)>;
def : Pat<(setne GPRC:$X, GPRC:$Y), (CMPEQi (CMPEQ GPRC:$X, GPRC:$Y), 0)>;
def : Pat<(setne GPRC:$X, immUExt8:$Y), (CMPEQi (CMPEQi GPRC:$X, immUExt8:$Y), 0)>;
def : Pat<(setune GPRC:$X, GPRC:$Y), (CMPEQi (CMPEQ GPRC:$X, GPRC:$Y), 0)>;
def : Pat<(setune GPRC:$X, immUExt8:$Y), (CMPEQi (CMPEQ GPRC:$X, immUExt8:$Y), 0)>;
let isReturn = 1, isTerminator = 1 in
def RET : MbrForm< 0x1A, 0x02, (ops GPRC:$RD, GPRC:$RS, s64imm:$DISP), "ret $RD,($RS),$DISP">; //Return from subroutine
//DAG Version:
let isReturn = 1, isTerminator = 1, Ra = 31, Rb = 26, disp = 1, Uses = [R26] in
def RETDAG : MbrForm< 0x1A, 0x02, (ops), "ret $$31,($$26),1">; //Return from subroutine
def JMP : MbrForm< 0x1A, 0x00, (ops GPRC:$RD, GPRC:$RS, GPRC:$DISP), "jmp $RD,($RS),$DISP">; //Jump
let isCall = 1, Ra = 26,
Defs = [R0, R1, R2, R3, R4, R5, R6, R7, R8, R16, R17, R18, R19,
R20, R21, R22, R23, R24, R25, R26, R27, R28, R29,
F0, F1,
F10, F11, F12, F13, F14, F15, F16, F17, F18, F19,
F20, F21, F22, F23, F24, F25, F26, F27, F28, F29, F30], Uses = [R29] in {
def BSR : BFormD<0x34, "bsr $$26,$$$DISP..ng", []>; //Branch to subroutine
}
let isCall = 1,
Defs = [R0, R1, R2, R3, R4, R5, R6, R7, R8, R16, R17, R18, R19,
R20, R21, R22, R23, R24, R25, R26, R27, R28, R29,
F0, F1,
F10, F11, F12, F13, F14, F15, F16, F17, F18, F19,
F20, F21, F22, F23, F24, F25, F26, F27, F28, F29, F30], Uses = [R27, R29] in {
def JSR : MbrForm< 0x1A, 0x01, (ops ), "jsr $$26,($$27),0">; //Jump to subroutine
}
let isCall = 1, Defs = [R23, R24, R25, R27, R28], Uses = [R24, R25, R27] in
def JSRs : MbrForm< 0x1A, 0x01, (ops ), "jsr $$23,($$27),0">; //Jump to div or rem
def JSR_COROUTINE : MbrForm< 0x1A, 0x03, (ops GPRC:$RD, GPRC:$RS, s14imm:$DISP), "jsr_coroutine $RD,($RS),$DISP">; //Jump to subroutine return
let Ra = 31 in
def BR : BFormD<0x30, "br $$31,$DISP", [(br bb:$DISP)]>;
let OperandList = (ops GPRC:$RA, s64imm:$DISP, GPRC:$RB) in {
def LDQ : MForm<0x29, 0, 1, "ldq $RA,$DISP($RB)",
[(set GPRC:$RA, (load (add GPRC:$RB, immSExt16:$DISP)))]>;
def LDQr : MForm<0x29, 0, 1, "ldq $RA,$DISP($RB)\t\t!gprellow",
[(set GPRC:$RA, (load (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB)))]>;
def LDL : MForm<0x29, 0, 1, "ldl $RA,$DISP($RB)",
[(set GPRC:$RA, (sextload (add GPRC:$RB, immSExt16:$DISP), i32))]>;
def LDLr : MForm<0x29, 0, 1, "ldl $RA,$DISP($RB)\t\t!gprellow",
[(set GPRC:$RA, (sextload (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB), i32))]>;
def LDBU : MForm<0x0A, 0, 1, "ldbu $RA,$DISP($RB)",
