llvm-6502/include/llvm/Target/MachineInstrInfo.h

290 lines
10 KiB
C
Raw Normal View History

//===-- llvm/Target/InstrInfo.h - Target Instruction Information --*-C++-*-==//
//
// This file describes the target machine instructions to the code generator.
//
//===---------------------------------------------------------------------===//
#ifndef LLVM_TARGET_MACHINEINSTRINFO_H
#define LLVM_TARGET_MACHINEINSTRINFO_H
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/DataTypes.h"
#include <vector>
class MachineInstrDescriptor;
class TmpInstruction;
class MachineInstr;
class Value;
class Instruction;
typedef int InstrSchedClass;
// Global variable holding an array of descriptors for machine instructions.
// The actual object needs to be created separately for each target machine.
// This variable is initialized and reset by class MachineInstrInfo.
//
// FIXME: This should be a property of the target so that more than one target
// at a time can be active...
//
extern const MachineInstrDescriptor *TargetInstrDescriptors;
//---------------------------------------------------------------------------
// struct MachineInstrDescriptor:
// Predefined information about each machine instruction.
// Designed to initialized statically.
//
// class MachineInstructionInfo
// Interface to description of machine instructions
//
//---------------------------------------------------------------------------
const unsigned int M_NOP_FLAG = 1;
const unsigned int M_BRANCH_FLAG = 1 << 1;
const unsigned int M_CALL_FLAG = 1 << 2;
const unsigned int M_RET_FLAG = 1 << 3;
const unsigned int M_ARITH_FLAG = 1 << 4;
const unsigned int M_CC_FLAG = 1 << 6;
const unsigned int M_LOGICAL_FLAG = 1 << 6;
const unsigned int M_INT_FLAG = 1 << 7;
const unsigned int M_FLOAT_FLAG = 1 << 8;
const unsigned int M_CONDL_FLAG = 1 << 9;
const unsigned int M_LOAD_FLAG = 1 << 10;
const unsigned int M_PREFETCH_FLAG = 1 << 11;
const unsigned int M_STORE_FLAG = 1 << 12;
const unsigned int M_DUMMY_PHI_FLAG = 1 << 13;
const unsigned int M_PSEUDO_FLAG = 1 << 14;
struct MachineInstrDescriptor {
string opCodeString; // Assembly language mnemonic for the opcode.
int numOperands; // Number of args; -1 if variable #args
int resultPos; // Position of the result; -1 if no result
unsigned int maxImmedConst; // Largest +ve constant in IMMMED field or 0.
bool immedIsSignExtended; // Is IMMED field sign-extended? If so,
// smallest -ve value is -(maxImmedConst+1).
unsigned int numDelaySlots; // Number of delay slots after instruction
unsigned int latency; // Latency in machine cycles
InstrSchedClass schedClass; // enum identifying instr sched class
unsigned int iclass; // flags identifying machine instr class
};
class MachineInstrInfo : public NonCopyableV {
public:
const TargetMachine& target;
protected:
const MachineInstrDescriptor* desc; // raw array to allow static init'n
unsigned int descSize; // number of entries in the desc array
unsigned int numRealOpCodes; // number of non-dummy op codes
public:
MachineInstrInfo(const TargetMachine& tgt,
const MachineInstrDescriptor *desc, unsigned descSize,
unsigned numRealOpCodes);
virtual ~MachineInstrInfo();
unsigned getNumRealOpCodes() const { return numRealOpCodes; }
unsigned getNumTotalOpCodes() const { return descSize; }
const MachineInstrDescriptor& getDescriptor(MachineOpCode opCode) const {
assert(opCode >= 0 && opCode < (int)descSize);
return desc[opCode];
}
int getNumOperands(MachineOpCode opCode) const {
return getDescriptor(opCode).numOperands;
}
int getResultPos(MachineOpCode opCode) const {
return getDescriptor(opCode).resultPos;
}
unsigned getNumDelaySlots(MachineOpCode opCode) const {
return getDescriptor(opCode).numDelaySlots;
}
InstrSchedClass getSchedClass(MachineOpCode opCode) const {
return getDescriptor(opCode).schedClass;
}
//
// Query instruction class flags according to the machine-independent
// flags listed above.
