llvm-6502/lib/CodeGen/VirtRegMap.cpp

400 lines
14 KiB
C++
Raw Normal View History

//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the VirtRegMap class.
//
// It also contains implementations of the Spiller interface, which, given a
// virtual register map and a machine function, eliminates all virtual
// references by replacing them with physical register references - adding spill
// code as necessary.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "llvm/CodeGen/VirtRegMap.h"
#include "LiveDebugVariables.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <algorithm>
using namespace llvm;
STATISTIC(NumSpillSlots, "Number of spill slots allocated");
STATISTIC(NumIdCopies, "Number of identity moves eliminated after rewriting");
//===----------------------------------------------------------------------===//
// VirtRegMap implementation
//===----------------------------------------------------------------------===//
char VirtRegMap::ID = 0;
INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false)
bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) {
MRI = &mf.getRegInfo();
TII = mf.getTarget().getInstrInfo();
TRI = mf.getTarget().getRegisterInfo();
MF = &mf;
Virt2PhysMap.clear();
Virt2StackSlotMap.clear();
Virt2SplitMap.clear();
grow();
return false;
}
void VirtRegMap::grow() {
unsigned NumRegs = MF->getRegInfo().getNumVirtRegs();
Virt2PhysMap.resize(NumRegs);
Virt2StackSlotMap.resize(NumRegs);
Virt2SplitMap.resize(NumRegs);
}
unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) {
int SS = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(),
RC->getAlignment());
++NumSpillSlots;
return SS;
}
bool VirtRegMap::hasPreferredPhys(unsigned VirtReg) {
unsigned Hint = MRI->getSimpleHint(VirtReg);
if (!Hint)
return 0;
if (TargetRegisterInfo::isVirtualRegister(Hint))
Hint = getPhys(Hint);
return getPhys(VirtReg) == Hint;
}
bool VirtRegMap::hasKnownPreference(unsigned VirtReg) {
std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(VirtReg);
if (TargetRegisterInfo::isPhysicalRegister(Hint.second))
return true;
if (TargetRegisterInfo::isVirtualRegister(Hint.second))
return hasPhys(Hint.second);
return false;
}
int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
assert(TargetRegisterInfo::isVirtualRegister(virtReg));
assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
"attempt to assign stack slot to already spilled register");
const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg);
return Virt2StackSlotMap[virtReg] = createSpillSlot(RC);
}
void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) {
assert(TargetRegisterInfo::isVirtualRegister(virtReg));
assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
"attempt to assign stack slot to already spilled register");
assert((SS >= 0 ||
(SS >= MF->getFrameInfo()->getObjectIndexBegin())) &&
"illegal fixed frame index");
Virt2StackSlotMap[virtReg] = SS;
}
void VirtRegMap::print(raw_ostream &OS, const Module*) const {
OS << "********** REGISTER MAP **********\n";
for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) {
OS << '[' << PrintReg(Reg, TRI) << " -> "
<< PrintReg(Virt2PhysMap[Reg], TRI) << "] "
<< MRI->getRegClass(Reg)->getName() << "\n";
}
}
for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) {
OS << '[' << PrintReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg]
<< "] " << MRI->getRegClass(Reg)->getName() << "\n";
}
}
OS << '\n';
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VirtRegMap::dump() const {
print(dbgs());
}
#endif
//===----------------------------------------------------------------------===//
// VirtRegRewriter
//===----------------------------------------------------------------------===//
//
// The VirtRegRewriter is the last of the register allocator passes.
// It rewrites virtual registers to physical registers as specified in the
// VirtRegMap analysis. It also updates live-in information on basic blocks
// according to LiveIntervals.