[(set GPRC:$RA, (zextload (add GPRC:$RB, immSExt16:$DISP), i8))]>;
def LDBUr : MForm<0x0A, 0, 1, "ldbu $RA,$DISP($RB)\t\t!gprellow",
[(set GPRC:$RA, (zextload (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB), i8))]>;
def LDWU : MForm<0x0C, 0, 1, "ldwu $RA,$DISP($RB)",
[(set GPRC:$RA, (zextload (add GPRC:$RB, immSExt16:$DISP), i16))]>;
def LDWUr : MForm<0x0C, 0, 1, "ldwu $RA,$DISP($RB)\t\t!gprellow",
[(set GPRC:$RA, (zextload (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB), i16))]>;
def STB : MForm<0x0E, 1, 0, "stb $RA,$DISP($RB)",
[(truncstore GPRC:$RA, (add GPRC:$RB, immSExt16:$DISP), i8)]>;
def STBr : MForm<0x0E, 1, 0, "stb $RA,$DISP($RB)\t\t!gprellow",
[(truncstore GPRC:$RA, (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB), i8)]>;
def STW : MForm<0x0D, 1, 0, "stw $RA,$DISP($RB)",
[(truncstore GPRC:$RA, (add GPRC:$RB, immSExt16:$DISP), i16)]>;
def STWr : MForm<0x0D, 1, 0, "stw $RA,$DISP($RB)\t\t!gprellow",
[(truncstore GPRC:$RA, (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB), i16)]>;
def STL : MForm<0x2C, 1, 0, "stl $RA,$DISP($RB)",
[(truncstore GPRC:$RA, (add GPRC:$RB, immSExt16:$DISP), i32)]>;
def STLr : MForm<0x2C, 1, 0, "stl $RA,$DISP($RB)\t\t!gprellow",
[(truncstore GPRC:$RA, (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB), i32)]>;
def STQ : MForm<0x2D, 1, 0, "stq $RA,$DISP($RB)",
[(store GPRC:$RA, (add GPRC:$RB, immSExt16:$DISP))]>;
def STQr : MForm<0x2D, 1, 0, "stq $RA,$DISP($RB)\t\t!gprellow",
[(store GPRC:$RA, (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB))]>;
//Load address
def LDA : MForm<0x08, 0, 0, "lda $RA,$DISP($RB)",
[(set GPRC:$RA, (add GPRC:$RB, immSExt16:$DISP))]>;
def LDAr : MForm<0x08, 0, 0, "lda $RA,$DISP($RB)\t\t!gprellow",
[(set GPRC:$RA, (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB))]>; //Load address
def LDAH : MForm<0x09, 0, 0, "ldah $RA,$DISP($RB)",
[]>; //Load address high
def LDAHr : MForm<0x09, 0, 0, "ldah $RA,$DISP($RB)\t\t!gprelhigh",
[(set GPRC:$RA, (Alpha_gprelhi tglobaladdr:$DISP, GPRC:$RB))]>; //Load address high
}
let OperandList = (ops F4RC:$RA, s64imm:$DISP, GPRC:$RB) in {
def STS : MForm<0x26, 1, 0, "sts $RA,$DISP($RB)",
[(store F4RC:$RA, (add GPRC:$RB, immSExt16:$DISP))]>;
def STSr : MForm<0x26, 1, 0, "sts $RA,$DISP($RB)\t\t!gprellow",
[(store F4RC:$RA, (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB))]>;
def LDS : MForm<0x22, 0, 1, "lds $RA,$DISP($RB)",
[(set F4RC:$RA, (load (add GPRC:$RB, immSExt16:$DISP)))]>;
def LDSr : MForm<0x22, 0, 1, "lds $RA,$DISP($RB)\t\t!gprellow",
