llvm-6502/lib/Support/APInt.cpp

1112 lines
36 KiB
C++
Raw Normal View History

//===-- APInt.cpp - Implement APInt class ---------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Sheng Zhou and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a class to represent arbitrary precision integral
// constant values.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/APInt.h"
#if 0
#include "llvm/DerivedTypes.h"
#include "llvm/Support/MathExtras.h"
#include <strings.h>
#include <iostream>
#include <sstream>
#include <iomanip>
#include <cstdlib>
using namespace llvm;
/// mul_1 - This function performs the multiplication operation on a
/// large integer (represented as an integer array) and a uint64_t integer.
/// @returns the carry of the multiplication.
static uint64_t mul_1(uint64_t dest[], uint64_t x[],
unsigned len, uint64_t y) {
// Split y into high 32-bit part and low 32-bit part.
uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
uint64_t carry = 0, lx, hx;
for (unsigned i = 0; i < len; ++i) {
lx = x[i] & 0xffffffffULL;
hx = x[i] >> 32;
// hasCarry - A flag to indicate if has carry.
// hasCarry == 0, no carry
// hasCarry == 1, has carry
// hasCarry == 2, no carry and the calculation result == 0.
uint8_t hasCarry = 0;
dest[i] = carry + lx * ly;
// Determine if the add above introduces carry.
hasCarry = (dest[i] < carry) ? 1 : 0;
carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
// The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
// (2^32 - 1) + 2^32 = 2^64.
hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
carry += (lx * hy) & 0xffffffffULL;
dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
(carry >> 32) + ((lx * hy) >> 32) + hx * hy;
}
return carry;
}
/// mul - This function multiplies integer array x[] by integer array y[] and
/// stores the result into integer array dest[].
/// Note the array dest[]'s size should no less than xlen + ylen.
static void mul(uint64_t dest[], uint64_t x[], unsigned xlen,
uint64_t y[], unsigned ylen) {
dest[xlen] = mul_1(dest, x, xlen, y[0]);
for (unsigned i = 1; i < ylen; ++i) {
uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
uint64_t carry = 0, lx, hx;
for (unsigned j = 0; j < xlen; ++j) {
lx = x[j] & 0xffffffffULL;
hx = x[j] >> 32;
// hasCarry - A flag to indicate if has carry.
// hasCarry == 0, no carry
// hasCarry == 1, has carry
// hasCarry == 2, no carry and the calculation result == 0.
uint8_t hasCarry = 0;
uint64_t resul = carry + lx * ly;
hasCarry = (resul < carry) ? 1 : 0;
carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
carry += (lx * hy) & 0xffffffffULL;
resul = (carry << 32) | (resul & 0xffffffffULL);
dest[i+j] += resul;
carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
(carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
((lx * hy) >> 32) + hx * hy;
}
dest[i+xlen] = carry;
}
}
/// add_1 - This function adds the integer array x[] by integer y and
/// returns the carry.
/// @returns the carry of the addition.
static uint64_t add_1(uint64_t dest[], uint64_t x[],
unsigned len, uint64_t y) {
uint64_t carry = y;
for (unsigned i = 0; i < len; ++i) {
dest[i] = carry + x[i];
carry = (dest[i] < carry) ? 1 : 0;
}
return carry;
}
/// add - This function adds the integer array x[] by integer array
/// y[] and returns the carry.
static uint64_t add(uint64_t dest[], uint64_t x[],
uint64_t y[], unsigned len) {
unsigned carry = 0;
for (unsigned i = 0; i< len; ++i) {
carry += x[i];
dest[i] = carry + y[i];
carry = carry < x[i] ? 1 : (dest[i] < carry ? 1 : 0);
}
return carry;
}
/// sub_1 - This function subtracts the integer array x[] by
/// integer y and returns the borrow-out carry.
static uint64_t sub_1(uint64_t x[], unsigned len, uint64_t y) {
uint64_t cy = y;
for (unsigned i = 0; i < len; ++i) {
uint64_t X = x[i];
x[i] -= cy;
if (cy > X)
cy = 1;
else {
cy = 0;
break;
}
}
return cy;
}
/// sub - This function subtracts the integer array x[] by
/// integer array y[], and returns the borrow-out carry.
static uint64_t sub(uint64_t dest[], uint64_t x[],
uint64_t y[], unsigned len) {
// Carry indicator.
uint64_t cy = 0;
for (unsigned i = 0; i < len; ++i) {
uint64_t Y = y[i], X = x[i];
Y += cy;
cy = Y < cy ? 1 : 0;
Y = X - Y;
cy += Y > X ? 1 : 0;
dest[i] = Y;
}
return cy;
}
/// UnitDiv - This function divides N by D,
/// and returns (remainder << 32) | quotient.
