llvm-6502/lib/Target/ARM/ARMConstantIslandPass.cpp

618 lines
23 KiB
C++
Raw Normal View History

//===-- ARMConstantIslandPass.cpp - ARM constant islands --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass that splits the constant pool up into 'islands'
// which are scattered through-out the function. This is required due to the
// limited pc-relative displacements that ARM has.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "arm-cp-islands"
#include "ARM.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMInstrInfo.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include <iostream>
using namespace llvm;
STATISTIC(NumSplit, "Number of uncond branches inserted");
namespace {
/// ARMConstantIslands - Due to limited pc-relative displacements, ARM
/// requires constant pool entries to be scattered among the instructions
/// inside a function. To do this, it completely ignores the normal LLVM
/// constant pool, instead, it places constants where-ever it feels like with
/// special instructions.
///
/// The terminology used in this pass includes:
/// Islands - Clumps of constants placed in the function.
/// Water - Potential places where an island could be formed.
/// CPE - A constant pool entry that has been placed somewhere, which
/// tracks a list of users.
class VISIBILITY_HIDDEN ARMConstantIslands : public MachineFunctionPass {
/// NextUID - Assign unique ID's to CPE's.
unsigned NextUID;
/// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed
/// by MBB Number.
std::vector<unsigned> BBSizes;
/// WaterList - A sorted list of basic blocks where islands could be placed
/// (i.e. blocks that don't fall through to the following block, due
/// to a return, unreachable, or unconditional branch).
std::vector<MachineBasicBlock*> WaterList;
/// CPUser - One user of a constant pool, keeping the machine instruction
/// pointer, the constant pool being referenced, and the max displacement
/// allowed from the instruction to the CP.
struct CPUser {
MachineInstr *MI;
MachineInstr *CPEMI;
unsigned MaxDisp;
CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp)
: MI(mi), CPEMI(cpemi), MaxDisp(maxdisp) {}
};
/// CPUsers - Keep track of all of the machine instructions that use various
/// constant pools and their max displacement.
std::vector<CPUser> CPUsers;
/// ImmBranch - One per immediate branch, keeping the machine instruction
/// pointer, conditional or unconditional, the max displacement,
/// and (if isCond is true) the corresponding unconditional branch
/// opcode.
struct ImmBranch {
MachineInstr *MI;
bool isCond;
int UncondBr;
unsigned MaxDisp;
ImmBranch(MachineInstr *mi, bool cond, int ubr, unsigned maxdisp)
: MI(mi), isCond(cond), UncondBr(ubr), MaxDisp(maxdisp) {}
};
/// Branches - Keep track of all the immediate branche instructions.
///
std::vector<ImmBranch> ImmBranches;
const TargetInstrInfo *TII;
const TargetAsmInfo *TAI;
public:
virtual bool runOnMachineFunction(MachineFunction &Fn);
virtual const char *getPassName() const {
return "ARM constant island placement and branch shortening pass";
}
private:
void DoInitialPlacement(MachineFunction &Fn,
std::vector<MachineInstr*> &CPEMIs);
void InitialFunctionScan(MachineFunction &Fn,
const std::vector<MachineInstr*> &CPEMIs);
void SplitBlockBeforeInstr(MachineInstr *MI);
void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB);
bool HandleConstantPoolUser(MachineFunction &Fn, CPUser &U);
bool ShortenImmediateBranch(MachineFunction &Fn, ImmBranch &Br);
unsigned GetInstSize(MachineInstr *MI) const;
unsigned GetOffsetOf(MachineInstr *MI) const;
unsigned GetOffsetOf(MachineBasicBlock *MBB) const;
};
}
/// createARMConstantIslandPass - returns an instance of the constpool
/// island pass.
FunctionPass *llvm::createARMConstantIslandPass() {
return new ARMConstantIslands();
}
bool ARMConstantIslands::runOnMachineFunction(MachineFunction &Fn) {
// If there are no constants, there is nothing to do.
MachineConstantPool &MCP = *Fn.getConstantPool();
if (MCP.isEmpty()) return false;
TII = Fn.getTarget().getInstrInfo();
TAI = Fn.getTarget().getTargetAsmInfo();
// Renumber all of the machine basic blocks in the function, guaranteeing that
// the numbers agree with the position of the block in the function.