[(set F4RC:$RA, (load (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB)))]>;
}
let OperandList = (ops F8RC:$RA, s64imm:$DISP, GPRC:$RB) in {
def STT : MForm<0x27, 1, 0, "stt $RA,$DISP($RB)",
[(store F8RC:$RA, (add GPRC:$RB, immSExt16:$DISP))]>;
def STTr : MForm<0x27, 1, 0, "stt $RA,$DISP($RB)\t\t!gprellow",
[(store F8RC:$RA, (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB))]>;
def LDT : MForm<0x23, 0, 1, "ldt $RA,$DISP($RB)",
[(set F8RC:$RA, (load (add GPRC:$RB, immSExt16:$DISP)))]>;
def LDTr : MForm<0x23, 0, 1, "ldt $RA,$DISP($RB)\t\t!gprellow",
[(set F8RC:$RA, (load (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB)))]>;
}
//constpool rels
def : Pat<(i64 (load (Alpha_gprello tconstpool:$DISP, GPRC:$RB))),
(LDQr tconstpool:$DISP, GPRC:$RB)>;
def : Pat<(i64 (sextload (Alpha_gprello tconstpool:$DISP, GPRC:$RB), i32)),
(LDLr tconstpool:$DISP, GPRC:$RB)>;
def : Pat<(i64 (zextload (Alpha_gprello tconstpool:$DISP, GPRC:$RB), i8)),
(LDBUr tconstpool:$DISP, GPRC:$RB)>;
def : Pat<(i64 (zextload (Alpha_gprello tconstpool:$DISP, GPRC:$RB), i16)),
(LDWUr tconstpool:$DISP, GPRC:$RB)>;
def : Pat<(i64 (Alpha_gprello tconstpool:$DISP, GPRC:$RB)),
(LDAr tconstpool:$DISP, GPRC:$RB)>;
def : Pat<(i64 (Alpha_gprelhi tconstpool:$DISP, GPRC:$RB)),
(LDAHr tconstpool:$DISP, GPRC:$RB)>;
def : Pat<(f32 (load (Alpha_gprello tconstpool:$DISP, GPRC:$RB))),
(LDSr tconstpool:$DISP, GPRC:$RB)>;
def : Pat<(f64 (load (Alpha_gprello tconstpool:$DISP, GPRC:$RB))),
(LDTr tconstpool:$DISP, GPRC:$RB)>;
//misc ext patterns
def : Pat<(i64 (extload (add GPRC:$RB, immSExt16:$DISP), i8)),
(LDBU immSExt16:$DISP, GPRC:$RB)>;
def : Pat<(i64 (extload (add GPRC:$RB, immSExt16:$DISP), i16)),
(LDWU immSExt16:$DISP, GPRC:$RB)>;
def : Pat<(i64 (extload (add GPRC:$RB, immSExt16:$DISP), i32)),
(LDL immSExt16:$DISP, GPRC:$RB)>;
//0 disp patterns
def : Pat<(i64 (load GPRC:$addr)),
(LDQ 0, GPRC:$addr)>;
def : Pat<(f64 (load GPRC:$addr)),
(LDT 0, GPRC:$addr)>;
def : Pat<(f32 (load GPRC:$addr)),
(LDS 0, GPRC:$addr)>;
def : Pat<(i64 (sextload GPRC:$addr, i32)),
(LDL 0, GPRC:$addr)>;
def : Pat<(i64 (zextload GPRC:$addr, i16)),
(LDWU 0, GPRC:$addr)>;
def : Pat<(i64 (zextload GPRC:$addr, i8)),
(LDBU 0, GPRC:$addr)>;
def : Pat<(i64 (extload GPRC:$addr, i8)),
(LDBU 0, GPRC:$addr)>;
def : Pat<(i64 (extload GPRC:$addr, i16)),
(LDWU 0, GPRC:$addr)>;
def : Pat<(i64 (extload GPRC:$addr, i32)),
(LDL 0, GPRC:$addr)>;
def : Pat<(store GPRC:$DATA, GPRC:$addr),
(STQ GPRC:$DATA, 0, GPRC:$addr)>;