/// Assumes (N >> 32) < D.
static uint64_t unitDiv(uint64_t N, unsigned D) {
uint64_t q, r; // q: quotient, r: remainder.
uint64_t a1 = N >> 32; // a1: high 32-bit part of N.
uint64_t a0 = N & 0xffffffffL; // a0: low 32-bit part of N
if (a1 < ((D - a1 - (a0 >> 31)) & 0xffffffffL)) {
q = N / D;
r = N % D;
}
else {
// Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d
uint64_t c = N - ((uint64_t) D << 31);
// Divide (c1*2^32 + c0) by d
q = c / D;
r = c % D;
// Add 2^31 to quotient
q += 1 << 31;
}
return (r << 32) | (q & 0xFFFFFFFFl);
}
/// subMul - This function substracts x[len-1:0] * y from
/// dest[offset+len-1:offset], and returns the most significant
/// word of the product, minus the borrow-out from the subtraction.
static unsigned subMul(unsigned dest[], unsigned offset,
unsigned x[], unsigned len, unsigned y) {
uint64_t yl = (uint64_t) y & 0xffffffffL;
unsigned carry = 0;
unsigned j = 0;
do {
uint64_t prod = ((uint64_t) x[j] & 0xffffffffL) * yl;
unsigned prod_low = (unsigned) prod;
unsigned prod_high = (unsigned) (prod >> 32);
prod_low += carry;
carry = (prod_low < carry ? 1 : 0) + prod_high;
unsigned x_j = dest[offset+j];
prod_low = x_j - prod_low;
if (prod_low > x_j) ++carry;
dest[offset+j] = prod_low;
} while (++j < len);
return carry;
}
/// div - This is basically Knuth's formulation of the classical algorithm.
/// Correspondance with Knuth's notation:
/// Knuth's u[0:m+n] == zds[nx:0].
/// Knuth's v[1:n] == y[ny-1:0]
/// Knuth's n == ny.
/// Knuth's m == nx-ny.
/// Our nx == Knuth's m+n.
/// Could be re-implemented using gmp's mpn_divrem:
/// zds[nx] = mpn_divrem (&zds[ny], 0, zds, nx, y, ny).
static void div(unsigned zds[], unsigned nx, unsigned y[], unsigned ny) {
unsigned j = nx;
do { // loop over digits of quotient
// Knuth's j == our nx-j.
// Knuth's u[j:j+n] == our zds[j:j-ny].
unsigned qhat; // treated as unsigned
if (zds[j] == y[ny-1]) qhat = -1U; // 0xffffffff
else {
uint64_t w = (((uint64_t)(zds[j])) << 32) +
((uint64_t)zds[j-1] & 0xffffffffL);
qhat = (unsigned) unitDiv(w, y[ny-1]);
}
if (qhat) {
unsigned borrow = subMul(zds, j - ny, y, ny, qhat);
unsigned save = zds[j];
uint64_t num = ((uint64_t)save&0xffffffffL) -
((uint64_t)borrow&0xffffffffL);
while (num) {
qhat--;
uint64_t carry = 0;
for (unsigned i = 0; i < ny; i++) {
carry += ((uint64_t) zds[j-ny+i] & 0xffffffffL)
+ ((uint64_t) y[i] & 0xffffffffL);
zds[j-ny+i] = (unsigned) carry;
carry >>= 32;
}
zds[j] += carry;
num = carry - 1;
}
}
zds[j] = qhat;
} while (--j >= ny);
}
/// lshift - This function shift x[0:len-1] left by shiftAmt bits, and
/// store the len least significant words of the result in
/// dest[d_offset:d_offset+len-1]. It returns the bits shifted out from
/// the most significant digit.
static uint64_t lshift(uint64_t dest[], unsigned d_offset,
uint64_t x[], unsigned len, unsigned shiftAmt) {
unsigned count = 64 - shiftAmt;
int i = len - 1;
uint64_t high_word = x[i], retVal = high_word >> count;
++d_offset;
while (--i >= 0) {
uint64_t low_word = x[i];
dest[d_offset+i] = (high_word << shiftAmt) | (low_word >> count);
high_word = low_word;
}
dest[d_offset+i] = high_word << shiftAmt;
return retVal;
}
APInt::APInt(uint64_t val, unsigned numBits, bool sign)
: bitsnum(numBits), isSigned(sign) {
assert(bitsnum >= IntegerType::MIN_INT_BITS && "bitwidth too small");
assert(bitsnum <= IntegerType::MAX_INT_BITS && "bitwidth too large");
if (isSingleWord())
VAL = val & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - bitsnum));
else {
// Memory allocation and check if successful.
assert((pVal = new uint64_t[numWords()]) &&
"APInt memory allocation fails!");
bzero(pVal, numWords() * 8);
pVal[0] = val;
}
}
APInt::APInt(unsigned numBits, uint64_t bigVal[], bool sign)
: bitsnum(numBits), isSigned(sign) {
assert(bitsnum >= IntegerType::MIN_INT_BITS && "bitwidth too small");
assert(bitsnum <= IntegerType::MAX_INT_BITS && "bitwidth too large");
assert(bigVal && "Null pointer detected!");
if (isSingleWord())
VAL = bigVal[0] & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - bitsnum));
else {
// Memory allocation and check if successful.