Fn.RenumberBlocks();
// Perform the initial placement of the constant pool entries. To start with,
// we put them all at the end of the function.
std::vector<MachineInstr*> CPEMIs;
DoInitialPlacement(Fn, CPEMIs);
/// The next UID to take is the first unused one.
NextUID = CPEMIs.size();
// Do the initial scan of the function, building up information about the
// sizes of each block, the location of all the water, and finding all of the
// constant pool users.
InitialFunctionScan(Fn, CPEMIs);
CPEMIs.clear();
// Iteratively place constant pool entries until there is no change.
bool MadeChange;
do {
MadeChange = false;
for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
MadeChange |= HandleConstantPoolUser(Fn, CPUsers[i]);
for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
MadeChange |= ShortenImmediateBranch(Fn, ImmBranches[i]);
} while (MadeChange);
BBSizes.clear();
WaterList.clear();
CPUsers.clear();
ImmBranches.clear();
return true;
}
/// DoInitialPlacement - Perform the initial placement of the constant pool
/// entries. To start with, we put them all at the end of the function.
void ARMConstantIslands::DoInitialPlacement(MachineFunction &Fn,
std::vector<MachineInstr*> &CPEMIs){
// Create the basic block to hold the CPE's.
MachineBasicBlock *BB = new MachineBasicBlock();
Fn.getBasicBlockList().push_back(BB);
// Add all of the constants from the constant pool to the end block, use an
// identity mapping of CPI's to CPE's.
const std::vector<MachineConstantPoolEntry> &CPs =
Fn.getConstantPool()->getConstants();
const TargetData &TD = *Fn.getTarget().getTargetData();
for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
unsigned Size = TD.getTypeSize(CPs[i].getType());
// Verify that all constant pool entries are a multiple of 4 bytes. If not,
// we would have to pad them out or something so that instructions stay
// aligned.
assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!");
MachineInstr *CPEMI =
BuildMI(BB, TII->get(ARM::CONSTPOOL_ENTRY))
.addImm(i).addConstantPoolIndex(i).addImm(Size);
CPEMIs.push_back(CPEMI);
DEBUG(std::cerr << "Moved CPI#" << i << " to end of function as #"
<< i << "\n");
}
}
/// BBHasFallthrough - Return true of the specified basic block can fallthrough
/// into the block immediately after it.
static bool BBHasFallthrough(MachineBasicBlock *MBB) {
// Get the next machine basic block in the function.
MachineFunction::iterator MBBI = MBB;
if (next(MBBI) == MBB->getParent()->end()) // Can't fall off end of function.
return false;
MachineBasicBlock *NextBB = next(MBBI);
for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
E = MBB->succ_end(); I != E; ++I)
if (*I == NextBB)
return true;
return false;
}
/// InitialFunctionScan - Do the initial scan of the function, building up
/// information about the sizes of each block, the location of all the water,
/// and finding all of the constant pool users.
void ARMConstantIslands::InitialFunctionScan(MachineFunction &Fn,
const std::vector<MachineInstr*> &CPEMIs) {
for (MachineFunction::iterator MBBI = Fn.begin(), E = Fn.end();
MBBI != E; ++MBBI) {
MachineBasicBlock &MBB = *MBBI;
// If this block doesn't fall through into the next MBB, then this is
// 'water' that a constant pool island could be placed.
if (!BBHasFallthrough(&MBB))
WaterList.push_back(&MBB);
unsigned MBBSize = 0;
for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
I != E; ++I) {
// Add instruction size to MBBSize.
MBBSize += GetInstSize(I);
int Opc = I->getOpcode();
if (TII->isBranch(Opc)) {
bool isCond = false;
unsigned Bits = 0;
unsigned Scale = 1;
int UOpc = Opc;
switch (Opc) {
default:
continue; // Ignore JT branches
case ARM::Bcc:
isCond = true;
UOpc = ARM::B;
// Fallthrough
case ARM::B:
Bits = 24;
Scale = 4;
break;
case ARM::tBcc:
isCond = true;
UOpc = ARM::tB;
Bits = 8;
Scale = 2;
break;
case ARM::tB:
Bits = 11;
Scale = 2;
break;
}
unsigned MaxDisp = (1 << (Bits-1)) * Scale;
ImmBranches.push_back(ImmBranch(I, isCond, UOpc, MaxDisp));
}
// Scan the instructions for constant pool operands.