def : Pat<(store F8RC:$DATA, GPRC:$addr),
(STT F8RC:$DATA, 0, GPRC:$addr)>;
def : Pat<(store F4RC:$DATA, GPRC:$addr),
(STS F4RC:$DATA, 0, GPRC:$addr)>;
def : Pat<(truncstore GPRC:$DATA, GPRC:$addr, i32),
(STL GPRC:$DATA, 0, GPRC:$addr)>;
def : Pat<(truncstore GPRC:$DATA, GPRC:$addr, i16),
(STW GPRC:$DATA, 0, GPRC:$addr)>;
def : Pat<(truncstore GPRC:$DATA, GPRC:$addr, i8),
(STB GPRC:$DATA, 0, GPRC:$addr)>;
//load address, rellocated gpdist form
let OperandList = (ops GPRC:$RA, s16imm:$DISP, GPRC:$RB, s16imm:$NUM) in {
def LDAg : MFormAlt<0x08, "lda $RA,0($RB)\t\t!gpdisp!$NUM">; //Load address
def LDAHg : MFormAlt<0x09, "ldah $RA,0($RB)\t\t!gpdisp!$NUM">; //Load address
}
//Load quad, rellocated literal form
let OperandList = (ops GPRC:$RA, s64imm:$DISP, GPRC:$RB) in
def LDQl : MForm<0x29, 0, 1, "ldq $RA,$DISP($RB)\t\t!literal",
[(set GPRC:$RA, (Alpha_rellit tglobaladdr:$DISP, GPRC:$RB))]>;
def : Pat<(Alpha_rellit texternalsym:$ext, GPRC:$RB),
(LDQl texternalsym:$ext, GPRC:$RB)>;
//Branches, int
def BEQ : BForm<0x39, "beq $RA,$DISP">; //Branch if = zero
def BGE : BForm<0x3E, "bge $RA,$DISP">; //Branch if >= zero
def BGT : BForm<0x3F, "bgt $RA,$DISP">; //Branch if > zero
def BLBC : BForm<0x38, "blbc $RA,$DISP">; //Branch if low bit clear
def BLBS : BForm<0x3C, "blbs $RA,$DISP">; //Branch if low bit set
def BLE : BForm<0x3B, "ble $RA,$DISP">; //Branch if <= zero
def BLT : BForm<0x3A, "blt $RA,$DISP">; //Branch if < zero
def BNE : BForm<0x3D, "bne $RA,$DISP">; //Branch if != zero
//Branches, float
def FBEQ : FBForm<0x31, "fbeq $RA,$DISP">; //Floating branch if = zero
def FBGE : FBForm<0x36, "fbge $RA,$DISP">; //Floating branch if >= zero
def FBGT : FBForm<0x37, "fbgt $RA,$DISP">; //Floating branch if > zero
def FBLE : FBForm<0x33, "fble $RA,$DISP">; //Floating branch if <= zero
def FBLT : FBForm<0x32, "fblt $RA,$DISP">; //Floating branch if < zero
def FBNE : FBForm<0x35, "fbne $RA,$DISP">; //Floating branch if != zero
def RPCC : MfcForm<0x18, 0xC000, "rpcc $RA">; //Read process cycle counter
//Basic Floating point ops
//Floats
let OperandList = (ops F4RC:$RC, F4RC:$RB), Fa = 31 in
def SQRTS : FPForm<0x14, 0x58B, "sqrts/su $RB,$RC",
[(set F4RC:$RC, (fsqrt F4RC:$RB))]>;
let OperandList = (ops F4RC:$RC, F4RC:$RA, F4RC:$RB) in {
def ADDS : FPForm<0x16, 0x580, "adds/su $RA,$RB,$RC",
[(set F4RC:$RC, (fadd F4RC:$RA, F4RC:$RB))]>;
def SUBS : FPForm<0x16, 0x581, "subs/su $RA,$RB,$RC",
[(set F4RC:$RC, (fsub F4RC:$RA, F4RC:$RB))]>;
