2009-02-16 04:26:53 +00:00
|
|
|
//===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
|
2007-07-25 18:00:25 +00:00
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
2007-12-29 20:36:04 +00:00
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
2007-07-25 18:00:25 +00:00
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This file implements inline cost analysis.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
|
|
|
|
#include "llvm/Transforms/Utils/InlineCost.h"
|
2009-09-18 22:35:49 +00:00
|
|
|
#include "llvm/Analysis/MallocHelper.h"
|
2007-07-25 18:00:25 +00:00
|
|
|
#include "llvm/Support/CallSite.h"
|
|
|
|
#include "llvm/CallingConv.h"
|
|
|
|
#include "llvm/IntrinsicInst.h"
|
2009-08-27 04:43:05 +00:00
|
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
2007-07-25 18:00:25 +00:00
|
|
|
using namespace llvm;
|
|
|
|
|
|
|
|
// CountCodeReductionForConstant - Figure out an approximation for how many
|
|
|
|
// instructions will be constant folded if the specified value is constant.
|
|
|
|
//
|
|
|
|
unsigned InlineCostAnalyzer::FunctionInfo::
|
|
|
|
CountCodeReductionForConstant(Value *V) {
|
|
|
|
unsigned Reduction = 0;
|
|
|
|
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
|
|
|
|
if (isa<BranchInst>(*UI))
|
|
|
|
Reduction += 40; // Eliminating a conditional branch is a big win
|
|
|
|
else if (SwitchInst *SI = dyn_cast<SwitchInst>(*UI))
|
|
|
|
// Eliminating a switch is a big win, proportional to the number of edges
|
|
|
|
// deleted.
|
|
|
|
Reduction += (SI->getNumSuccessors()-1) * 40;
|
|
|
|
else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
|
|
|
|
// Turning an indirect call into a direct call is a BIG win
|
|
|
|
Reduction += CI->getCalledValue() == V ? 500 : 0;
|
|
|
|
} else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
|
|
|
|
// Turning an indirect call into a direct call is a BIG win
|
|
|
|
Reduction += II->getCalledValue() == V ? 500 : 0;
|
|
|
|
} else {
|
|
|
|
// Figure out if this instruction will be removed due to simple constant
|
|
|
|
// propagation.
|
|
|
|
Instruction &Inst = cast<Instruction>(**UI);
|
2009-07-18 05:26:06 +00:00
|
|
|
|
|
|
|
// We can't constant propagate instructions which have effects or
|
|
|
|
// read memory.
|
2009-07-18 18:49:04 +00:00
|
|
|
//
|
|
|
|
// FIXME: It would be nice to capture the fact that a load from a
|
|
|
|
// pointer-to-constant-global is actually a *really* good thing to zap.
|
|
|
|
// Unfortunately, we don't know the pointer that may get propagated here,
|
|
|
|
// so we can't make this decision.
|
2009-07-18 05:26:06 +00:00
|
|
|
if (Inst.mayReadFromMemory() || Inst.mayHaveSideEffects() ||
|
2009-09-18 22:35:49 +00:00
|
|
|
isa<AllocationInst>(Inst) || isMalloc(&Inst))
|
2009-07-18 05:26:06 +00:00
|
|
|
continue;
|
|
|
|
|
2007-07-25 18:00:25 +00:00
|
|
|
bool AllOperandsConstant = true;
|
|
|
|
for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i)
|
|
|
|
if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) {
|
|
|
|
AllOperandsConstant = false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (AllOperandsConstant) {
|
|
|
|
// We will get to remove this instruction...
|
|
|
|
Reduction += 7;
|
|
|
|
|
|
|
|
// And any other instructions that use it which become constants
|
|
|
|
// themselves.
|
|
|
|
Reduction += CountCodeReductionForConstant(&Inst);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return Reduction;
|
|
|
|
}
|
|
|
|
|
|
|
|
// CountCodeReductionForAlloca - Figure out an approximation of how much smaller
|
|
|
|
// the function will be if it is inlined into a context where an argument
|
|
|
|
// becomes an alloca.
