llvm-6502/lib/Target/SparcV9/SparcV9TargetMachine.cpp

273 lines
9.3 KiB
C++
Raw Normal View History

// $Id$
//***************************************************************************
// File:
// Sparc.cpp
//
// Purpose:
//
// History:
// 7/15/01 - Vikram Adve - Created
//**************************************************************************/
#include "SparcInternals.h"
#include "llvm/Target/Sparc.h"
#include "llvm/CodeGen/InstrScheduling.h"
#include "llvm/CodeGen/InstrSelection.h"
#include "llvm/CodeGen/MachineCodeForInstruction.h"
#include "llvm/CodeGen/MachineCodeForMethod.h"
#include "llvm/CodeGen/RegisterAllocation.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Method.h"
#include "llvm/PassManager.h"
#include <iostream>
using std::cerr;
// Build the MachineInstruction Description Array...
const MachineInstrDescriptor SparcMachineInstrDesc[] = {
#define I(ENUM, OPCODESTRING, NUMOPERANDS, RESULTPOS, MAXIMM, IMMSE, \
NUMDELAYSLOTS, LATENCY, SCHEDCLASS, INSTFLAGS) \
{ OPCODESTRING, NUMOPERANDS, RESULTPOS, MAXIMM, IMMSE, \
NUMDELAYSLOTS, LATENCY, SCHEDCLASS, INSTFLAGS },
#include "SparcInstr.def"
};
//----------------------------------------------------------------------------
// allocateSparcTargetMachine - Allocate and return a subclass of TargetMachine
// that implements the Sparc backend. (the llvm/CodeGen/Sparc.h interface)
//----------------------------------------------------------------------------
//
TargetMachine *allocateSparcTargetMachine() { return new UltraSparc(); }
//---------------------------------------------------------------------------
// class InsertPrologEpilogCode
//
// Insert SAVE/RESTORE instructions for the method
//
// Insert prolog code at the unique method entry point.
// Insert epilog code at each method exit point.
// InsertPrologEpilog invokes these only if the method is not compiled
// with the leaf method optimization.
//
//---------------------------------------------------------------------------
static MachineInstr* minstrVec[MAX_INSTR_PER_VMINSTR];
class InsertPrologEpilogCode : public MethodPass {
TargetMachine &Target;
public:
inline InsertPrologEpilogCode(TargetMachine &T) : Target(T) {}
bool runOnMethod(Method *M) {
MachineCodeForMethod &mcodeInfo = MachineCodeForMethod::get(M);
if (!mcodeInfo.isCompiledAsLeafMethod()) {
InsertPrologCode(M);
InsertEpilogCode(M);
}
return false;
}
void InsertPrologCode(Method *M);
void InsertEpilogCode(Method *M);
};
void InsertPrologEpilogCode::InsertPrologCode(Method* method)
{
BasicBlock* entryBB = method->getEntryNode();
unsigned N = GetInstructionsForProlog(entryBB, Target, minstrVec);
assert(N <= MAX_INSTR_PER_VMINSTR);
MachineCodeForBasicBlock& bbMvec = entryBB->getMachineInstrVec();
bbMvec.insert(bbMvec.begin(), minstrVec, minstrVec+N);
}
void InsertPrologEpilogCode::InsertEpilogCode(Method* method)
{
for (Method::iterator I=method->begin(), E=method->end(); I != E; ++I)
if ((*I)->getTerminator()->getOpcode() == Instruction::Ret)
{
BasicBlock* exitBB = *I;
unsigned N = GetInstructionsForEpilog(exitBB, Target, minstrVec);
MachineCodeForBasicBlock& bbMvec = exitBB->getMachineInstrVec();
MachineCodeForInstruction &termMvec =
MachineCodeForInstruction::get(exitBB->getTerminator());
// Remove the NOPs in the delay slots of the return instruction
const MachineInstrInfo &mii = Target.getInstrInfo();
unsigned numNOPs = 0;
while (termMvec.back()->getOpCode() == NOP)
{
assert( termMvec.back() == bbMvec.back());
termMvec.pop_back();
bbMvec.pop_back();
++numNOPs;
}
assert(termMvec.back() == bbMvec.back());
// Check that we found the right number of NOPs and have the right
// number of instructions to replace them.
unsigned ndelays = mii.getNumDelaySlots(termMvec.back()->getOpCode());
assert(numNOPs == ndelays && "Missing NOPs in delay slots?");
assert(N == ndelays && "Cannot use epilog code for delay slots?");
// Append the epilog code to the end of the basic block.
bbMvec.push_back(minstrVec[0]);
}
}
//---------------------------------------------------------------------------
// class UltraSparcFrameInfo
//
// Purpose:
// Interface to stack frame layout info for the UltraSPARC.
// Starting offsets for each area of the stack frame are aligned at
// a multiple of getStackFrameSizeAlignment().
