2013-05-06 16:15:19 +00:00
|
|
|
//===-- SystemZInstrInfo.h - SystemZ instruction information ----*- C++ -*-===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This file contains the SystemZ implementation of the TargetInstrInfo class.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#ifndef LLVM_TARGET_SYSTEMZINSTRINFO_H
|
|
|
|
#define LLVM_TARGET_SYSTEMZINSTRINFO_H
|
|
|
|
|
|
|
|
#include "SystemZ.h"
|
|
|
|
#include "SystemZRegisterInfo.h"
|
|
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
|
|
|
|
|
|
#define GET_INSTRINFO_HEADER
|
|
|
|
#include "SystemZGenInstrInfo.inc"
|
|
|
|
|
|
|
|
namespace llvm {
|
|
|
|
|
|
|
|
class SystemZTargetMachine;
|
|
|
|
|
|
|
|
namespace SystemZII {
|
|
|
|
enum {
|
|
|
|
// See comments in SystemZInstrFormats.td.
|
2013-08-07 11:10:06 +00:00
|
|
|
SimpleBDXLoad = (1 << 0),
|
|
|
|
SimpleBDXStore = (1 << 1),
|
|
|
|
Has20BitOffset = (1 << 2),
|
|
|
|
HasIndex = (1 << 3),
|
|
|
|
Is128Bit = (1 << 4),
|
|
|
|
AccessSizeMask = (31 << 5),
|
|
|
|
AccessSizeShift = 5,
|
|
|
|
CCValuesMask = (15 << 10),
|
|
|
|
CCValuesShift = 10,
|
|
|
|
CompareZeroCCMaskMask = (15 << 14),
|
|
|
|
CompareZeroCCMaskShift = 14,
|
|
|
|
CCMaskFirst = (1 << 18),
|
|
|
|
CCMaskLast = (1 << 19),
|
|
|
|
IsLogical = (1 << 20)
|
2013-05-06 16:15:19 +00:00
|
|
|
};
|
2013-07-03 10:10:02 +00:00
|
|
|
static inline unsigned getAccessSize(unsigned int Flags) {
|
|
|
|
return (Flags & AccessSizeMask) >> AccessSizeShift;
|
|
|
|
}
|
2013-08-01 10:39:40 +00:00
|
|
|
static inline unsigned getCCValues(unsigned int Flags) {
|
|
|
|
return (Flags & CCValuesMask) >> CCValuesShift;
|
|
|
|
}
|
2013-08-07 11:10:06 +00:00
|
|
|
static inline unsigned getCompareZeroCCMask(unsigned int Flags) {
|
|
|
|
return (Flags & CompareZeroCCMaskMask) >> CompareZeroCCMaskShift;
|
|
|
|
}
|
2013-07-03 10:10:02 +00:00
|
|
|
|
2013-05-06 16:15:19 +00:00
|
|
|
// SystemZ MachineOperand target flags.
|
|
|
|
enum {
|
|
|
|
// Masks out the bits for the access model.
|
|
|
|
MO_SYMBOL_MODIFIER = (1 << 0),
|
|
|
|
|
|
|
|
// @GOT (aka @GOTENT)
|
|
|
|
MO_GOT = (1 << 0)
|
|
|
|
};
|
2013-05-28 10:41:11 +00:00
|
|
|
// Classifies a branch.
|
|
|
|
enum BranchType {
|
|
|
|
// An instruction that branches on the current value of CC.
|
|
|
|
BranchNormal,
|
|
|
|
|
|
|
|
// An instruction that peforms a 32-bit signed comparison and branches
|
|
|
|
// on the result.
|
|
|
|
BranchC,
|
|
|
|
|
2013-09-18 09:56:40 +00:00
|
|
|
// An instruction that peforms a 32-bit unsigned comparison and branches
|
|
|
|
// on the result.