def DIVS : FPForm<0x16, 0x583, "divs/su $RA,$RB,$RC",
[(set F4RC:$RC, (fdiv F4RC:$RA, F4RC:$RB))]>;
def MULS : FPForm<0x16, 0x582, "muls/su $RA,$RB,$RC",
[(set F4RC:$RC, (fmul F4RC:$RA, F4RC:$RB))]>;
def CPYSS : FPForm<0x17, 0x020, "cpys $RA,$RB,$RC",[]>; //Copy sign
def CPYSES : FPForm<0x17, 0x022, "cpyse $RA,$RB,$RC",[]>; //Copy sign and exponent
def CPYSNS : FPForm<0x17, 0x021, "cpysn $RA,$RB,$RC",[]>; //Copy sign negate
}
//Doubles
let OperandList = (ops F8RC:$RC, F8RC:$RB), Fa = 31 in
def SQRTT : FPForm<0x14, 0x5AB, "sqrtt/su $RB,$RC",
[(set F8RC:$RC, (fsqrt F8RC:$RB))]>;
let OperandList = (ops F8RC:$RC, F8RC:$RA, F8RC:$RB) in {
def ADDT : FPForm<0x16, 0x5A0, "addt/su $RA,$RB,$RC",
[(set F8RC:$RC, (fadd F8RC:$RA, F8RC:$RB))]>;
def SUBT : FPForm<0x16, 0x5A1, "subt/su $RA,$RB,$RC",
[(set F8RC:$RC, (fsub F8RC:$RA, F8RC:$RB))]>;
def DIVT : FPForm<0x16, 0x5A3, "divt/su $RA,$RB,$RC",
[(set F8RC:$RC, (fdiv F8RC:$RA, F8RC:$RB))]>;
def MULT : FPForm<0x16, 0x5A2, "mult/su $RA,$RB,$RC",
[(set F8RC:$RC, (fmul F8RC:$RA, F8RC:$RB))]>;
def CPYST : FPForm<0x17, 0x020, "cpys $RA,$RB,$RC",[]>; //Copy sign
def CPYSET : FPForm<0x17, 0x022, "cpyse $RA,$RB,$RC",[]>; //Copy sign and exponent
def CPYSNT : FPForm<0x17, 0x021, "cpysn $RA,$RB,$RC",[]>; //Copy sign negate
def CMPTEQ : FPForm<0x16, 0x5A5, "cmpteq/su $RA,$RB,$RC", []>;
// [(set F8RC:$RC, (seteq F8RC:$RA, F8RC:$RB))]>;
def CMPTLE : FPForm<0x16, 0x5A7, "cmptle/su $RA,$RB,$RC", []>;
// [(set F8RC:$RC, (setle F8RC:$RA, F8RC:$RB))]>;
def CMPTLT : FPForm<0x16, 0x5A6, "cmptlt/su $RA,$RB,$RC", []>;
// [(set F8RC:$RC, (setlt F8RC:$RA, F8RC:$RB))]>;
def CMPTUN : FPForm<0x16, 0x5A4, "cmptun/su $RA,$RB,$RC", []>;
// [(set F8RC:$RC, (setuo F8RC:$RA, F8RC:$RB))]>;
}
//TODO: Add lots more FP patterns
//conditional moves, floats
let OperandList = (ops F4RC:$RDEST, F4RC:$RFALSE, F4RC:$RTRUE, F8RC:$RCOND),
isTwoAddress = 1 in {
def FCMOVEQS : FPForm<0x17, 0x02A, "fcmoveq $RCOND,$RTRUE,$RDEST",[]>; //FCMOVE if = zero
def FCMOVGES : FPForm<0x17, 0x02D, "fcmovge $RCOND,$RTRUE,$RDEST",[]>; //FCMOVE if >= zero
def FCMOVGTS : FPForm<0x17, 0x02F, "fcmovgt $RCOND,$RTRUE,$RDEST",[]>; //FCMOVE if > zero
def FCMOVLES : FPForm<0x17, 0x02E, "fcmovle $RCOND,$RTRUE,$RDEST",[]>; //FCMOVE if <= zero
def FCMOVLTS : FPForm<0x17, 0x02C, "fcmovlt $RCOND,$RTRUE,$RDEST",[]>; // FCMOVE if < zero
def FCMOVNES : FPForm<0x17, 0x02B, "fcmovne $RCOND,$RTRUE,$RDEST",[]>; //FCMOVE if != zero
}
//conditional moves, doubles
let OperandList = (ops F8RC:$RDEST, F8RC:$RFALSE, F8RC:$RTRUE, F8RC:$RCOND),