for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
if (I->getOperand(op).isConstantPoolIndex()) {
// We found one. The addressing mode tells us the max displacement
// from the PC that this instruction permits.
unsigned MaxOffs = 0;
// Basic size info comes from the TSFlags field.
unsigned TSFlags = I->getInstrDescriptor()->TSFlags;
switch (TSFlags & ARMII::AddrModeMask) {
default:
// Constant pool entries can reach anything.
if (I->getOpcode() == ARM::CONSTPOOL_ENTRY)
continue;
assert(0 && "Unknown addressing mode for CP reference!");
case ARMII::AddrMode1: // AM1: 8 bits << 2
MaxOffs = 1 << (8+2); // Taking the address of a CP entry.
break;
case ARMII::AddrMode2:
MaxOffs = 1 << 12; // +-offset_12
break;
case ARMII::AddrMode3:
MaxOffs = 1 << 8; // +-offset_8
break;
// addrmode4 has no immediate offset.
case ARMII::AddrMode5:
MaxOffs = 1 << (8+2); // +-(offset_8*4)
break;
case ARMII::AddrModeT1:
MaxOffs = 1 << 5;
break;
case ARMII::AddrModeT2:
MaxOffs = 1 << (5+1);
break;
case ARMII::AddrModeT4:
MaxOffs = 1 << (5+2);
break;
case ARMII::AddrModeTs:
MaxOffs = 1 << (8+2);
break;
}
// Remember that this is a user of a CP entry.
MachineInstr *CPEMI =CPEMIs[I->getOperand(op).getConstantPoolIndex()];
CPUsers.push_back(CPUser(I, CPEMI, MaxOffs));
// Instructions can only use one CP entry, don't bother scanning the
// rest of the operands.
break;
}
}
BBSizes.push_back(MBBSize);
}
}
/// FIXME: Works around a gcc miscompilation with -fstrict-aliasing
static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
unsigned JTI) DISABLE_INLINE;
static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
unsigned JTI) {
return JT[JTI].MBBs.size();
}
/// GetInstSize - Return the size of the specified MachineInstr.
///
unsigned ARMConstantIslands::GetInstSize(MachineInstr *MI) const {
// Basic size info comes from the TSFlags field.
unsigned TSFlags = MI->getInstrDescriptor()->TSFlags;
switch ((TSFlags & ARMII::SizeMask) >> ARMII::SizeShift) {
default:
// If this machine instr is an inline asm, measure it.
if (MI->getOpcode() == ARM::INLINEASM)
return TAI->getInlineAsmLength(MI->getOperand(0).getSymbolName());
assert(0 && "Unknown or unset size field for instr!");
break;
case ARMII::Size8Bytes: return 8; // Arm instruction x 2.
case ARMII::Size4Bytes: return 4; // Arm instruction.
case ARMII::Size2Bytes: return 2; // Thumb instruction.
case ARMII::SizeSpecial: {
switch (MI->getOpcode()) {
case ARM::CONSTPOOL_ENTRY:
// If this machine instr is a constant pool entry, its size is recorded as
// operand #2.
return MI->getOperand(2).getImm();
case ARM::BR_JTr:
case ARM::BR_JTm:
case ARM::BR_JTadd: {
// These are jumptable branches, i.e. a branch followed by an inlined
// jumptable. The size is 4 + 4 * number of entries.
unsigned JTI = MI->getOperand(MI->getNumOperands()-2).getJumpTableIndex();
const MachineFunction *MF = MI->getParent()->getParent();
MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
assert(JTI < JT.size());
return getNumJTEntries(JT, JTI) * 4 + 4;
}
default:
// Otherwise, pseudo-instruction sizes are zero.
return 0;
}
}
}
}
/// GetOffsetOf - Return the current offset of the specified machine instruction
/// from the start of the function. This offset changes as stuff is moved
/// around inside the function.
unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const {
MachineBasicBlock *MBB = MI->getParent();
// The offset is composed of two things: the sum of the sizes of all MBB's
// before this instruction's block, and the offset from the start of the block
// it is in.
unsigned Offset = 0;
// Sum block sizes before MBB.
for (unsigned BB = 0, e = MBB->getNumber(); BB != e; ++BB)
Offset += BBSizes[BB];
// Sum instructions before MI in MBB.