|
|
|
|
BranchCL,
|
|
|
|
|
2013-05-28 10:41:11 +00:00
|
|
|
// An instruction that peforms a 64-bit signed comparison and branches
|
|
|
|
// on the result.
|
2013-08-05 11:23:46 +00:00
|
|
|
BranchCG,
|
|
|
|
|
2013-09-18 09:56:40 +00:00
|
|
|
// An instruction that peforms a 64-bit unsigned comparison and branches
|
|
|
|
// on the result.
|
|
|
|
BranchCLG,
|
|
|
|
|
2013-08-05 11:23:46 +00:00
|
|
|
// An instruction that decrements a 32-bit register and branches if
|
|
|
|
// the result is nonzero.
|
|
|
|
BranchCT,
|
|
|
|
|
|
|
|
// An instruction that decrements a 64-bit register and branches if
|
|
|
|
// the result is nonzero.
|
|
|
|
BranchCTG
|
2013-05-28 10:41:11 +00:00
|
|
|
};
|
2013-05-28 10:13:54 +00:00
|
|
|
// Information about a branch instruction.
|
|
|
|
struct Branch {
|
2013-05-28 10:41:11 +00:00
|
|
|
// The type of the branch.
|
|
|
|
BranchType Type;
|
|
|
|
|
[SystemZ] Be more careful about inverting CC masks
System z branches have a mask to select which of the 4 CC values should
cause the branch to be taken. We can invert a branch by inverting the mask.
However, not all instructions can produce all 4 CC values, so inverting
the branch like this can lead to some oddities. For example, integer
comparisons only produce a CC of 0 (equal), 1 (less) or 2 (greater).
If an integer EQ is reversed to NE before instruction selection,
the branch will test for 1 or 2. If instead the branch is reversed
after instruction selection (by inverting the mask), it will test for
1, 2 or 3. Both are correct, but the second isn't really canonical.
This patch therefore keeps track of which CC values are possible
and uses this when inverting a mask.
Although this is mostly cosmestic, it fixes undefined behavior
for the CIJNLH in branch-08.ll. Another fix would have been
to mask out bit 0 when generating the fused compare and branch,
but the point of this patch is that we shouldn't need to do that
in the first place.
The patch also makes it easier to reuse CC results from other instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187495 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-31 12:30:20 +00:00
|
|
|
// CCMASK_<N> is set if CC might be equal to N.
|
|
|
|
unsigned CCValid;
|
|
|
|
|
2013-05-28 10:13:54 +00:00
|
|
|
// CCMASK_<N> is set if the branch should be taken when CC == N.
|
|
|
|
unsigned CCMask;
|
|
|
|
|
|
|
|
// The target of the branch.
|
|
|
|
const MachineOperand *Target;
|
|
|
|
|
[SystemZ] Be more careful about inverting CC masks
System z branches have a mask to select which of the 4 CC values should
cause the branch to be taken. We can invert a branch by inverting the mask.
However, not all instructions can produce all 4 CC values, so inverting
the branch like this can lead to some oddities. For example, integer
comparisons only produce a CC of 0 (equal), 1 (less) or 2 (greater).
If an integer EQ is reversed to NE before instruction selection,
the branch will test for 1 or 2. If instead the branch is reversed
after instruction selection (by inverting the mask), it will test for
1, 2 or 3. Both are correct, but the second isn't really canonical.
This patch therefore keeps track of which CC values are possible
and uses this when inverting a mask.
Although this is mostly cosmestic, it fixes undefined behavior
for the CIJNLH in branch-08.ll. Another fix would have been
to mask out bit 0 when generating the fused compare and branch,
but the point of this patch is that we shouldn't need to do that
in the first place.