isTwoAddress = 1 in {
def FCMOVEQT : FPForm<0x17, 0x02A, "fcmoveq $RCOND,$RTRUE,$RDEST", []>;
def FCMOVGET : FPForm<0x17, 0x02D, "fcmovge $RCOND,$RTRUE,$RDEST", []>;
def FCMOVGTT : FPForm<0x17, 0x02F, "fcmovgt $RCOND,$RTRUE,$RDEST", []>;
def FCMOVLET : FPForm<0x17, 0x02E, "fcmovle $RCOND,$RTRUE,$RDEST", []>;
def FCMOVLTT : FPForm<0x17, 0x02C, "fcmovlt $RCOND,$RTRUE,$RDEST", []>;
def FCMOVNET : FPForm<0x17, 0x02B, "fcmovne $RCOND,$RTRUE,$RDEST", []>;
}
//misc FP selects
//Select double
def : Pat<(select (seteq F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf),
(FCMOVNET F8RC:$sf, F8RC:$st, (CMPTEQ F8RC:$RA, F8RC:$RB))>;
def : Pat<(select (setne F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf),
(FCMOVEQT F8RC:$sf, F8RC:$st, (CMPTEQ F8RC:$RA, F8RC:$RB))>;
def : Pat<(select (setgt F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf),
(FCMOVNET F8RC:$sf, F8RC:$st, (CMPTLT F8RC:$RB, F8RC:$RA))>;
def : Pat<(select (setge F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf),
(FCMOVNET F8RC:$sf, F8RC:$st, (CMPTLE F8RC:$RB, F8RC:$RA))>;
def : Pat<(select (setlt F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf),
(FCMOVNET F8RC:$sf, F8RC:$st, (CMPTLT F8RC:$RA, F8RC:$RB))>;
def : Pat<(select (setle F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf),
(FCMOVNET F8RC:$sf, F8RC:$st, (CMPTLE F8RC:$RA, F8RC:$RB))>;
//Select single
def : Pat<(select (seteq F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf),
(FCMOVNES F4RC:$sf, F4RC:$st, (CMPTEQ F8RC:$RA, F8RC:$RB))>;
def : Pat<(select (setne F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf),
(FCMOVEQS F4RC:$sf, F4RC:$st, (CMPTEQ F8RC:$RA, F8RC:$RB))>;
def : Pat<(select (setgt F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf),
(FCMOVNES F4RC:$sf, F4RC:$st, (CMPTLT F8RC:$RB, F8RC:$RA))>;
def : Pat<(select (setge F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf),
(FCMOVNES F4RC:$sf, F4RC:$st, (CMPTLE F8RC:$RB, F8RC:$RA))>;
def : Pat<(select (setlt F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf),
(FCMOVNES F4RC:$sf, F4RC:$st, (CMPTLT F8RC:$RA, F8RC:$RB))>;
def : Pat<(select (setle F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf),
(FCMOVNES F4RC:$sf, F4RC:$st, (CMPTLE F8RC:$RA, F8RC:$RB))>;
let OperandList = (ops GPRC:$RC, F4RC:$RA), Fb = 31 in
def FTOIS : FPForm<0x1C, 0x078, "ftois $RA,$RC",[]>; //Floating to integer move, S_floating
let OperandList = (ops GPRC:$RC, F8RC:$RA), Fb = 31 in
def FTOIT : FPForm<0x1C, 0x070, "ftoit $RA,$RC",