assert((pVal = new uint64_t[numWords()]) &&
"APInt memory allocation fails!");
// Calculate the actual length of bigVal[].
unsigned n = sizeof(*bigVal) / sizeof(bigVal[0]);
unsigned maxN = std::max<unsigned>(n, numWords());
unsigned minN = std::min<unsigned>(n, numWords());
memcpy(pVal, bigVal, (minN - 1) * 8);
pVal[minN-1] = bigVal[minN-1] & (~uint64_t(0ULL) >> (64 - bitsnum % 64));
if (maxN == numWords())
bzero(pVal+n, (numWords() - n) * 8);
}
}
APInt::APInt(std::string& Val, uint8_t radix, bool sign)
: isSigned(sign) {
assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
"Radix should be 2, 8, 10, or 16!");
assert(!Val.empty() && "String empty?");
unsigned slen = Val.size();
unsigned size = 0;
// If the radix is a power of 2, read the input
// from most significant to least significant.
if ((radix & (radix - 1)) == 0) {
unsigned nextBitPos = 0, bits_per_digit = radix / 8 + 2;
uint64_t resDigit = 0;
bitsnum = slen * bits_per_digit;
if (numWords() > 1)
assert((pVal = new uint64_t[numWords()]) &&
"APInt memory allocation fails!");
for (int i = slen - 1; i >= 0; --i) {
uint64_t digit = Val[i] - 48; // '0' == 48.
resDigit |= digit << nextBitPos;
nextBitPos += bits_per_digit;
if (nextBitPos >= 64) {
if (isSingleWord()) {
VAL = resDigit;
break;
}
pVal[size++] = resDigit;
nextBitPos -= 64;
resDigit = digit >> (bits_per_digit - nextBitPos);
}
}
if (!isSingleWord() && size <= numWords())
pVal[size] = resDigit;
} else { // General case. The radix is not a power of 2.
// For 10-radix, the max value of 64-bit integer is 18446744073709551615,
// and its digits number is 14.
const unsigned chars_per_word = 20;
if (slen < chars_per_word ||
(Val <= "18446744073709551615" &&
slen == chars_per_word)) { // In case Val <= 2^64 - 1
bitsnum = 64;
VAL = strtoull(Val.c_str(), 0, 10);
} else { // In case Val > 2^64 - 1
bitsnum = (slen / chars_per_word + 1) * 64;
assert((pVal = new uint64_t[numWords()]) &&
"APInt memory allocation fails!");
bzero(pVal, numWords() * 8);
unsigned str_pos = 0;
while (str_pos < slen) {
unsigned chunk = slen - str_pos;
if (chunk > chars_per_word - 1)
chunk = chars_per_word - 1;
uint64_t resDigit = Val[str_pos++] - 48; // 48 == '0'.
uint64_t big_base = radix;
while (--chunk > 0) {
resDigit = resDigit * radix + Val[str_pos++] - 48;
big_base *= radix;
}
uint64_t carry;
if (!size)
carry = resDigit;
else {
carry = mul_1(pVal, pVal, size, big_base);
carry += add_1(pVal, pVal, size, resDigit);
}
if (carry) pVal[size++] = carry;
}
}
}
}
APInt::APInt(const APInt& APIVal)
: bitsnum(APIVal.bitsnum), isSigned(APIVal.isSigned) {
if (isSingleWord()) VAL = APIVal.VAL;
else {
// Memory allocation and check if successful.
assert((pVal = new uint64_t[numWords()]) &&
"APInt memory allocation fails!");
memcpy(pVal, APIVal.pVal, numWords() * 8);
}
}
APInt::~APInt() {
if (!isSingleWord() && pVal) delete[] pVal;
}
/// whichByte - This function returns the word position
/// for the specified bit position.
inline unsigned APInt::whichByte(unsigned bitPosition)
{ return (bitPosition % APINT_BITS_PER_WORD) / 8; }
/// @brief Copy assignment operator. Create a new object from the given
/// APInt one by initialization.
APInt& APInt::operator=(const APInt& RHS) {
if (isSingleWord()) VAL = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
else {
unsigned minN = std::min(numWords(), RHS.numWords());
memcpy(pVal, RHS.isSingleWord() ? &RHS.VAL : RHS.pVal, minN * 8);
if (numWords() != minN)
bzero(pVal + minN, (numWords() - minN) * 8);
}
return *this;
}
/// @brief Assignment operator. Assigns a common case integer value to
/// the APInt.
APInt& APInt::operator=(uint64_t RHS) {
if (isSingleWord()) VAL = RHS;
else {
pVal[0] = RHS;
bzero(pVal, (numWords() - 1) * 8);
}
return *this;
}
/// @brief Postfix increment operator. Increments the APInt by one.
const APInt APInt::operator++(int) {
APInt API(*this);
if (isSingleWord()) ++VAL;
else
add_1(pVal, pVal, numWords(), 1);
API.TruncToBits();
return API;
}
/// @brief Prefix increment operator. Increments the APInt by one.