The patch also makes it easier to reuse CC results from other instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187495 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-31 12:30:20 +00:00
|
|
|
Branch(BranchType type, unsigned ccValid, unsigned ccMask,
|
|
|
|
const MachineOperand *target)
|
|
|
|
: Type(type), CCValid(ccValid), CCMask(ccMask), Target(target) {}
|
2013-05-28 10:13:54 +00:00
|
|
|
};
|
2013-05-06 16:15:19 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
class SystemZInstrInfo : public SystemZGenInstrInfo {
|
|
|
|
const SystemZRegisterInfo RI;
|
2013-07-19 16:12:08 +00:00
|
|
|
SystemZTargetMachine &TM;
|
2013-05-06 16:15:19 +00:00
|
|
|
|
|
|
|
void splitMove(MachineBasicBlock::iterator MI, unsigned NewOpcode) const;
|
|
|
|
void splitAdjDynAlloc(MachineBasicBlock::iterator MI) const;
|
2013-10-01 11:26:28 +00:00
|
|
|
void expandRXYPseudo(MachineInstr *MI, unsigned LowOpcode,
|
|
|
|
unsigned HighOpcode) const;
|
2013-10-01 12:49:07 +00:00
|
|
|
void expandZExtPseudo(MachineInstr *MI, unsigned LowOpcode,
|
|
|
|
unsigned Size) const;
|
2013-10-01 11:26:28 +00:00
|
|
|
void emitGRX32Move(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
|
|
|
|
DebugLoc DL, unsigned DestReg, unsigned SrcReg,
|
|
|
|
unsigned LowLowOpcode, unsigned Size, bool KillSrc) const;
|
|
|
|
|
2013-05-06 16:15:19 +00:00
|
|
|
public:
|
|
|
|
explicit SystemZInstrInfo(SystemZTargetMachine &TM);
|
|
|
|
|
|
|
|
// Override TargetInstrInfo.
|
|
|
|
virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
|
|
|
|
int &FrameIndex) const LLVM_OVERRIDE;
|
|
|
|
virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
|
|
|
|
int &FrameIndex) const LLVM_OVERRIDE;
|
2013-07-05 14:38:48 +00:00
|
|
|
virtual bool isStackSlotCopy(const MachineInstr *MI, int &DestFrameIndex,
|
|
|
|
int &SrcFrameIndex) const LLVM_OVERRIDE;
|
2013-05-06 16:15:19 +00:00
|
|
|
virtual bool AnalyzeBranch(MachineBasicBlock &MBB,
|
|
|
|
MachineBasicBlock *&TBB,
|
|
|
|
MachineBasicBlock *&FBB,
|
|
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
|
|
bool AllowModify) const LLVM_OVERRIDE;
|
|
|
|
virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const LLVM_OVERRIDE;
|
|
|
|
virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
|
|
|
|
MachineBasicBlock *FBB,
|
|
|
|
const SmallVectorImpl<MachineOperand> &Cond,
|
|
|
|
DebugLoc DL) const LLVM_OVERRIDE;
|
2013-08-12 10:28:10 +00:00
|
|
|
bool analyzeCompare(const MachineInstr *MI, unsigned &SrcReg,
|
|
|
|
unsigned &SrcReg2, int &Mask, int &Value) const
|
|
|
|
LLVM_OVERRIDE;
|
|
|
|
bool optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg,
|
|
|
|
unsigned SrcReg2, int Mask, int Value,
|
|
|
|
const MachineRegisterInfo *MRI) const LLVM_OVERRIDE;
|
2013-07-25 09:11:15 +00:00
|
|
|
virtual bool isPredicable(MachineInstr *MI) const LLVM_OVERRIDE;
|
|
|
|
virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
|
|
|
|
unsigned ExtraPredCycles,
|
|
|
|
const BranchProbability &Probability) const
|
|
|
|
LLVM_OVERRIDE;
|
|
|
|
virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB,
|
|
|
|
unsigned NumCyclesT,
|
|
|
|
unsigned ExtraPredCyclesT,
|
|
|
|
MachineBasicBlock &FMBB,
|
|
|
|
unsigned NumCyclesF,
|