[(set GPRC:$RC, (Alpha_ftoit F8RC:$RA))]>; //Floating to integer move
let OperandList = (ops F4RC:$RC, GPRC:$RA), Fb = 31 in
def ITOFS : FPForm<0x14, 0x004, "itofs $RA,$RC",[]>; //Integer to floating move, S_floating
let OperandList = (ops F8RC:$RC, GPRC:$RA), Fb = 31 in
def ITOFT : FPForm<0x14, 0x024, "itoft $RA,$RC",
[(set F8RC:$RC, (Alpha_itoft GPRC:$RA))]>; //Integer to floating move
let OperandList = (ops F4RC:$RC, F8RC:$RB), Fa = 31 in
def CVTQS : FPForm<0x16, 0x7BC, "cvtqs/sui $RB,$RC",
[(set F4RC:$RC, (Alpha_cvtqs F8RC:$RB))]>;
let OperandList = (ops F8RC:$RC, F8RC:$RB), Fa = 31 in
def CVTQT : FPForm<0x16, 0x7BE, "cvtqt/sui $RB,$RC",
[(set F8RC:$RC, (Alpha_cvtqt F8RC:$RB))]>;
let OperandList = (ops F8RC:$RC, F8RC:$RB), Fa = 31 in
def CVTTQ : FPForm<0x16, 0x52F, "cvttq/svc $RB,$RC",
[(set F8RC:$RC, (Alpha_cvttq F8RC:$RB))]>;
let OperandList = (ops F8RC:$RC, F4RC:$RB), Fa = 31 in
def CVTST : FPForm<0x16, 0x6AC, "cvtst/s $RB,$RC",
[(set F8RC:$RC, (fextend F4RC:$RB))]>;
let OperandList = (ops F4RC:$RC, F8RC:$RB), Fa = 31 in
def CVTTS : FPForm<0x16, 0x7AC, "cvtts/sui $RB,$RC",
[(set F4RC:$RC, (fround F8RC:$RB))]>;
//S_floating : IEEE Single
//T_floating : IEEE Double
//Unused instructions
//Mnemonic Format Opcode Description
//CALL_PAL Pcd 00 Trap to PALcode
//ECB Mfc 18.E800 Evict cache block
//EXCB Mfc 18.0400 Exception barrier
//FETCH Mfc 18.8000 Prefetch data
//FETCH_M Mfc 18.A000 Prefetch data, modify intent
//LDL_L Mem 2A Load sign-extended longword locked
//LDQ_L Mem 2B Load quadword locked
//LDQ_U Mem 0B Load unaligned quadword
//MB Mfc 18.4000 Memory barrier
//STL_C Mem 2E Store longword conditional
//STQ_C Mem 2F Store quadword conditional
//STQ_U Mem 0F Store unaligned quadword
//TRAPB Mfc 18.0000 Trap barrier
//WH64 Mfc 18.F800 Write hint  64 bytes
//WMB Mfc 18.4400 Write memory barrier
//MF_FPCR F-P 17.025 Move from FPCR
//MT_FPCR F-P 17.024 Move to FPCR
//There are in the Multimedia extentions, so let's not use them yet
//def MAXSB8 : OForm<0x1C, 0x3E, "MAXSB8 $RA,$RB,$RC">; //Vector signed byte maximum
//def MAXSW4 : OForm< 0x1C, 0x3F, "MAXSW4 $RA,$RB,$RC">; //Vector signed word maximum
//def MAXUB8 : OForm<0x1C, 0x3C, "MAXUB8 $RA,$RB,$RC">; //Vector unsigned byte maximum
//def MAXUW4 : OForm< 0x1C, 0x3D, "MAXUW4 $RA,$RB,$RC">; //Vector unsigned word maximum
//def MINSB8 : OForm< 0x1C, 0x38, "MINSB8 $RA,$RB,$RC">; //Vector signed byte minimum
//def MINSW4 : OForm< 0x1C, 0x39, "MINSW4 $RA,$RB,$RC">; //Vector signed word minimum