|
|
|
|
//
|
|
|
|
unsigned InlineCostAnalyzer::FunctionInfo::
|
|
|
|
CountCodeReductionForAlloca(Value *V) {
|
|
|
|
if (!isa<PointerType>(V->getType())) return 0; // Not a pointer
|
|
|
|
unsigned Reduction = 0;
|
|
|
|
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
|
|
|
|
Instruction *I = cast<Instruction>(*UI);
|
|
|
|
if (isa<LoadInst>(I) || isa<StoreInst>(I))
|
|
|
|
Reduction += 10;
|
|
|
|
else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
|
|
|
|
// If the GEP has variable indices, we won't be able to do much with it.
|
2009-04-21 23:37:18 +00:00
|
|
|
if (!GEP->hasAllConstantIndices())
|
|
|
|
Reduction += CountCodeReductionForAlloca(GEP)+15;
|
2007-07-25 18:00:25 +00:00
|
|
|
} else {
|
|
|
|
// If there is some other strange instruction, we're not going to be able
|
|
|
|
// to do much if we inline this.
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return Reduction;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// analyzeFunction - Fill in the current structure with information gleaned
|
|
|
|
/// from the specified function.
|
|
|
|
void InlineCostAnalyzer::FunctionInfo::analyzeFunction(Function *F) {
|
2008-03-24 06:37:48 +00:00
|
|
|
unsigned NumInsts = 0, NumBlocks = 0, NumVectorInsts = 0;
|
2007-07-25 18:00:25 +00:00
|
|
|
|
|
|
|
// Look at the size of the callee. Each basic block counts as 20 units, and
|
2007-09-17 20:07:40 +00:00
|
|
|
// each instruction counts as 5.
|
2007-07-25 18:00:25 +00:00
|
|
|
for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
|
|
|
|
for (BasicBlock::const_iterator II = BB->begin(), E = BB->end();
|
|
|
|
II != E; ++II) {
|
2008-03-24 06:37:48 +00:00
|
|
|
if (isa<PHINode>(II)) continue; // PHI nodes don't count.
|
|
|
|
|
2008-07-14 17:32:59 +00:00
|
|
|
// Special handling for calls.
|
|
|
|
if (isa<CallInst>(II) || isa<InvokeInst>(II)) {
|
|
|
|
if (isa<DbgInfoIntrinsic>(II))
|
|
|
|
continue; // Debug intrinsics don't count as size.
|
|
|
|
|
|
|
|
CallSite CS = CallSite::get(const_cast<Instruction*>(&*II));
|
|
|
|
|
|
|
|
// If this function contains a call to setjmp or _setjmp, never inline
|
|
|
|
// it. This is a hack because we depend on the user marking their local
|
|
|
|
// variables as volatile if they are live across a setjmp call, and they
|
|
|
|
// probably won't do this in callers.
|
|
|
|
if (Function *F = CS.getCalledFunction())
|
|
|
|
if (F->isDeclaration() &&
|
2009-07-25 23:55:21 +00:00
|
|
|
(F->getName() == "setjmp" || F->getName() == "_setjmp")) {
|
2008-07-14 17:32:59 +00:00
|
|
|
NeverInline = true;
|
|
|
|
return;
|
|
|
|
}
|
2009-01-24 21:49:34 +00:00
|
|
|
|
2008-07-17 01:31:49 +00:00
|
|
|
// Calls often compile into many machine instructions. Bump up their
|
2009-01-24 21:49:34 +00:00
|
|
|
// cost to reflect this.
|
|
|
|
if (!isa<IntrinsicInst>(II))
|
|
|
|
NumInsts += 5;
|
2008-07-14 17:32:59 +00:00
|
|
|
}
|
|
|
|
|
2009-01-08 21:45:23 +00:00
|
|
|
if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
|
2009-01-09 01:30:11 +00:00
|
|
|
if (!AI->isStaticAlloca())
|
2009-01-08 21:45:23 +00:00
|
|
|
this->usesDynamicAlloca = true;
|
|
|
|
}
|
|
|
|
|
2008-07-14 00:32:20 +00:00
|
|
|
if (isa<ExtractElementInst>(II) || isa<VectorType>(II->getType()))
|
2008-03-24 06:37:48 +00:00
|
|
|
++NumVectorInsts;
|
2007-07-25 18:00:25 +00:00
|
|
|
|
|
|
|
// Noop casts, including ptr <-> int, don't count.