|
|
|
unsigned ExtraPredCyclesF,
|
|
|
|
const BranchProbability &Probability) const
|
|
|
|
LLVM_OVERRIDE;
|
|
|
|
virtual bool
|
|
|
|
PredicateInstruction(MachineInstr *MI,
|
|
|
|
const SmallVectorImpl<MachineOperand> &Pred) const
|
|
|
|
LLVM_OVERRIDE;
|
2013-05-06 16:15:19 +00:00
|
|
|
virtual void copyPhysReg(MachineBasicBlock &MBB,
|
|
|
|
MachineBasicBlock::iterator MBBI, DebugLoc DL,
|
|
|
|
unsigned DestReg, unsigned SrcReg,
|
|
|
|
bool KillSrc) const LLVM_OVERRIDE;
|
|
|
|
virtual void
|
|
|
|
storeRegToStackSlot(MachineBasicBlock &MBB,
|
|
|
|
MachineBasicBlock::iterator MBBI,
|
|
|
|
unsigned SrcReg, bool isKill, int FrameIndex,
|
|
|
|
const TargetRegisterClass *RC,
|
|
|
|
const TargetRegisterInfo *TRI) const LLVM_OVERRIDE;
|
|
|
|
virtual void
|
|
|
|
loadRegFromStackSlot(MachineBasicBlock &MBB,
|
|
|
|
MachineBasicBlock::iterator MBBI,
|
|
|
|
unsigned DestReg, int FrameIdx,
|
|
|
|
const TargetRegisterClass *RC,
|
|
|
|
const TargetRegisterInfo *TRI) const LLVM_OVERRIDE;
|
2013-07-19 16:12:08 +00:00
|
|
|
virtual MachineInstr *
|
|
|
|
convertToThreeAddress(MachineFunction::iterator &MFI,
|
|
|
|
MachineBasicBlock::iterator &MBBI,
|
|
|
|
LiveVariables *LV) const;
|
2013-07-02 15:28:56 +00:00
|
|
|
virtual MachineInstr *
|
|
|
|
foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
|
|
|
|
const SmallVectorImpl<unsigned> &Ops,
|
|
|
|
int FrameIndex) const;
|
|
|
|
virtual MachineInstr *
|
|
|
|
foldMemoryOperandImpl(MachineFunction &MF, MachineInstr* MI,
|
|
|
|
const SmallVectorImpl<unsigned> &Ops,
|
|
|
|
MachineInstr* LoadMI) const;
|
2013-05-06 16:15:19 +00:00
|
|
|
virtual bool
|
|
|
|
expandPostRAPseudo(MachineBasicBlock::iterator MBBI) const LLVM_OVERRIDE;
|
|
|
|
virtual bool
|
|
|
|
ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const
|
|
|
|
LLVM_OVERRIDE;
|
|
|
|
|
|
|
|
// Return the SystemZRegisterInfo, which this class owns.
|
|
|
|
const SystemZRegisterInfo &getRegisterInfo() const { return RI; }
|
|
|
|
|
[SystemZ] Add long branch pass
Before this change, the SystemZ backend would use BRCL for all branches
and only consider shortening them to BRC when generating an object file.
E.g. a branch on equal would use the JGE alias of BRCL in assembly output,
but might be shortened to the JE alias of BRC in ELF output. This was
a useful first step, but it had two problems:
(1) The z assembler isn't traditionally supposed to perform branch shortening
or branch relaxation. We followed this rule by not relaxing branches
in assembler input, but that meant that generating assembly code and
then assembling it would not produce the same result as going directly
to object code; the former would give long branches everywhere, whereas
the latter would use short branches where possible.
(2) Other useful branches, like COMPARE AND BRANCH, do not have long forms.
We would need to do something else before supporting them.
(Although COMPARE AND BRANCH does not change the condition codes,
the plan is to model COMPARE AND BRANCH as a CC-clobbering instruction
during codegen, so that we can safely lower it to a separate compare
and long branch where necessary. This is not a valid transformation
for the assembler proper to make.)