APInt& APInt::operator++() {
if (isSingleWord()) ++VAL;
else
add_1(pVal, pVal, numWords(), 1);
TruncToBits();
return *this;
}
/// @brief Postfix decrement operator. Decrements the APInt by one.
const APInt APInt::operator--(int) {
APInt API(*this);
if (isSingleWord()) --VAL;
else
sub_1(API.pVal, API.numWords(), 1);
API.TruncToBits();
return API;
}
/// @brief Prefix decrement operator. Decrements the APInt by one.
APInt& APInt::operator--() {
if (isSingleWord()) --VAL;
else
sub_1(pVal, numWords(), 1);
TruncToBits();
return *this;
}
/// @brief Addition assignment operator. Adds this APInt by the given APInt&
/// RHS and assigns the result to this APInt.
APInt& APInt::operator+=(const APInt& RHS) {
if (isSingleWord()) VAL += RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
else {
if (RHS.isSingleWord()) add_1(pVal, pVal, numWords(), RHS.VAL);
else {
if (numWords() <= RHS.numWords())
add(pVal, pVal, RHS.pVal, numWords());
else {
uint64_t carry = add(pVal, pVal, RHS.pVal, RHS.numWords());
add_1(pVal + RHS.numWords(), pVal + RHS.numWords(),
numWords() - RHS.numWords(), carry);
}
}
}
TruncToBits();
return *this;
}
/// @brief Subtraction assignment operator. Subtracts this APInt by the given
/// APInt &RHS and assigns the result to this APInt.
APInt& APInt::operator-=(const APInt& RHS) {
if (isSingleWord())
VAL -= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
else {
if (RHS.isSingleWord())
sub_1(pVal, numWords(), RHS.VAL);
else {
if (RHS.numWords() < numWords()) {
uint64_t carry = sub(pVal, pVal, RHS.pVal, RHS.numWords());
sub_1(pVal + RHS.numWords(), numWords() - RHS.numWords(), carry);
}
else
sub(pVal, pVal, RHS.pVal, numWords());
}
}
TruncToBits();
return *this;
}
/// @brief Multiplication assignment operator. Multiplies this APInt by the
/// given APInt& RHS and assigns the result to this APInt.
APInt& APInt::operator*=(const APInt& RHS) {
if (isSingleWord()) VAL *= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
else {
// one-based first non-zero bit position.
unsigned first = numWords() * APINT_BITS_PER_WORD - CountLeadingZeros();
unsigned xlen = !first ? 0 : whichWord(first - 1) + 1;
if (!xlen)
return *this;
else if (RHS.isSingleWord())
mul_1(pVal, pVal, xlen, RHS.VAL);
else {
first = RHS.numWords() * APINT_BITS_PER_WORD - RHS.CountLeadingZeros();
unsigned ylen = !first ? 0 : whichWord(first - 1) + 1;
if (!ylen) {
bzero(pVal, numWords() * 8);
return *this;
}
uint64_t *dest = new uint64_t[xlen+ylen];
assert(dest && "Memory Allocation Failed!");
mul(dest, pVal, xlen, RHS.pVal, ylen);
memcpy(pVal, dest, ((xlen + ylen >= numWords()) ? numWords() : xlen + ylen) * 8);
delete[] dest;
}
}
TruncToBits();
return *this;
}
/// @brief Division assignment operator. Divides this APInt by the given APInt
/// &RHS and assigns the result to this APInt.
APInt& APInt::operator/=(const APInt& RHS) {
unsigned first = RHS.numWords() * APINT_BITS_PER_WORD -
RHS.CountLeadingZeros();
unsigned ylen = !first ? 0 : whichWord(first - 1) + 1;
assert(ylen && "Divided by zero???");
if (isSingleWord()) {
if (isSigned && RHS.isSigned)
VAL = RHS.isSingleWord() ? (int64_t(VAL) / int64_t(RHS.VAL)) :
(ylen > 1 ? 0 : int64_t(VAL) / int64_t(RHS.pVal[0]));
else
VAL = RHS.isSingleWord() ? (VAL / RHS.VAL) :
(ylen > 1 ? 0 : VAL / RHS.pVal[0]);
} else {
unsigned first2 = numWords() * APINT_BITS_PER_WORD - CountLeadingZeros();
unsigned xlen = !first2 ? 0 : whichWord(first2 - 1) + 1;
if (!xlen)
return *this;
else if ((*this) < RHS)
bzero(pVal, numWords() * 8);
else if ((*this) == RHS) {
bzero(pVal, numWords() * 8);
pVal[0] = 1;
} else if (xlen == 1)
pVal[0] /= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
else {
uint64_t *xwords = new uint64_t[xlen+1], *ywords = new uint64_t[ylen];
assert(xwords && ywords && "Memory Allocation Failed!");
memcpy(xwords, pVal, xlen * 8);
xwords[xlen] = 0;
memcpy(ywords, RHS.isSingleWord() ? &RHS.VAL : RHS.pVal, ylen * 8);
if (unsigned nshift = 63 - (first - 1) % 64) {
lshift(ywords, 0, ywords, ylen, nshift);
unsigned xlentmp = xlen;
xwords[xlen++] = lshift(xwords, 0, xwords, xlentmp, nshift);
}
div((unsigned*)xwords, xlen*2-1, (unsigned*)ywords, ylen*2);
bzero(pVal, numWords() * 8);
memcpy(pVal, xwords + ylen, (xlen - ylen) * 8);
delete[] xwords;
delete[] ywords;
}
}
return *this;
}
/// @brief Remainder assignment operator. Yields the remainder from the
/// division of this APInt by the given APInt& RHS and assigns the remainder
/// to this APInt.