//---------------------------------------------------------------------------
int
UltraSparcFrameInfo::getFirstAutomaticVarOffset(MachineCodeForMethod& ,
bool& pos) const
{
pos = false; // static stack area grows downwards
return StaticAreaOffsetFromFP;
}
int
UltraSparcFrameInfo::getRegSpillAreaOffset(MachineCodeForMethod& mcInfo,
bool& pos) const
{
pos = false; // static stack area grows downwards
unsigned int autoVarsSize = mcInfo.getAutomaticVarsSize();
if (int mod = autoVarsSize % getStackFrameSizeAlignment())
autoVarsSize += (getStackFrameSizeAlignment() - mod);
return StaticAreaOffsetFromFP - autoVarsSize;
}
int
UltraSparcFrameInfo::getTmpAreaOffset(MachineCodeForMethod& mcInfo,
bool& pos) const
{
pos = false; // static stack area grows downwards
unsigned int autoVarsSize = mcInfo.getAutomaticVarsSize();
unsigned int spillAreaSize = mcInfo.getRegSpillsSize();
int offset = autoVarsSize + spillAreaSize;
if (int mod = offset % getStackFrameSizeAlignment())
offset += (getStackFrameSizeAlignment() - mod);
return StaticAreaOffsetFromFP - offset;
}
int
UltraSparcFrameInfo::getDynamicAreaOffset(MachineCodeForMethod& mcInfo,
bool& pos) const
{
// dynamic stack area grows downwards starting at top of opt-args area
unsigned int optArgsSize = mcInfo.getMaxOptionalArgsSize();
int offset = optArgsSize + FirstOptionalOutgoingArgOffsetFromSP;
assert(offset % getStackFrameSizeAlignment() == 0);
return offset;
}
//---------------------------------------------------------------------------
// class UltraSparcMachine
//
// Purpose:
// Primary interface to machine description for the UltraSPARC.
// Primarily just initializes machine-dependent parameters in
// class TargetMachine, and creates machine-dependent subclasses
// for classes such as MachineInstrInfo.
//
//---------------------------------------------------------------------------
UltraSparc::UltraSparc()
: TargetMachine("UltraSparc-Native"),
instrInfo(*this),
schedInfo(*this),
regInfo(*this),
frameInfo(*this),
cacheInfo(*this)
{
optSizeForSubWordData = 4;
minMemOpWordSize = 8;
maxAtomicMemOpWordSize = 8;
}
//===---------------------------------------------------------------------===//
// GenerateCodeForTarget Pass
//
// Native code generation for a specified target.
//===---------------------------------------------------------------------===//
class ConstructMachineCodeForMethod : public MethodPass {
TargetMachine &Target;
public:
inline ConstructMachineCodeForMethod(TargetMachine &T) : Target(T) {}
bool runOnMethod(Method *M) {
MachineCodeForMethod::construct(M, Target);
return false;
}
};
class InstructionSelection : public MethodPass {
TargetMachine &Target;
public:
inline InstructionSelection(TargetMachine &T) : Target(T) {}
bool runOnMethod(Method *M) {
if (SelectInstructionsForMethod(M, Target))
cerr << "Instr selection failed for method " << M->getName() << "\n";
return false;
}
};
struct FreeMachineCodeForMethod : public MethodPass {
static void freeMachineCode(Instruction *I) {
MachineCodeForInstruction::destroy(I);
}
bool runOnMethod(Method *M) {
for_each(M->inst_begin(), M->inst_end(), freeMachineCode);
// Don't destruct MachineCodeForMethod - The global printer needs it
//MachineCodeForMethod::destruct(M);
return false;
}
};
// addPassesToEmitAssembly - This method controls the entire code generation
// process for the ultra sparc.
//
void UltraSparc::addPassesToEmitAssembly(PassManager &PM, std::ostream &Out) {
// Construct and initialize the MachineCodeForMethod object for this method.
PM.add(new ConstructMachineCodeForMethod(*this));
PM.add(new InstructionSelection(*this));
//PM.add(createInstructionSchedulingWithSSAPass(*this));
PM.add(getRegisterAllocator(*this));
//PM.add(new OptimizeLeafProcedures());
//PM.add(new DeleteFallThroughBranches());
//PM.add(new RemoveChainedBranches()); // should be folded with previous
//PM.add(new RemoveRedundantOps()); // operations with %g0, NOP, etc.
PM.add(new InsertPrologEpilogCode(*this));
// Output assembly language to the .s file. Assembly emission is split into
// two parts: Method output and Global value output. This is because method
// output is pipelined with all of the rest of code generation stuff,
// allowing machine code representations for methods to be free'd after the
// method has been emitted.
//
PM.add(getMethodAsmPrinterPass(PM, Out));
PM.add(new FreeMachineCodeForMethod()); // Free stuff no longer needed
// Emit Module level assembly after all of the methods have been processed.
PM.add(getModuleAsmPrinterPass(PM, Out));
}