This patch therefore moves branch relaxation to a pre-emit pass.
For now, calls are still shortened from BRASL to BRAS by the assembler,
although this too is not really the traditional behaviour.
The first test takes about 1.5s to run, and there are likely to be
more tests in this vein once further branch types are added. The feeling
on IRC was that 1.5s is a bit much for a single test, so I've restricted
it to SystemZ hosts for now.
The patch exposes (and fixes) some typos in the main CodeGen/SystemZ tests.
A later patch will remove the {{g}}s from that directory.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182274 91177308-0d34-0410-b5e6-96231b3b80d8
2013-05-20 14:23:08 +00:00
|
|
|
// Return the size in bytes of MI.
|
|
|
|
uint64_t getInstSizeInBytes(const MachineInstr *MI) const;
|
|
|
|
|
2013-05-06 16:15:19 +00:00
|
|
|
// Return true if MI is a conditional or unconditional branch.
|
|
|
|
// When returning true, set Cond to the mask of condition-code
|
|
|
|
// values on which the instruction will branch, and set Target
|
|
|
|
// to the operand that contains the branch target. This target
|
|
|
|
// can be a register or a basic block.
|
2013-05-28 10:13:54 +00:00
|
|
|
SystemZII::Branch getBranchInfo(const MachineInstr *MI) const;
|
2013-05-06 16:15:19 +00:00
|
|
|
|
|
|
|
// Get the load and store opcodes for a given register class.
|
|
|
|
void getLoadStoreOpcodes(const TargetRegisterClass *RC,
|
|
|
|
unsigned &LoadOpcode, unsigned &StoreOpcode) const;
|
|
|
|
|
|
|
|
// Opcode is the opcode of an instruction that has an address operand,
|
|
|
|
// and the caller wants to perform that instruction's operation on an
|
|
|
|
// address that has displacement Offset. Return the opcode of a suitable
|
|
|
|
// instruction (which might be Opcode itself) or 0 if no such instruction
|
|
|
|
// exists.
|
|
|
|
unsigned getOpcodeForOffset(unsigned Opcode, int64_t Offset) const;
|
|
|
|
|
2013-08-05 11:03:20 +00:00
|
|
|
// If Opcode is a load instruction that has a LOAD AND TEST form,
|
|
|
|
// return the opcode for the testing form, otherwise return 0.
|
|
|
|
unsigned getLoadAndTest(unsigned Opcode) const;
|
|
|
|
|
2013-07-31 11:36:35 +00:00
|
|
|
// Return true if ROTATE AND ... SELECTED BITS can be used to select bits
|
|
|
|
// Mask of the R2 operand, given that only the low BitSize bits of Mask are
|
|
|
|
// significant. Set Start and End to the I3 and I4 operands if so.
|
|
|
|
bool isRxSBGMask(uint64_t Mask, unsigned BitSize,
|
|
|
|
unsigned &Start, unsigned &End) const;
|
|
|
|
|
2013-05-28 10:41:11 +00:00
|
|
|
// If Opcode is a COMPARE opcode for which an associated COMPARE AND
|
|
|
|
// BRANCH exists, return the opcode for the latter, otherwise return 0.
|
2013-05-29 11:58:52 +00:00
|
|
|
// MI, if nonnull, is the compare instruction.
|
|
|
|
unsigned getCompareAndBranch(unsigned Opcode,
|
|
|
|
const MachineInstr *MI = 0) const;
|
2013-05-28 10:41:11 +00:00
|
|
|
|
2013-05-06 16:15:19 +00:00
|
|
|
// Emit code before MBBI in MI to move immediate value Value into
|
|
|
|
// physical register Reg.
|
|
|
|
void loadImmediate(MachineBasicBlock &MBB,
|
|
|
|
MachineBasicBlock::iterator MBBI,
|
|
|
|
unsigned Reg, uint64_t Value) const;
|
|
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
|
|
|
|
#endif
|