APInt& APInt::operator%=(const APInt& RHS) {
unsigned first = RHS.numWords() * APINT_BITS_PER_WORD -
RHS.CountLeadingZeros();
unsigned ylen = !first ? 0 : whichWord(first - 1) + 1;
assert(ylen && "Performing remainder operation by zero ???");
if (isSingleWord()) {
if (isSigned && RHS.isSigned)
VAL = RHS.isSingleWord() ? (int64_t(VAL) % int64_t(RHS.VAL)) :
(ylen > 1 ? VAL : int64_t(VAL) % int64_t(RHS.pVal[0]));
else
VAL = RHS.isSingleWord() ? (VAL % RHS.VAL) :
(ylen > 1 ? VAL : VAL % RHS.pVal[0]);
} else {
unsigned first2 = numWords() * APINT_BITS_PER_WORD - CountLeadingZeros();
unsigned xlen = !first2 ? 0 : whichWord(first2 - 1) + 1;
if (!xlen || (*this) < RHS)
return *this;
else if ((*this) == RHS)
bzero(pVal, numWords() * 8);
else if (xlen == 1)
pVal[0] %= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
else {
uint64_t *xwords = new uint64_t[xlen+1], *ywords = new uint64_t[ylen];
assert(xwords && ywords && "Memory Allocation Failed!");
memcpy(xwords, pVal, xlen * 8);
xwords[xlen] = 0;
memcpy(ywords, RHS.isSingleWord() ? &RHS.VAL : RHS.pVal, ylen * 8);
unsigned nshift = 63 - (first - 1) % 64;
if (nshift) {
lshift(ywords, 0, ywords, ylen, nshift);
unsigned xlentmp = xlen;
xwords[xlen++] = lshift(xwords, 0, xwords, xlentmp, nshift);
}
div((unsigned*)xwords, xlen*2-1, (unsigned*)ywords, ylen*2);
bzero(pVal, numWords() * 8);
for (unsigned i = 0; i < ylen-1; ++i)
pVal[i] = (xwords[i] >> nshift) | (xwords[i+1] << (64 - nshift));
pVal[ylen-1] = xwords[ylen-1] >> nshift;
delete[] xwords;
delete[] ywords;
}
}
return *this;
}
/// @brief Bitwise AND assignment operator. Performs bitwise AND operation on
/// this APInt and the given APInt& RHS, assigns the result to this APInt.
APInt& APInt::operator&=(const APInt& RHS) {
if (isSingleWord()) {
if (RHS.isSingleWord()) VAL &= RHS.VAL;
else VAL &= RHS.pVal[0];
} else {
if (RHS.isSingleWord()) {
bzero(pVal, (numWords() - 1) * 8);
pVal[0] &= RHS.VAL;
} else {
unsigned minwords = numWords() < RHS.numWords() ? numWords() : RHS.numWords();
for (unsigned i = 0; i < minwords; ++i)
pVal[i] &= RHS.pVal[i];
if (numWords() > minwords) bzero(pVal+minwords, (numWords() - minwords) * 8);
}
}
return *this;
}
/// @brief Bitwise OR assignment operator. Performs bitwise OR operation on
/// this APInt and the given APInt& RHS, assigns the result to this APInt.
APInt& APInt::operator|=(const APInt& RHS) {
if (isSingleWord()) {
if (RHS.isSingleWord()) VAL |= RHS.VAL;
else VAL |= RHS.pVal[0];
} else {
if (RHS.isSingleWord()) {
pVal[0] |= RHS.VAL;
} else {
unsigned minwords = numWords() < RHS.numWords() ? numWords() : RHS.numWords();
for (unsigned i = 0; i < minwords; ++i)
pVal[i] |= RHS.pVal[i];
}
}
TruncToBits();
return *this;
}
/// @brief Bitwise XOR assignment operator. Performs bitwise XOR operation on
/// this APInt and the given APInt& RHS, assigns the result to this APInt.