|
|
|
|
if (const CastInst *CI = dyn_cast<CastInst>(II)) {
|
|
|
|
if (CI->isLosslessCast() || isa<IntToPtrInst>(CI) ||
|
|
|
|
isa<PtrToIntInst>(CI))
|
|
|
|
continue;
|
|
|
|
} else if (const GetElementPtrInst *GEPI =
|
2008-03-24 06:37:48 +00:00
|
|
|
dyn_cast<GetElementPtrInst>(II)) {
|
2007-07-25 18:00:25 +00:00
|
|
|
// If a GEP has all constant indices, it will probably be folded with
|
|
|
|
// a load/store.
|
2009-04-21 23:37:18 +00:00
|
|
|
if (GEPI->hasAllConstantIndices())
|
|
|
|
continue;
|
2007-07-25 18:00:25 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
++NumInsts;
|
|
|
|
}
|
|
|
|
|
|
|
|
++NumBlocks;
|
|
|
|
}
|
|
|
|
|
2008-03-24 06:37:48 +00:00
|
|
|
this->NumBlocks = NumBlocks;
|
|
|
|
this->NumInsts = NumInsts;
|
|
|
|
this->NumVectorInsts = NumVectorInsts;
|
2007-07-25 18:00:25 +00:00
|
|
|
|
|
|
|
// Check out all of the arguments to the function, figuring out how much
|
|
|
|
// code can be eliminated if one of the arguments is a constant.
|
|
|
|
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
|
|
|
|
ArgumentWeights.push_back(ArgInfo(CountCodeReductionForConstant(I),
|
|
|
|
CountCodeReductionForAlloca(I)));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// getInlineCost - The heuristic used to determine if we should inline the
|
|
|
|
// function call or not.
|
|
|
|
//
|
2008-10-30 19:26:59 +00:00
|
|
|
InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS,
|
2008-03-20 00:20:23 +00:00
|
|
|
SmallPtrSet<const Function *, 16> &NeverInline) {
|
2007-07-25 18:00:25 +00:00
|
|
|
Instruction *TheCall = CS.getInstruction();
|
|
|
|
Function *Callee = CS.getCalledFunction();
|
2009-01-08 21:45:23 +00:00
|
|
|
Function *Caller = TheCall->getParent()->getParent();
|
2008-09-29 11:25:42 +00:00
|
|
|
|
2007-07-25 18:00:25 +00:00
|
|
|
// Don't inline functions which can be redefined at link-time to mean
|
2008-09-29 11:25:42 +00:00
|
|
|
// something else.
|
Introduce new linkage types linkonce_odr, weak_odr, common_odr
and extern_weak_odr. These are the same as the non-odr versions,
except that they indicate that the global will only be overridden
by an *equivalent* global. In C, a function with weak linkage can
be overridden by a function which behaves completely differently.
This means that IP passes have to skip weak functions, since any
deductions made from the function definition might be wrong, since
the definition could be replaced by something completely different
at link time. This is not allowed in C++, thanks to the ODR
(One-Definition-Rule): if a function is replaced by another at
link-time, then the new function must be the same as the original
function. If a language knows that a function or other global can
only be overridden by an equivalent global, it can give it the
weak_odr linkage type, and the optimizers will understand that it
is alright to make deductions based on the function body. The
code generators on the other hand map weak and weak_odr linkage
to the same thing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66339 91177308-0d34-0410-b5e6-96231b3b80d8
2009-03-07 15:45:40 +00:00
|
|
|
if (Callee->mayBeOverridden() ||
|
|
|
|
// Don't inline functions marked noinline.
|
|
|
|
Callee->hasFnAttr(Attribute::NoInline) || NeverInline.count(Callee))
|
2008-10-30 19:26:59 +00:00
|
|
|
return llvm::InlineCost::getNever();
|
2008-09-29 11:25:42 +00:00
|
|
|
|
2007-07-25 18:00:25 +00:00
|
|
|
// InlineCost - This value measures how good of an inline candidate this call
|
|
|
|
// site is to inline. A lower inline cost make is more likely for the call to
|
|
|
|
// be inlined. This value may go negative.