//def MINUB8 : OForm< 0x1C, 0x3A, "MINUB8 $RA,$RB,$RC">; //Vector unsigned byte minimum
//def MINUW4 : OForm< 0x1C, 0x3B, "MINUW4 $RA,$RB,$RC">; //Vector unsigned word minimum
//def PERR : OForm< 0x1C, 0x31, "PERR $RA,$RB,$RC">; //Pixel error
//def PKLB : OForm< 0x1C, 0x37, "PKLB $RA,$RB,$RC">; //Pack longwords to bytes
//def PKWB : OForm<0x1C, 0x36, "PKWB $RA,$RB,$RC">; //Pack words to bytes
//def UNPKBL : OForm< 0x1C, 0x35, "UNPKBL $RA,$RB,$RC">; //Unpack bytes to longwords
//def UNPKBW : OForm< 0x1C, 0x34, "UNPKBW $RA,$RB,$RC">; //Unpack bytes to words
//CVTLQ F-P 17.010 Convert longword to quadword
//CVTQL F-P 17.030 Convert quadword to longword
//def AMASK : OForm< 0x11, 0x61, "AMASK $RA,$RB,$RC", []>; //Architecture mask
//def AMASKi : OFormL<0x11, 0x61, "AMASK $RA,$L,$RC", []>; //Architecture mask
//Constant handling
def immConst2Part : PatLeaf<(imm), [{
// immZAP predicate - True if the immediate fits is suitable for use in a
// ZAP instruction
int64_t val = (int64_t)N->getValue();
return (val <= (int64_t)IMM_HIGH +(int64_t)IMM_HIGH* (int64_t)IMM_MULT &
val >= (int64_t)IMM_LOW + (int64_t)IMM_LOW * (int64_t)IMM_MULT);
}]>;
//TODO: factor this out
def LL16 : SDNodeXForm<imm, [{
int64_t l = N->getValue();
int64_t y = l / IMM_MULT;
if (l % IMM_MULT > IMM_HIGH)
++y;
return getI64Imm(l - y * IMM_MULT);
}]>;
//TODO: factor this out
def LH16 : SDNodeXForm<imm, [{
int64_t l = N->getValue();
int64_t y = l / IMM_MULT;
if (l % IMM_MULT > IMM_HIGH)
++y;
return getI64Imm(y);
}]>;
def : Pat<(i64 immConst2Part:$imm),
(LDA (LL16 immConst2Part:$imm), (LDAH (LH16 immConst2Part:$imm), R31))>;
def : Pat<(i64 immSExt16:$imm),
(LDA immSExt16:$imm, R31)>;
//TODO: I want to just define these like this!
//def : Pat<(i64 0),
// (R31)>;
//def : Pat<(f64 0.0),
// (F31)>;
//def : Pat<(f64 -0.0),
// (CPYSNT F31, F31)>;
//def : Pat<(f32 0.0),
// (F31)>;
//def : Pat<(f32 -0.0),
// (CPYSNS F31, F31)>;
//Misc Patterns:
def : Pat<(sext_inreg GPRC:$RB, i32),
(ADDLi GPRC:$RB, 0)>;
def : Pat<(select GPRC:$which, GPRC:$src1, GPRC:$src2),
(CMOVEQ GPRC:$src1, GPRC:$src2, GPRC:$which)>; //may be CMOVNE
def : Pat<(fabs F8RC:$RB),
(CPYST F31, F8RC:$RB)>;
def : Pat<(fabs F4RC:$RB),
(CPYSS F31, F4RC:$RB)>;
def : Pat<(fneg F8RC:$RB),
(CPYSNT F8RC:$RB, F8RC:$RB)>;
def : Pat<(fneg F4RC:$RB),
(CPYSNS F4RC:$RB, F4RC:$RB)>;
//Yes, signed multiply high is ugly
def : Pat<(mulhs GPRC:$RA, GPRC:$RB),
(SUBQ (UMULH GPRC:$RA, GPRC:$RB), (ADDQ (CMOVGE GPRC:$RB, R31, GPRC:$RA),
(CMOVGE GPRC:$RA, R31, GPRC:$RB)))>;