APInt& APInt::operator^=(const APInt& RHS) {
if (isSingleWord()) {
if (RHS.isSingleWord()) VAL ^= RHS.VAL;
else VAL ^= RHS.pVal[0];
} else {
if (RHS.isSingleWord()) {
for (unsigned i = 0; i < numWords(); ++i)
pVal[i] ^= RHS.VAL;
} else {
unsigned minwords = numWords() < RHS.numWords() ? numWords() : RHS.numWords();
for (unsigned i = 0; i < minwords; ++i)
pVal[i] ^= RHS.pVal[i];
if (numWords() > minwords)
for (unsigned i = minwords; i < numWords(); ++i)
pVal[i] ^= 0;
}
}
TruncToBits();
return *this;
}
/// @brief Bitwise AND operator. Performs bitwise AND operation on this APInt
/// and the given APInt& RHS.
APInt APInt::operator&(const APInt& RHS) const {
APInt API(RHS);
return API &= *this;
}
/// @brief Bitwise OR operator. Performs bitwise OR operation on this APInt
/// and the given APInt& RHS.
APInt APInt::operator|(const APInt& RHS) const {
APInt API(RHS);
API |= *this;
API.TruncToBits();
return API;
}
/// @brief Bitwise XOR operator. Performs bitwise XOR operation on this APInt
/// and the given APInt& RHS.
APInt APInt::operator^(const APInt& RHS) const {
APInt API(RHS);
API ^= *this;
API.TruncToBits();
return API;
}
/// @brief Logical AND operator. Performs logical AND operation on this APInt
/// and the given APInt& RHS.
bool APInt::operator&&(const APInt& RHS) const {
if (isSingleWord())
return RHS.isSingleWord() ? VAL && RHS.VAL : VAL && RHS.pVal[0];
else if (RHS.isSingleWord())
return RHS.VAL && pVal[0];
else {
unsigned minN = std::min(numWords(), RHS.numWords());
for (unsigned i = 0; i < minN; ++i)
if (pVal[i] && RHS.pVal[i])
return true;
}
return false;
}
/// @brief Logical OR operator. Performs logical OR operation on this APInt
/// and the given APInt& RHS.
bool APInt::operator||(const APInt& RHS) const {
if (isSingleWord())
return RHS.isSingleWord() ? VAL || RHS.VAL : VAL || RHS.pVal[0];
else if (RHS.isSingleWord())
return RHS.VAL || pVal[0];
else {
unsigned minN = std::min(numWords(), RHS.numWords());
for (unsigned i = 0; i < minN; ++i)
if (pVal[i] || RHS.pVal[i])
return true;
}
return false;
}
/// @brief Logical negation operator. Performs logical negation operation on
/// this APInt.
bool APInt::operator !() const {
if (isSingleWord())
return !VAL;
else
for (unsigned i = 0; i < numWords(); ++i)
if (pVal[i])
return false;
return true;
}
/// @brief Multiplication operator. Multiplies this APInt by the given APInt&
/// RHS.
APInt APInt::operator*(const APInt& RHS) const {
APInt API(RHS);
API *= *this;
API.TruncToBits();
return API;
}
/// @brief Division operator. Divides this APInt by the given APInt& RHS.
APInt APInt::operator/(const APInt& RHS) const {
APInt API(*this);
return API /= RHS;
}
/// @brief Remainder operator. Yields the remainder from the division of this
/// APInt and the given APInt& RHS.
APInt APInt::operator%(const APInt& RHS) const {
APInt API(*this);
return API %= RHS;
}
/// @brief Addition operator. Adds this APInt by the given APInt& RHS.
APInt APInt::operator+(const APInt& RHS) const {
APInt API(*this);
API += RHS;
API.TruncToBits();
return API;
}
/// @brief Subtraction operator. Subtracts this APInt by the given APInt& RHS
APInt APInt::operator-(const APInt& RHS) const {
APInt API(*this);
API -= RHS;
API.TruncToBits();
return API;
}
/// @brief Array-indexing support.
bool APInt::operator[](unsigned bitPosition) const {
return maskBit(bitPosition) & (isSingleWord() ?
VAL : pVal[whichWord(bitPosition)]) != 0;
}
/// @brief Equality operator. Compare this APInt with the given APInt& RHS
/// for the validity of the equality relationship.
bool APInt::operator==(const APInt& RHS) const {
unsigned n1 = numWords() * APINT_BITS_PER_WORD - CountLeadingZeros(),
n2 = RHS.numWords() * APINT_BITS_PER_WORD - RHS.CountLeadingZeros();
if (n1 != n2) return false;
else if (isSingleWord())
return VAL == (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]);
else {
if (n1 <= 64)
return pVal[0] == (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]);
for (int i = whichWord(n1 - 1); i >= 0; --i)
if (pVal[i] != RHS.pVal[i]) return false;
}
return true;
}
/// @brief Inequality operator. Compare this APInt with the given APInt& RHS
/// for the validity of the inequality relationship.
bool APInt::operator!=(const APInt& RHS) const {
return !((*this) == RHS);
}
/// @brief Less-than operator. Compare this APInt with the given APInt& RHS
/// for the validity of the less-than relationship.
