llvm-6502/lib/CodeGen/RegAlloc/PhyRegAloc.cpp

344 lines
9.5 KiB
C++
Raw Normal View History

#include "llvm/CodeGen/PhyRegAlloc.h"
PhyRegAlloc::PhyRegAlloc(const Method *const M,
const TargetMachine& tm,
MethodLiveVarInfo *const Lvi)
: RegClassList(),
Meth(M), TM(tm), LVI(Lvi), LRI(M, tm, RegClassList),
MRI( tm.getRegInfo() ),
NumOfRegClasses(MRI.getNumOfRegClasses()),
CallInstrList(),
AddedInstrMap()
{
// **TODO: use an actual reserved color list
ReservedColorListType *RCL = new ReservedColorListType();
// create each RegisterClass and put in RegClassList
for( unsigned int rc=0; rc < NumOfRegClasses; rc++)
RegClassList.push_back( new RegClass(M, MRI.getMachineRegClass(rc), RCL) );
}
void PhyRegAlloc::createIGNodeListsAndIGs()
{
cout << "Creating LR lists ..." << endl;
// hash map iterator
LiveRangeMapType::const_iterator HMI = (LRI.getLiveRangeMap())->begin();
// hash map end
LiveRangeMapType::const_iterator HMIEnd = (LRI.getLiveRangeMap())->end();
for( ; HMI != HMIEnd ; ++HMI ) {
LiveRange *L = (*HMI).second; // get the LiveRange
if( (*HMI).first ) {
// if the Value * is not null, and LR
// is not yet written to the IGNodeList
if( !(L->getUserIGNode()) ) {
RegClass *const RC = // RegClass of first value in the LR
//RegClassList [MRI.getRegClassIDOfValue(*(L->begin()))];
RegClassList[ L->getRegClass()->getID() ];
RC-> addLRToIG( L ); // add this LR to an IG
}
}
}
// init RegClassList
for( unsigned int rc=0; rc < NumOfRegClasses ; rc++)
RegClassList[ rc ]->createInterferenceGraph();
if( DEBUG_RA)
cout << "LRLists Created!" << endl;
}
// Interence occurs only if the LR of Def (Inst or Arg) is of the same reg
// class as that of live var. The live var passed to this function is the
// LVset AFTER the instruction
void PhyRegAlloc::addInterference(const Value *const Def,
const LiveVarSet *const LVSet,
const bool isCallInst) {
LiveVarSet::const_iterator LIt = LVSet->begin();
// get the live range of instruction
const LiveRange *const LROfDef = LRI.getLiveRangeForValue( Def );
IGNode *const IGNodeOfDef = LROfDef->getUserIGNode();
assert( IGNodeOfDef );
RegClass *const RCOfDef = LROfDef->getRegClass();
// for each live var in live variable set
for( ; LIt != LVSet->end(); ++LIt) {
if( DEBUG_RA > 1) {
cout << "< Def="; printValue(Def);
cout << ", Lvar="; printValue( *LIt); cout << "> ";
}
// get the live range corresponding to live var
LiveRange *const LROfVar = LRI.getLiveRangeForValue(*LIt );
// LROfVar can be null if it is a const since a const
// doesn't have a dominating def - see Assumptions above
if( LROfVar) {
if(LROfDef == LROfVar) // do not set interf for same LR
continue;
// if 2 reg classes are the same set interference
if( RCOfDef == LROfVar->getRegClass() ){
RCOfDef->setInterference( LROfDef, LROfVar);
}
//the live range of this var interferes with this call
if( isCallInst )
LROfVar->addCallInterference( (const Instruction *const) Def );
}
else if(DEBUG_RA) {
// we will not have LRs for values not explicitly allocated in the
// instruction stream (e.g., constants)
cout << " warning: no live range for " ;
printValue( *LIt); cout << endl; }
}
}
void PhyRegAlloc::buildInterferenceGraphs()
{
if(DEBUG_RA) cout << "Creating interference graphs ..." << endl;
Method::const_iterator BBI = Meth->begin(); // random iterator for BBs
for( ; BBI != Meth->end(); ++BBI) { // traverse BBs in random order
// get the iterator for machine instructions
const MachineCodeForBasicBlock& MIVec = (*BBI)->getMachineInstrVec();
MachineCodeForBasicBlock::const_iterator
MInstIterator = MIVec.begin();
// iterate over all the machine instructions in BB
for( ; MInstIterator != MIVec.end(); ++MInstIterator) {
const MachineInstr *const MInst = *MInstIterator;
// get the LV set after the instruction
const LiveVarSet *const LVSetAI =
LVI->getLiveVarSetAfterMInst(MInst, *BBI);
const bool isCallInst = TM.getInstrInfo().isCall(MInst->getOpCode());
// iterate over MI operands to find defs
for( MachineInstr::val_op_const_iterator OpI(MInst);!OpI.done(); ++OpI) {
if( OpI.isDef() ) {
// create a new LR iff this operand is a def
addInterference(*OpI, LVSetAI, isCallInst );
} //if this is a def