//
namespace {
class VirtRegRewriter : public MachineFunctionPass {
MachineFunction *MF;
const TargetMachine *TM;
const TargetRegisterInfo *TRI;
const TargetInstrInfo *TII;
MachineRegisterInfo *MRI;
SlotIndexes *Indexes;
LiveIntervals *LIS;
VirtRegMap *VRM;
void rewrite();
void addMBBLiveIns();
public:
static char ID;
VirtRegRewriter() : MachineFunctionPass(ID) {}
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
virtual bool runOnMachineFunction(MachineFunction&);
};
} // end anonymous namespace
char &llvm::VirtRegRewriterID = VirtRegRewriter::ID;
INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter",
"Virtual Register Rewriter", false, false)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
INITIALIZE_PASS_DEPENDENCY(LiveStacks)
INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter",
"Virtual Register Rewriter", false, false)
char VirtRegRewriter::ID = 0;
void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<LiveIntervals>();
AU.addRequired<SlotIndexes>();
AU.addPreserved<SlotIndexes>();
AU.addRequired<LiveDebugVariables>();
AU.addRequired<LiveStacks>();
AU.addPreserved<LiveStacks>();
AU.addRequired<VirtRegMap>();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) {
MF = &fn;
TM = &MF->getTarget();
TRI = TM->getRegisterInfo();
TII = TM->getInstrInfo();
MRI = &MF->getRegInfo();
Indexes = &getAnalysis<SlotIndexes>();
LIS = &getAnalysis<LiveIntervals>();
VRM = &getAnalysis<VirtRegMap>();
DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n"
<< "********** Function: "
<< MF->getName() << '\n');
DEBUG(VRM->dump());
// Add kill flags while we still have virtual registers.
LIS->addKillFlags(VRM);
// Live-in lists on basic blocks are required for physregs.
addMBBLiveIns();
// Rewrite virtual registers.
rewrite();
// Write out new DBG_VALUE instructions.
getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);
// All machine operands and other references to virtual registers have been
// replaced. Remove the virtual registers and release all the transient data.
VRM->clearAllVirt();
MRI->clearVirtRegs();
return true;
}
// Compute MBB live-in lists from virtual register live ranges and their
// assignments.
void VirtRegRewriter::addMBBLiveIns() {
SmallVector<MachineBasicBlock*, 16> LiveIn;
for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) {
unsigned VirtReg = TargetRegisterInfo::index2VirtReg(Idx);
if (MRI->reg_nodbg_empty(VirtReg))
continue;
LiveInterval &LI = LIS->getInterval(VirtReg);
if (LI.empty() || LIS->intervalIsInOneMBB(LI))
continue;
// This is a virtual register that is live across basic blocks. Its
// assigned PhysReg must be marked as live-in to those blocks.
unsigned PhysReg = VRM->getPhys(VirtReg);
assert(PhysReg != VirtRegMap::NO_PHYS_REG && "Unmapped virtual register.");
// Scan the segments of LI.
for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I != E;
++I) {
if (!Indexes->findLiveInMBBs(I->start, I->end, LiveIn))
continue;
for (unsigned i = 0, e = LiveIn.size(); i != e; ++i)
if (!LiveIn[i]->isLiveIn(PhysReg))
LiveIn[i]->addLiveIn(PhysReg);
LiveIn.clear();
}
}
}
void VirtRegRewriter::rewrite() {
SmallVector<unsigned, 8> SuperDeads;
SmallVector<unsigned, 8> SuperDefs;
SmallVector<unsigned, 8> SuperKills;
SmallPtrSet<const MachineInstr *, 4> NoReturnInsts;
for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
MBBI != MBBE; ++MBBI) {
DEBUG(MBBI->print(dbgs(), Indexes));
bool IsExitBB = MBBI->succ_empty();
for (MachineBasicBlock::instr_iterator
MII = MBBI->instr_begin(), MIE = MBBI->instr_end(); MII != MIE;) {
MachineInstr *MI = MII;
++MII;
// Check if this instruction is a call to a noreturn function.
// If so, all the definitions set by this instruction can be ignored.
if (IsExitBB && MI->isCall())
for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
MOE = MI->operands_end(); MOI != MOE; ++MOI) {
MachineOperand &MO = *MOI;
if (!MO.isGlobal())
continue;
const Function *Func = dyn_cast<Function>(MO.getGlobal());
if (!Func || !Func->hasFnAttribute(Attribute::NoReturn) ||
// We need to keep correct unwind information
// even if the function will not return, since the
// runtime may need it.