bool APInt::operator <(const APInt& RHS) const {
if (isSigned && RHS.isSigned) {
if ((*this)[bitsnum-1] > RHS[RHS.bitsnum-1])
return false;
else if ((*this)[bitsnum-1] < RHS[RHS.bitsnum-1])
return true;
}
unsigned n1 = numWords() * 64 - CountLeadingZeros(),
n2 = RHS.numWords() * 64 - RHS.CountLeadingZeros();
if (n1 < n2) return true;
else if (n1 > n2) return false;
else if (isSingleWord())
return VAL < (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]);
else {
if (n1 <= 64)
return pVal[0] < (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]);
for (int i = whichWord(n1 - 1); i >= 0; --i) {
if (pVal[i] > RHS.pVal[i]) return false;
else if (pVal[i] < RHS.pVal[i]) return true;
}
}
return false;
}
/// @brief Less-than-or-equal operator. Compare this APInt with the given
/// APInt& RHS for the validity of the less-than-or-equal relationship.
bool APInt::operator<=(const APInt& RHS) const {
return (*this) == RHS || (*this) < RHS;
}
/// @brief Greater-than operator. Compare this APInt with the given APInt& RHS
/// for the validity of the greater-than relationship.
bool APInt::operator >(const APInt& RHS) const {
return !((*this) <= RHS);
}
/// @brief Greater-than-or-equal operator. Compare this APInt with the given
/// APInt& RHS for the validity of the greater-than-or-equal relationship.
bool APInt::operator>=(const APInt& RHS) const {
return !((*this) < RHS);
}
/// Set the given bit to 1 whose poition is given as "bitPosition".
/// @brief Set a given bit to 1.
APInt& APInt::set(unsigned bitPosition) {
if (isSingleWord()) VAL |= maskBit(bitPosition);
else pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
return *this;
}
/// @brief Set every bit to 1.
APInt& APInt::set() {
if (isSingleWord()) VAL = -1ULL;
else
for (unsigned i = 0; i < numWords(); ++i)
pVal[i] = -1ULL;
return *this;
}
/// Set the given bit to 0 whose position is given as "bitPosition".
/// @brief Set a given bit to 0.
APInt& APInt::clear(unsigned bitPosition) {
if (isSingleWord()) VAL &= ~maskBit(bitPosition);
else pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
return *this;
}
/// @brief Set every bit to 0.
APInt& APInt::clear() {
if (isSingleWord()) VAL = 0;
else bzero(pVal, numWords() * 8);
return *this;
}
/// @brief Left-shift assignment operator. Left-shift the APInt by shiftAmt
/// and assigns the result to this APInt.
APInt& APInt::operator<<=(unsigned shiftAmt) {
if (shiftAmt >= bitsnum) {
if (isSingleWord()) VAL = 0;
else bzero(pVal, numWords() * 8);
} else {
for (unsigned i = 0; i < shiftAmt; ++i) clear(i);
for (unsigned i = shiftAmt; i < bitsnum; ++i) {
if ((*this)[i-shiftAmt]) set(i);
else clear(i);
}
}
return *this;
}
/// @brief Left-shift operator. Left-shift the APInt by shiftAmt.
APInt APInt::operator<<(unsigned shiftAmt) const {
APInt API(*this);
API <<= shiftAmt;
return API;
}
/// @brief Right-shift assignment operator. Right-shift the APInt by shiftAmt
/// and assigns the result to this APInt.
APInt& APInt::operator>>=(unsigned shiftAmt) {
bool isAShr = isSigned && (*this)[bitsnum-1];
if (isSingleWord())
VAL = isAShr ? (int64_t(VAL) >> shiftAmt) : (VAL >> shiftAmt);
else {
unsigned i = 0;
for (i = 0; i < bitsnum - shiftAmt; ++i)
if ((*this)[i+shiftAmt]) set(i);
else clear(i);
for (; i < bitsnum; ++i)
isAShr ? set(i) : clear(i);
}
return *this;
}
/// @brief Right-shift operator. Right-shift the APInt by shiftAmt.
APInt APInt::operator>>(unsigned shiftAmt) const {
APInt API(*this);
API >>= shiftAmt;
return API;
}
/// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on
/// this APInt.
APInt APInt::operator~() const {
APInt API(*this);
API.flip();
return API;
}
/// @brief Toggle every bit to its opposite value.
APInt& APInt::flip() {
if (isSingleWord()) VAL = (~(VAL << (64 - bitsnum))) >> (64 - bitsnum);
else {
unsigned i = 0;
for (; i < numWords() - 1; ++i)
pVal[i] = ~pVal[i];
unsigned offset = 64 - (bitsnum - 64 * (i - 1));
pVal[i] = (~(pVal[i] << offset)) >> offset;
}
return *this;
}
/// Toggle a given bit to its opposite value whose position is given
/// as "bitPosition".
/// @brief Toggles a given bit to its opposite value.