} // for all operands
} // for all machine instructions in BB
// go thru LLVM instructions in the basic block and record all CALL
// instructions in the CallInstrList
BasicBlock::const_iterator InstIt = (*BBI)->begin();
for( ; InstIt != (*BBI)->end() ; ++ InstIt) {
if( (*InstIt)->getOpcode() == Instruction::Call )
CallInstrList.push_back( *InstIt );
}
} // for all BBs in method
// add interferences for method arguments. Since there are no explict
// defs in method for args, we have to add them manually
addInterferencesForArgs(); // add interference for method args
if( DEBUG_RA)
cout << "Interference graphs calculted!" << endl;
}
void PhyRegAlloc::addInterferencesForArgs()
{
// get the InSet of root BB
const LiveVarSet *const InSet = LVI->getInSetOfBB( Meth->front() );
// get the argument list
const Method::ArgumentListType& ArgList = Meth->getArgumentList();
// get an iterator to arg list
Method::ArgumentListType::const_iterator ArgIt = ArgList.begin();
for( ; ArgIt != ArgList.end() ; ++ArgIt) { // for each argument
addInterference( *ArgIt, InSet, false ); // add interferences between
// args and LVars at start
if( DEBUG_RA > 1) {
cout << " - %% adding interference for argument ";
printValue( (const Value *) *ArgIt); cout << endl;
}
}
}
void PhyRegAlloc::updateMachineCode()
{
Method::const_iterator BBI = Meth->begin(); // random iterator for BBs
for( ; BBI != Meth->end(); ++BBI) { // traverse BBs in random order
cout << endl << "BB "; printValue( *BBI); cout << ": ";
// get the iterator for machine instructions
MachineCodeForBasicBlock& MIVec = (*BBI)->getMachineInstrVec();
MachineCodeForBasicBlock::iterator MInstIterator = MIVec.begin();
// iterate over all the machine instructions in BB
for( ; MInstIterator != MIVec.end(); ++MInstIterator) {
MachineInstr *const MInst = *MInstIterator;
cout << endl << "\t";
cout << TargetInstrDescriptors[MInst->getOpCode()].opCodeString;
//for(MachineInstr::val_op_const_iterator OpI(MInst);!OpI.done();++OpI) {
for(unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) {
MachineOperand& Op = MInst->getOperand(OpNum);
if( Op.getOperandType() == MachineOperand::MO_VirtualRegister ||
Op.getOperandType() == MachineOperand::MO_CCRegister) {
const Value *const Val = Op.getVRegValue();
if( !Val ) {
cout << "\t<** Value is NULL!!!**>";
continue;
}
assert( Val && "Value is NULL");
const LiveRange *const LR = LRI.getLiveRangeForValue(Val);
if ( !LR ) {
if( ! ( (Val->getType())->isLabelType() ||
(Val->getValueType() == Value::ConstantVal) ) ) {
cout << "\t" << "<*No LiveRange for: ";
printValue( Val); cout << "*>";
}
//assert( LR && "No LR found for Value");
continue;
}
unsigned RCID = (LR->getRegClass())->getID();
//cout << "Setting reg for value: "; printValue( Val );
//cout << endl;
//Op.setRegForValue( MRI.getUnifiedRegNum(RCID, LR->getColor()) );
int RegNum = MRI.getUnifiedRegNum(RCID, LR->getColor());
cout << "\t" << "%" << MRI.getUnifiedRegName( RegNum );
}
else
cout << "\t" << Op; // use dump field
}
}
}
}
void PhyRegAlloc::allocateRegisters()
{
constructLiveRanges(); // create LR info
if( DEBUG_RA)
LRI.printLiveRanges();
createIGNodeListsAndIGs(); // create IGNode list and IGs
buildInterferenceGraphs(); // build IGs in all reg classes
if( DEBUG_RA) {
// print all LRs in all reg classes
for( unsigned int rc=0; rc < NumOfRegClasses ; rc++)
RegClassList[ rc ]->printIGNodeList();
// print IGs in all register classes
for( unsigned int rc=0; rc < NumOfRegClasses ; rc++)
RegClassList[ rc ]->printIG();
}
LRI.coalesceLRs(); // coalesce all live ranges
if( DEBUG_RA) {
// print all LRs in all reg classes
for( unsigned int rc=0; rc < NumOfRegClasses ; rc++)
RegClassList[ rc ]->printIGNodeList();
// print IGs in all register classes
for( unsigned int rc=0; rc < NumOfRegClasses ; rc++)
RegClassList[ rc ]->printIG();
}
MRI.colorArgs(Meth, LRI); // color method args
MRI.colorCallArgs(CallInstrList, LRI, AddedInstrMap); // color call args of call instrns
// color all register classes
for( unsigned int rc=0; rc < NumOfRegClasses ; rc++)
RegClassList[ rc ]->colorAllRegs();
updateMachineCode();
//PrintMachineInstructions(Meth);
}