!Func->hasFnAttribute(Attribute::NoUnwind))
continue;
NoReturnInsts.insert(MI);
break;
}
for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
MOE = MI->operands_end(); MOI != MOE; ++MOI) {
MachineOperand &MO = *MOI;
// Make sure MRI knows about registers clobbered by regmasks.
if (MO.isRegMask())
MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
continue;
unsigned VirtReg = MO.getReg();
unsigned PhysReg = VRM->getPhys(VirtReg);
assert(PhysReg != VirtRegMap::NO_PHYS_REG &&
"Instruction uses unmapped VirtReg");
assert(!MRI->isReserved(PhysReg) && "Reserved register assignment");
// Preserve semantics of sub-register operands.
if (MO.getSubReg()) {
// A virtual register kill refers to the whole register, so we may
// have to add <imp-use,kill> operands for the super-register. A
// partial redef always kills and redefines the super-register.
if (MO.readsReg() && (MO.isDef() || MO.isKill()))
SuperKills.push_back(PhysReg);
if (MO.isDef()) {
// The <def,undef> flag only makes sense for sub-register defs, and
// we are substituting a full physreg. An <imp-use,kill> operand
// from the SuperKills list will represent the partial read of the
// super-register.
MO.setIsUndef(false);
// Also add implicit defs for the super-register.
if (MO.isDead())
SuperDeads.push_back(PhysReg);
else
SuperDefs.push_back(PhysReg);
}
// PhysReg operands cannot have subregister indexes.
PhysReg = TRI->getSubReg(PhysReg, MO.getSubReg());
assert(PhysReg && "Invalid SubReg for physical register");
MO.setSubReg(0);
}
// Rewrite. Note we could have used MachineOperand::substPhysReg(), but
// we need the inlining here.
MO.setReg(PhysReg);
}
// Add any missing super-register kills after rewriting the whole
// instruction.
while (!SuperKills.empty())
MI->addRegisterKilled(SuperKills.pop_back_val(), TRI, true);
while (!SuperDeads.empty())
MI->addRegisterDead(SuperDeads.pop_back_val(), TRI, true);
while (!SuperDefs.empty())
MI->addRegisterDefined(SuperDefs.pop_back_val(), TRI);
DEBUG(dbgs() << "> " << *MI);
// Finally, remove any identity copies.
if (MI->isIdentityCopy()) {
++NumIdCopies;
if (MI->getNumOperands() == 2) {
DEBUG(dbgs() << "Deleting identity copy.\n");
if (Indexes)
Indexes->removeMachineInstrFromMaps(MI);
// It's safe to erase MI because MII has already been incremented.
MI->eraseFromParent();
} else {
// Transform identity copy to a KILL to deal with subregisters.
MI->setDesc(TII->get(TargetOpcode::KILL));
DEBUG(dbgs() << "Identity copy: " << *MI);
}
}
}
}
// Tell MRI about physical registers in use.
if (NoReturnInsts.empty()) {
for (unsigned Reg = 1, RegE = TRI->getNumRegs(); Reg != RegE; ++Reg)
if (!MRI->reg_nodbg_empty(Reg))
MRI->setPhysRegUsed(Reg);
} else {
for (unsigned Reg = 1, RegE = TRI->getNumRegs(); Reg != RegE; ++Reg) {
if (MRI->reg_nodbg_empty(Reg))
continue;
// Check if this register has a use that will impact the rest of the
// code. Uses in debug and noreturn instructions do not impact the
// generated code.
for (MachineRegisterInfo::reg_nodbg_iterator It =
MRI->reg_nodbg_begin(Reg),
EndIt = MRI->reg_nodbg_end(); It != EndIt; ++It) {
if (!NoReturnInsts.count(&(*It))) {
MRI->setPhysRegUsed(Reg);
break;
}
}
}
}
}