|
|
|
|
//
|
|
|
|
int InlineCost = 0;
|
|
|
|
|
|
|
|
// If there is only one call of the function, and it has internal linkage,
|
|
|
|
// make it almost guaranteed to be inlined.
|
|
|
|
//
|
2009-07-22 08:12:59 +00:00
|
|
|
if (Callee->hasLocalLinkage() && Callee->hasOneUse())
|
2008-04-24 18:42:47 +00:00
|
|
|
InlineCost -= 15000;
|
2007-07-25 18:00:25 +00:00
|
|
|
|
|
|
|
// If this function uses the coldcc calling convention, prefer not to inline
|
|
|
|
// it.
|
|
|
|
if (Callee->getCallingConv() == CallingConv::Cold)
|
|
|
|
InlineCost += 2000;
|
|
|
|
|
|
|
|
// If the instruction after the call, or if the normal destination of the
|
|
|
|
// invoke is an unreachable instruction, the function is noreturn. As such,
|
|
|
|
// there is little point in inlining this.
|
|
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
|
|
|
|
if (isa<UnreachableInst>(II->getNormalDest()->begin()))
|
|
|
|
InlineCost += 10000;
|
|
|
|
} else if (isa<UnreachableInst>(++BasicBlock::iterator(TheCall)))
|
|
|
|
InlineCost += 10000;
|
|
|
|
|
|
|
|
// Get information about the callee...
|
|
|
|
FunctionInfo &CalleeFI = CachedFunctionInfo[Callee];
|
|
|
|
|
|
|
|
// If we haven't calculated this information yet, do so now.
|
|
|
|
if (CalleeFI.NumBlocks == 0)
|
|
|
|
CalleeFI.analyzeFunction(Callee);
|
2009-01-08 21:45:23 +00:00
|
|
|
|
2008-07-14 17:32:59 +00:00
|
|
|
// If we should never inline this, return a huge cost.
|
|
|
|
if (CalleeFI.NeverInline)
|
2008-10-30 19:26:59 +00:00
|
|
|
return InlineCost::getNever();
|
2008-09-03 18:47:45 +00:00
|
|
|
|
2009-03-10 07:57:50 +00:00
|
|
|
// FIXME: It would be nice to kill off CalleeFI.NeverInline. Then we
|
|
|
|
// could move this up and avoid computing the FunctionInfo for
|
|
|
|
// things we are going to just return always inline for. This
|
|
|
|
// requires handling setjmp somewhere else, however.
|
|
|
|
if (!Callee->isDeclaration() && Callee->hasFnAttr(Attribute::AlwaysInline))
|
|
|
|
return InlineCost::getAlways();
|
|
|
|
|
2009-01-09 01:30:11 +00:00
|
|
|
if (CalleeFI.usesDynamicAlloca) {
|
|
|
|
// Get infomation about the caller...
|
|
|
|
FunctionInfo &CallerFI = CachedFunctionInfo[Caller];
|
2009-01-08 21:45:23 +00:00
|
|
|
|
2009-01-09 01:30:11 +00:00
|
|
|
// If we haven't calculated this information yet, do so now.
|
|
|
|
if (CallerFI.NumBlocks == 0)
|
|
|
|
CallerFI.analyzeFunction(Caller);
|
2009-01-08 21:45:23 +00:00
|
|
|
|
2009-01-09 01:30:11 +00:00
|
|
|
// Don't inline a callee with dynamic alloca into a caller without them.
|
|
|
|
// Functions containing dynamic alloca's are inefficient in various ways;
|
|
|
|
// don't create more inefficiency.
|
|
|
|
if (!CallerFI.usesDynamicAlloca)
|
|
|
|
return InlineCost::getNever();
|
|
|
|
}
|
2009-01-08 21:45:23 +00:00
|
|
|
|
2007-07-25 18:00:25 +00:00
|
|
|
// Add to the inline quality for properties that make the call valuable to
|
|
|
|
// inline. This includes factors that indicate that the result of inlining
|
|
|
|
// the function will be optimizable. Currently this just looks at arguments
|
|
|
|
// passed into the function.
|
|
|
|
//
|
|
|
|
unsigned ArgNo = 0;
|
|
|
|
for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
|
|
|
|
I != E; ++I, ++ArgNo) {
|
|
|
|
// Each argument passed in has a cost at both the caller and the callee
|
|
|
|
// sides. This favors functions that take many arguments over functions
|
|
|
|
// that take few arguments.