//
unsigned int getIClass(MachineOpCode opCode) const {
return getDescriptor(opCode).iclass;
}
bool isNop(MachineOpCode opCode) const {
return getDescriptor(opCode).iclass & M_NOP_FLAG;
}
bool isBranch(MachineOpCode opCode) const {
return getDescriptor(opCode).iclass & M_BRANCH_FLAG;
}
bool isCall(MachineOpCode opCode) const {
return getDescriptor(opCode).iclass & M_CALL_FLAG;
}
bool isReturn(MachineOpCode opCode) const {
return getDescriptor(opCode).iclass & M_RET_FLAG;
}
bool isControlFlow(MachineOpCode opCode) const {
return getDescriptor(opCode).iclass & M_BRANCH_FLAG
|| getDescriptor(opCode).iclass & M_CALL_FLAG
|| getDescriptor(opCode).iclass & M_RET_FLAG;
}
bool isArith(MachineOpCode opCode) const {
return getDescriptor(opCode).iclass & M_RET_FLAG;
}
bool isCCInstr(MachineOpCode opCode) const {
return getDescriptor(opCode).iclass & M_CC_FLAG;
}
bool isLogical(MachineOpCode opCode) const {
return getDescriptor(opCode).iclass & M_LOGICAL_FLAG;
}
bool isIntInstr(MachineOpCode opCode) const {
return getDescriptor(opCode).iclass & M_INT_FLAG;
}
bool isFloatInstr(MachineOpCode opCode) const {
return getDescriptor(opCode).iclass & M_FLOAT_FLAG;
}
bool isConditional(MachineOpCode opCode) const {
return getDescriptor(opCode).iclass & M_CONDL_FLAG;
}
bool isLoad(MachineOpCode opCode) const {
return getDescriptor(opCode).iclass & M_LOAD_FLAG;
}
bool isPrefetch(MachineOpCode opCode) const {
return getDescriptor(opCode).iclass & M_PREFETCH_FLAG;
}
bool isLoadOrPrefetch(MachineOpCode opCode) const {
return getDescriptor(opCode).iclass & M_LOAD_FLAG
|| getDescriptor(opCode).iclass & M_PREFETCH_FLAG;
}
bool isStore(MachineOpCode opCode) const {
return getDescriptor(opCode).iclass & M_STORE_FLAG;
}
bool isMemoryAccess(MachineOpCode opCode) const {
return getDescriptor(opCode).iclass & M_LOAD_FLAG
|| getDescriptor(opCode).iclass & M_PREFETCH_FLAG
|| getDescriptor(opCode).iclass & M_STORE_FLAG;
}
bool isDummyPhiInstr(const MachineOpCode opCode) const {
return getDescriptor(opCode).iclass & M_DUMMY_PHI_FLAG;
}
// delete this later *******
bool isPhi(const MachineOpCode opCode) const
{ return isDummyPhiInstr(opCode); }
bool isPseudoInstr(const MachineOpCode opCode) const {
return getDescriptor(opCode).iclass & M_PSEUDO_FLAG;
}
// Check if an instruction can be issued before its operands are ready,
// or if a subsequent instruction that uses its result can be issued
// before the results are ready.
// Default to true since most instructions on many architectures allow this.
//
virtual bool hasOperandInterlock(MachineOpCode opCode) const {
return true;
}
virtual bool hasResultInterlock(MachineOpCode opCode) const {
return true;
}
//
// Latencies for individual instructions and instruction pairs
//
virtual int minLatency(MachineOpCode opCode) const {
return getDescriptor(opCode).latency;
}
virtual int maxLatency(MachineOpCode opCode) const {
return getDescriptor(opCode).latency;
}
//
// Which operand holds an immediate constant? Returns -1 if none
//
virtual int getImmmedConstantPos(MachineOpCode opCode) const {
return -1; // immediate position is machine specific, so say -1 == "none"
}
// Check if the specified constant fits in the immediate field
// of this machine instruction
//
virtual bool constantFitsInImmedField(MachineOpCode opCode,
int64_t intValue) const;
// Return the largest +ve constant that can be held in the IMMMED field
// of this machine instruction.
// isSignExtended is set to true if the value is sign-extended before use
// (this is true for all immediate fields in SPARC instructions).
// Return 0 if the instruction has no IMMED field.
//
virtual uint64_t maxImmedConstant(MachineOpCode opCode,
bool &isSignExtended) const {
isSignExtended = getDescriptor(opCode).immedIsSignExtended;
return getDescriptor(opCode).maxImmedConst;
}
//-------------------------------------------------------------------------
// Code generation support for creating individual machine instructions
//-------------------------------------------------------------------------
// Create an instruction sequence to put the constant `val' into
// the virtual register `dest'. `val' may be a ConstPoolVal or a
// GlobalValue, viz., the constant address of a global variable or function.
// The generated instructions are returned in `minstrVec'.
// Any temp. registers (TmpInstruction) created are returned in `tempVec'.
//
virtual void CreateCodeToLoadConst(Value* val,
Instruction* dest,
vector<MachineInstr*>& minstrVec,
vector<TmpInstruction*>& temps) const =0;
// Create an instruction sequence to copy an integer value `val'
// to a floating point value `dest' by copying to memory and back.
// val must be an integral type. dest must be a Float or Double.
// The generated instructions are returned in `minstrVec'.
// Any temp. registers (TmpInstruction) created are returned in `tempVec'.
//
virtual void CreateCodeToCopyIntToFloat(Method* method,
Value* val,
Instruction* dest,
vector<MachineInstr*>& minstrVec,
vector<TmpInstruction*>& tempVec,
TargetMachine& target) const = 0;
// Similarly, create an instruction sequence to copy an FP value
// `val' to an integer value `dest' by copying to memory and back.
// See the previous function for information about return values.
//
virtual void CreateCodeToCopyFloatToInt(Method* method,
Value* val,
Instruction* dest,
vector<MachineInstr*>& minstrVec,
vector<TmpInstruction*>& tempVec,
TargetMachine& target) const = 0;
// create copy instruction(s)
virtual void
CreateCopyInstructionsByType(const TargetMachine& target,
Value* src,
Instruction* dest,
vector<MachineInstr*>& minstrVec) const = 0;
};
#endif