APInt& APInt::flip(unsigned bitPosition) {
assert(bitPosition < bitsnum && "Out of the bit-width range!");
if ((*this)[bitPosition]) clear(bitPosition);
else set(bitPosition);
return *this;
}
/// to_string - This function translates the APInt into a string.
std::string APInt::to_string(uint8_t radix) const {
assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
"Radix should be 2, 8, 10, or 16!");
std::ostringstream buf;
buf << std::setbase(radix);
// If the radix is a power of 2, set the format of ostringstream,
// and output the value into buf.
if ((radix & (radix - 1)) == 0) {
if (isSingleWord()) buf << VAL;
else {
buf << pVal[numWords()-1];
buf << std::setw(64 / (radix / 8 + 2)) << std::setfill('0');
for (int i = numWords() - 2; i >= 0; --i)
buf << pVal[i];
}
}
else { // If the radix = 10, need to translate the value into a
// string.
if (isSingleWord()) buf << VAL;
else {
// FIXME: To be supported.
}
}
return buf.str();
}
/// getMaxValue - This function returns the largest value
/// for an APInt of the specified bit-width and if isSign == true,
/// it should be largest signed value, otherwise unsigned value.
APInt APInt::getMaxValue(unsigned numBits, bool isSign) {
APInt APIVal(numBits, 1);
APIVal.set();
return isSign ? APIVal.clear(numBits) : APIVal;
}
/// getMinValue - This function returns the smallest value for
/// an APInt of the given bit-width and if isSign == true,
/// it should be smallest signed value, otherwise zero.
APInt APInt::getMinValue(unsigned numBits, bool isSign) {
APInt APIVal(0, numBits);
return isSign ? APIVal : APIVal.set(numBits);
}
/// getAllOnesValue - This function returns an all-ones value for
/// an APInt of the specified bit-width.
APInt APInt::getAllOnesValue(unsigned numBits) {
return getMaxValue(numBits, false);
}
/// getNullValue - This function creates an '0' value for an
/// APInt of the specified bit-width.
APInt APInt::getNullValue(unsigned numBits) {
return getMinValue(numBits, true);
}
/// HiBits - This function returns the high "numBits" bits of this APInt.
APInt APInt::HiBits(unsigned numBits) const {
return (*this) >> (bitsnum - numBits);
}
/// LoBits - This function returns the low "numBits" bits of this APInt.
APInt APInt::LoBits(unsigned numBits) const {
return ((*this) << (bitsnum - numBits)) >> (bitsnum - numBits);
}
/// CountLeadingZeros - This function is a APInt version corresponding to
/// llvm/include/llvm/Support/MathExtras.h's function
/// CountLeadingZeros_{32, 64}. It performs platform optimal form of counting
/// the number of zeros from the most significant bit to the first one bit.
/// @returns numWord() * 64 if the value is zero.
unsigned APInt::CountLeadingZeros() const {
if (isSingleWord())
return CountLeadingZeros_64(VAL);
unsigned Count = 0;
for (int i = numWords() - 1; i >= 0; --i) {
unsigned tmp = CountLeadingZeros_64(pVal[i]);
Count += tmp;
if (tmp != 64)
break;
}
return Count;
}
/// CountTrailingZero - This function is a APInt version corresponding to
/// llvm/include/llvm/Support/MathExtras.h's function
/// CountTrailingZeros_{32, 64}. It performs platform optimal form of counting
/// the number of zeros from the least significant bit to the first one bit.
/// @returns numWord() * 64 if the value is zero.
unsigned APInt::CountTrailingZeros() const {
if (isSingleWord())
return CountTrailingZeros_64(~VAL & (VAL - 1));
APInt Tmp = ~(*this) & ((*this) - 1);
return numWords() * 64 - Tmp.CountLeadingZeros();
}
/// CountPopulation - This function is a APInt version corresponding to
/// llvm/include/llvm/Support/MathExtras.h's function
/// CountPopulation_{32, 64}. It counts the number of set bits in a value.
/// @returns 0 if the value is zero.
unsigned APInt::CountPopulation() const {
if (isSingleWord())
return CountPopulation_64(VAL);
unsigned Count = 0;
for (unsigned i = 0; i < numWords(); ++i)
Count += CountPopulation_64(pVal[i]);
return Count;
}
/// ByteSwap - This function returns a byte-swapped representation of the
/// APInt argument, APIVal.
APInt llvm::ByteSwap(const APInt& APIVal) {
if (APIVal.bitsnum <= 32)
return APInt(APIVal.bitsnum, ByteSwap_32(unsigned(APIVal.VAL)));
else if (APIVal.bitsnum <= 64)
return APInt(APIVal.bitsnum, ByteSwap_64(APIVal.VAL));
else
return APIVal;
}
/// GreatestCommonDivisor - This function returns the greatest common
/// divisor of the two APInt values using Enclid's algorithm.
APInt llvm::GreatestCommonDivisor(const APInt& API1, const APInt& API2) {
APInt A = API1, B = API2;
while (!!B) {
APInt T = B;
B = A % B;
A = T;
}
return A;
}
#endif