|
|
|
|
InlineCost -= 20;
|
|
|
|
|
|
|
|
// If this is a function being passed in, it is very likely that we will be
|
|
|
|
// able to turn an indirect function call into a direct function call.
|
|
|
|
if (isa<Function>(I))
|
|
|
|
InlineCost -= 100;
|
|
|
|
|
|
|
|
// If an alloca is passed in, inlining this function is likely to allow
|
|
|
|
// significant future optimization possibilities (like scalar promotion, and
|
|
|
|
// scalarization), so encourage the inlining of the function.
|
|
|
|
//
|
|
|
|
else if (isa<AllocaInst>(I)) {
|
|
|
|
if (ArgNo < CalleeFI.ArgumentWeights.size())
|
|
|
|
InlineCost -= CalleeFI.ArgumentWeights[ArgNo].AllocaWeight;
|
|
|
|
|
|
|
|
// If this is a constant being passed into the function, use the argument
|
|
|
|
// weights calculated for the callee to determine how much will be folded
|
|
|
|
// away with this information.
|
|
|
|
} else if (isa<Constant>(I)) {
|
|
|
|
if (ArgNo < CalleeFI.ArgumentWeights.size())
|
|
|
|
InlineCost -= CalleeFI.ArgumentWeights[ArgNo].ConstantWeight;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Now that we have considered all of the factors that make the call site more
|
|
|
|
// likely to be inlined, look at factors that make us not want to inline it.
|
|
|
|
|
2008-04-01 23:59:29 +00:00
|
|
|
// Don't inline into something too big, which would make it bigger.
|
2007-07-25 18:00:25 +00:00
|
|
|
//
|
2008-04-24 18:42:47 +00:00
|
|
|
InlineCost += Caller->size()/15;
|
2007-07-25 18:00:25 +00:00
|
|
|
|
2008-04-01 23:59:29 +00:00
|
|
|
// Look at the size of the callee. Each instruction counts as 5.
|
|
|
|
InlineCost += CalleeFI.NumInsts*5;
|
2008-03-24 06:37:48 +00:00
|
|
|
|
2008-10-30 19:26:59 +00:00
|
|
|
return llvm::InlineCost::get(InlineCost);
|
2007-07-25 18:00:25 +00:00
|
|
|
}
|
|
|
|
|
2008-03-24 06:37:48 +00:00
|
|
|
// getInlineFudgeFactor - Return a > 1.0 factor if the inliner should use a
|
|
|
|
// higher threshold to determine if the function call should be inlined.
|
|
|
|
float InlineCostAnalyzer::getInlineFudgeFactor(CallSite CS) {
|
|
|
|
Function *Callee = CS.getCalledFunction();
|
|
|
|
|
|
|
|
// Get information about the callee...
|
|
|
|
FunctionInfo &CalleeFI = CachedFunctionInfo[Callee];
|
|
|
|
|
|
|
|
// If we haven't calculated this information yet, do so now.
|
|
|
|
if (CalleeFI.NumBlocks == 0)
|
|
|
|
CalleeFI.analyzeFunction(Callee);
|
|
|
|
|
2008-04-01 23:59:29 +00:00
|
|
|
float Factor = 1.0f;
|
|
|
|
// Single BB functions are often written to be inlined.
|
|
|
|
if (CalleeFI.NumBlocks == 1)
|
|
|
|
Factor += 0.5f;
|
|
|
|
|
2008-03-24 06:37:48 +00:00
|
|
|
// Be more aggressive if the function contains a good chunk (if it mades up
|
|
|
|
// at least 10% of the instructions) of vector instructions.
|
2008-04-01 23:59:29 +00:00
|
|
|
if (CalleeFI.NumVectorInsts > CalleeFI.NumInsts/2)
|
|
|
|
Factor += 2.0f;
|
|
|
|
else if (CalleeFI.NumVectorInsts > CalleeFI.NumInsts/10)
|
|
|
|
Factor += 1.5f;
|
|
|
|
return Factor;
|
2008-03-24 06:37:48 +00:00
|
|
|
}
|