for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) {
assert(I != MBB->end() && "Didn't find MI in its own basic block?");
if (&*I == MI) return Offset;
Offset += GetInstSize(I);
}
}
/// GetOffsetOf - Return the current offset of the specified machine BB
/// from the start of the function. This offset changes as stuff is moved
/// around inside the function.
unsigned ARMConstantIslands::GetOffsetOf(MachineBasicBlock *MBB) const {
// Sum block sizes before MBB.
unsigned Offset = 0;
for (unsigned BB = 0, e = MBB->getNumber(); BB != e; ++BB)
Offset += BBSizes[BB];
return Offset;
}
/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
/// ID.
static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
const MachineBasicBlock *RHS) {
return LHS->getNumber() < RHS->getNumber();
}
/// UpdateForInsertedWaterBlock - When a block is newly inserted into the
/// machine function, it upsets all of the block numbers. Renumber the blocks
/// and update the arrays that parallel this numbering.
void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
// Renumber the MBB's to keep them consequtive.
NewBB->getParent()->RenumberBlocks(NewBB);
// Insert a size into BBSizes to align it properly with the (newly
// renumbered) block numbers.
BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0);
// Next, update WaterList. Specifically, we need to add NewMBB as having
// available water after it.
std::vector<MachineBasicBlock*>::iterator IP =
std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
CompareMBBNumbers);
WaterList.insert(IP, NewBB);
}
/// Split the basic block containing MI into two blocks, which are joined by
/// an unconditional branch. Update datastructures and renumber blocks to
/// account for this change.
void ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) {
MachineBasicBlock *OrigBB = MI->getParent();
const ARMFunctionInfo *AFI = OrigBB->getParent()->getInfo<ARMFunctionInfo>();
bool isThumb = AFI->isThumbFunction();
// Create a new MBB for the code after the OrigBB.
MachineBasicBlock *NewBB = new MachineBasicBlock(OrigBB->getBasicBlock());
MachineFunction::iterator MBBI = OrigBB; ++MBBI;
OrigBB->getParent()->getBasicBlockList().insert(MBBI, NewBB);
// Splice the instructions starting with MI over to NewBB.
NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
// Add an unconditional branch from OrigBB to NewBB.
BuildMI(OrigBB, TII->get(isThumb ? ARM::tB : ARM::B)).addMBB(NewBB);
NumSplit++;
// Update the CFG. All succs of OrigBB are now succs of NewBB.
while (!OrigBB->succ_empty()) {
MachineBasicBlock *Succ = *OrigBB->succ_begin();
OrigBB->removeSuccessor(Succ);
NewBB->addSuccessor(Succ);
// This pass should be run after register allocation, so there should be no
// PHI nodes to update.
assert((Succ->empty() || Succ->begin()->getOpcode() != TargetInstrInfo::PHI)
&& "PHI nodes should be eliminated by now!");
}
// OrigBB branches to NewBB.
OrigBB->addSuccessor(NewBB);
// Update internal data structures to account for the newly inserted MBB.
UpdateForInsertedWaterBlock(NewBB);
// Figure out how large the first NewMBB is.
unsigned NewBBSize = 0;
for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end();
I != E; ++I)
NewBBSize += GetInstSize(I);
// Set the size of NewBB in BBSizes.
BBSizes[NewBB->getNumber()] = NewBBSize;
// We removed instructions from UserMBB, subtract that off from its size.
// Add 2 or 4 to the block to count the unconditional branch we added to it.
BBSizes[OrigBB->getNumber()] -= NewBBSize - (isThumb ? 2 : 4);
}
/// HandleConstantPoolUser - Analyze the specified user, checking to see if it
/// is out-of-range. If so, pick it up the constant pool value and move it some
/// place in-range.
bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &Fn, CPUser &U){
MachineInstr *UserMI = U.MI;
MachineInstr *CPEMI = U.CPEMI;
unsigned UserOffset = GetOffsetOf(UserMI);
unsigned CPEOffset = GetOffsetOf(CPEMI);
DEBUG(std::cerr << "User of CPE#" << CPEMI->getOperand(0).getImm()
<< " max delta=" << U.MaxDisp
<< " at offset " << int(UserOffset-CPEOffset) << "\t"
<< *UserMI);
// Check to see if the CPE is already in-range.
if (UserOffset < CPEOffset) {
// User before the CPE.
if (CPEOffset-UserOffset <= U.MaxDisp)
return false;
} else {
if (UserOffset-CPEOffset <= U.MaxDisp)
return false;
}
// Solution guaranteed to work: split the user's MBB right before the user and
// insert a clone the CPE into the newly created water.
