llvm-6502/lib/Analysis/DataStructure/BottomUpClosure.cpp

218 lines
8.0 KiB
C++
Raw Normal View History

//===- BottomUpClosure.cpp - Compute bottom-up interprocedural closure ----===//
//
// This file implements the BUDataStructures class, which represents the
// Bottom-Up Interprocedural closure of the data structure graph over the
// program. This is useful for applications like pool allocation, but **not**
// applications like alias analysis.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/DataStructure.h"
#include "llvm/Analysis/DSGraph.h"
#include "llvm/Module.h"
#include "Support/Statistic.h"
using std::map;
static RegisterAnalysis<BUDataStructures>
X("budatastructure", "Bottom-up Data Structure Analysis Closure");
// TODO: FIXME
namespace DataStructureAnalysis {
// isPointerType - Return true if this first class type is big enough to hold
// a pointer.
//
bool isPointerType(const Type *Ty);
}
using namespace DataStructureAnalysis;
// releaseMemory - If the pass pipeline is done with this pass, we can release
// our memory... here...
//
void BUDataStructures::releaseMemory() {
// Delete all call site information
CallSites.clear();
for (map<const Function*, DSGraph*>::iterator I = DSInfo.begin(),
E = DSInfo.end(); I != E; ++I)
delete I->second;
// Empty map so next time memory is released, data structures are not
// re-deleted.
DSInfo.clear();
}
// run - Calculate the bottom up data structure graphs for each function in the
// program.
//
bool BUDataStructures::run(Module &M) {
// Simply calculate the graphs for each function...
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isExternal())
calculateGraph(*I);
return false;
}
// ResolveArguments - Resolve the formal and actual arguments for a function
// call.
//
static void ResolveArguments(DSCallSite &Call, Function &F,
map<Value*, DSNodeHandle> &ValueMap) {
// Resolve all of the function arguments...
Function::aiterator AI = F.abegin();
for (unsigned i = 0, e = Call.getNumPtrArgs(); i != e; ++i) {
// Advance the argument iterator to the first pointer argument...
while (!isPointerType(AI->getType())) ++AI;
// Add the link from the argument scalar to the provided value
DSNodeHandle &NN = ValueMap[AI];
NN.addEdgeTo(Call.getPtrArg(i));
++AI;
}
}
DSGraph &BUDataStructures::calculateGraph(Function &F) {
// Make sure this graph has not already been calculated, or that we don't get
// into an infinite loop with mutually recursive functions.
//
DSGraph *&Graph = DSInfo[&F];
if (Graph) return *Graph;
// Copy the local version into DSInfo...
Graph = new DSGraph(getAnalysis<LocalDataStructures>().getDSGraph(F));
#if 0
// Populate the GlobalsGraph with globals from this one.
Graph->GlobalsGraph->cloneGlobals(*Graph, /*cloneCalls*/ false);
#endif
// Start resolving calls...
std::vector<DSCallSite> &FCs = Graph->getFunctionCalls();
DEBUG(std::cerr << " [BU] Inlining: " << F.getName() << "\n");
bool Inlined;
do {
Inlined = false;
for (unsigned i = 0; i != FCs.size(); ++i) {
// Copy the call, because inlining graphs may invalidate the FCs vector.
DSCallSite Call = FCs[i];
// If the function list is complete...
if ((Call.getCallee().getNode()->NodeType & DSNode::Incomplete)==0) {
// Start inlining all of the functions we can... some may not be
// inlinable if they are external...
//
std::vector<GlobalValue*> Callees =
Call.getCallee().getNode()->getGlobals();
// Loop over the functions, inlining whatever we can...
for (unsigned c = 0; c != Callees.size(); ++c) {
// Must be a function type, so this cast MUST succeed.
Function &FI = cast<Function>(*Callees[c]);
if (&FI == &F) {
// Self recursion... simply link up the formal arguments with the
// actual arguments...
DEBUG(std::cerr << "\t[BU] Self Inlining: " << F.getName() << "\n");
// Handle the return value if present...
if (Call.getRetVal().getNode())
Graph->getRetNode().mergeWith(Call.getRetVal());
// Resolve the arguments in the call to the actual values...
ResolveArguments(Call, F, Graph->getValueMap());
// Erase the entry in the callees vector
Callees.erase(Callees.begin()+c--);
} else if (!FI.isExternal()) {
DEBUG(std::cerr << "\t[BU] In " << F.getName() << " inlining: "
<< FI.getName() << "\n");
// Get the data structure graph for the called function, closing it
// if possible (which is only impossible in the case of mutual
// recursion...
//
DSGraph &GI = calculateGraph(FI); // Graph to inline
DEBUG(std::cerr << "\t\t[BU] Got graph for " << FI.getName()
<< " in: " << F.getName() << "\n");
// Record that the original DSCallSite was a call site of FI.
// This may or may not have been known when the DSCallSite was
// originally created.
std::vector<DSCallSite> &CallSitesForFunc = CallSites[&FI];
CallSitesForFunc.push_back(Call);
CallSitesForFunc.back().setResolvingCaller(&F);
CallSitesForFunc.back().setCallee(0);
// Clone the callee's graph into the current graph, keeping
// track of where scalars in the old graph _used_ to point,
// and of the new nodes matching nodes of the old graph.
map<Value*, DSNodeHandle> OldValMap;
map<const DSNode*, DSNode*> OldNodeMap;
// The clone call may invalidate any of the vectors in the data
// structure graph. Strip locals and don't copy the list of callers
DSNodeHandle RetVal = Graph->cloneInto(GI, OldValMap, OldNodeMap,
/*StripScalars*/ true,
/*StripAllocas*/ true);
// Resolve the arguments in the call to the actual values...
ResolveArguments(Call, FI, OldValMap);
if (Call.getRetVal().getNode())// Handle the return value if present
RetVal.mergeWith(Call.getRetVal());
// Erase the entry in the Callees vector
Callees.erase(Callees.begin()+c--);
} else if (FI.getName() == "printf" || FI.getName() == "sscanf" ||
FI.getName() == "fprintf" || FI.getName() == "open" ||
FI.getName() == "sprintf") {
// FIXME: These special cases should go away when we can define
// functions that take a variable number of arguments.
// Erase the entry in the globals vector
Callees.erase(Callees.begin()+c--);
}
}
if (Callees.empty()) { // Inlined all of the function calls?
// Erase the call if it is resolvable...
FCs.erase(FCs.begin()+i--); // Don't skip a the next call...
Inlined = true;
} else if (Callees.size() !=
Call.getCallee().getNode()->getGlobals().size()) {
// Was able to inline SOME, but not all of the functions. Construct a
// new global node here.
//
assert(0 && "Unimpl!");
Inlined = true;
}
}
}
// Recompute the Incomplete markers. If there are any function calls left
// now that are complete, we must loop!
if (Inlined) {
Graph->maskIncompleteMarkers();
Graph->markIncompleteNodes();
Graph->removeDeadNodes(/*KeepAllGlobals*/ true, /*KeepCalls*/ true);
}
} while (Inlined && !FCs.empty());
Graph->maskIncompleteMarkers();
Graph->markIncompleteNodes();
Graph->removeTriviallyDeadNodes(false);
Graph->removeDeadNodes(/*KeepAllGlobals*/ true, /*KeepCalls*/ true);
DEBUG(std::cerr << " [BU] Done inlining: " << F.getName() << " ["
<< Graph->getGraphSize() << "+" << Graph->getFunctionCalls().size()
<< "]\n");
return *Graph;
}