// If the user isn't at the start of its MBB, or if there is a fall-through
// into the user's MBB, split the MBB before the User.
MachineBasicBlock *UserMBB = UserMI->getParent();
if (&UserMBB->front() != UserMI ||
UserMBB == &Fn.front() || // entry MBB of function.
BBHasFallthrough(prior(MachineFunction::iterator(UserMBB)))) {
// TODO: Search for the best place to split the code. In practice, using
// loop nesting information to insert these guys outside of loops would be
// sufficient.
SplitBlockBeforeInstr(UserMI);
// UserMI's BB may have changed.
UserMBB = UserMI->getParent();
}
// Okay, we know we can put an island before UserMBB now, do it!
MachineBasicBlock *NewIsland = new MachineBasicBlock();
Fn.getBasicBlockList().insert(UserMBB, NewIsland);
// Update internal data structures to account for the newly inserted MBB.
UpdateForInsertedWaterBlock(NewIsland);
// Now that we have an island to add the CPE to, clone the original CPE and
// add it to the island.
unsigned ID = NextUID++;
unsigned CPI = CPEMI->getOperand(1).getConstantPoolIndex();
unsigned Size = CPEMI->getOperand(2).getImm();
// Build a new CPE for this user.
U.CPEMI = BuildMI(NewIsland, TII->get(ARM::CONSTPOOL_ENTRY))
.addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
// Increase the size of the island block to account for the new entry.
BBSizes[NewIsland->getNumber()] += Size;
// Finally, change the CPI in the instruction operand to be ID.
for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
if (UserMI->getOperand(i).isConstantPoolIndex()) {
UserMI->getOperand(i).setConstantPoolIndex(ID);
break;
}
DEBUG(std::cerr << " Moved CPE to #" << ID << " CPI=" << CPI << "\t"
<< *UserMI);
return true;
}
bool
ARMConstantIslands::ShortenImmediateBranch(MachineFunction &Fn, ImmBranch &Br) {
MachineInstr *MI = Br.MI;
MachineBasicBlock *DestBB = MI->getOperand(0).getMachineBasicBlock();
unsigned BrOffset = GetOffsetOf(MI);
unsigned DestOffset = GetOffsetOf(DestBB);
// Check to see if the destination BB is in range.
if (BrOffset < DestOffset) {
if (DestOffset - BrOffset < Br.MaxDisp)
return false;
} else {
if (BrOffset - DestOffset <= Br.MaxDisp)
return false;
}
if (!Br.isCond) {
// Unconditional branch. We have to insert a branch somewhere to perform
// a two level branch (branch to branch). FIXME: not yet implemented.
assert(false && "Can't handle unconditional branch yet!");
return false;
}
// Otherwise, add a unconditional branch to the destination and
// invert the branch condition to jump over it:
// blt L1
// =>
// bge L2
// b L1
// L2:
ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImmedValue();
CC = ARMCC::getOppositeCondition(CC);
// If the branch is at the end of its MBB and that has a fall-through block,
// direct the updated conditional branch to the fall-through block. Otherwise,
// split the MBB before the next instruction.
MachineBasicBlock *MBB = MI->getParent();
if (&MBB->back() != MI || !BBHasFallthrough(MBB))
SplitBlockBeforeInstr(MI);
MachineBasicBlock *NextBB = next(MachineFunction::iterator(MBB));
// Insert a unconditional branch and replace the conditional branch.
// Also update the ImmBranch as well as adding a new entry for the new branch.
BuildMI(MBB, TII->get(MI->getOpcode())).addMBB(NextBB).addImm((unsigned)CC);
Br.MI = &MBB->back();
BuildMI(MBB, TII->get(Br.UncondBr)).addMBB(DestBB);
unsigned MaxDisp = (Br.UncondBr == ARM::tB) ? (1<<10)*2 : (1<<23)*4;
ImmBranches.push_back(ImmBranch(&MBB->back(), false, Br.UncondBr, MaxDisp));
MI->eraseFromParent();
// Increase the size of MBB to account for the new unconditional branch.
BBSizes[MBB->getNumber()] += GetInstSize(&MBB->back());
return true;
}