llvm-6502/lib/Analysis/MemoryDependenceAnalysis.cpp

497 lines
19 KiB
C++
Raw Normal View History

//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements an analysis that determines, for a given memory
// operation, what preceding memory operations it depends on. It builds on
// alias analysis information, and tries to provide a lazy, caching interface to
// a common kind of alias information query.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "memdep"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Function.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetData.h"
using namespace llvm;
STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
char MemoryDependenceAnalysis::ID = 0;
// Register this pass...
static RegisterPass<MemoryDependenceAnalysis> X("memdep",
"Memory Dependence Analysis", false, true);
/// getAnalysisUsage - Does not modify anything. It uses Alias Analysis.
///
void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequiredTransitive<AliasAnalysis>();
AU.addRequiredTransitive<TargetData>();
}
bool MemoryDependenceAnalysis::runOnFunction(Function &) {
AA = &getAnalysis<AliasAnalysis>();
TD = &getAnalysis<TargetData>();
return false;
}
/// getCallSiteDependency - Private helper for finding the local dependencies
/// of a call site.
MemDepResult MemoryDependenceAnalysis::
getCallSiteDependency(CallSite C, BasicBlock::iterator ScanIt, BasicBlock *BB) {
// Walk backwards through the block, looking for dependencies
while (ScanIt != BB->begin()) {
Instruction *Inst = --ScanIt;
// If this inst is a memory op, get the pointer it accessed
Value *Pointer = 0;
uint64_t PointerSize = 0;
if (StoreInst *S = dyn_cast<StoreInst>(Inst)) {
Pointer = S->getPointerOperand();
PointerSize = TD->getTypeStoreSize(S->getOperand(0)->getType());
} else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
Pointer = V->getOperand(0);
PointerSize = TD->getTypeStoreSize(V->getType());
} else if (FreeInst *F = dyn_cast<FreeInst>(Inst)) {
Pointer = F->getPointerOperand();
// FreeInsts erase the entire structure
PointerSize = ~0UL;
} else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
if (AA->getModRefBehavior(CallSite::get(Inst)) ==
AliasAnalysis::DoesNotAccessMemory)
continue;
return MemDepResult::get(Inst);
} else {
// Non-memory instruction.
continue;
}
if (AA->getModRefInfo(C, Pointer, PointerSize) != AliasAnalysis::NoModRef)
return MemDepResult::get(Inst);
}
// No dependence found.
return MemDepResult::getNonLocal();
}
/// getDependencyFrom - Return the instruction on which a memory operation
/// depends.
MemDepResult MemoryDependenceAnalysis::
getDependencyFrom(Instruction *QueryInst, BasicBlock::iterator ScanIt,
BasicBlock *BB) {
// Get the pointer value for which dependence will be determined
Value *MemPtr = 0;
uint64_t MemSize = 0;
bool MemVolatile = false;
if (StoreInst* S = dyn_cast<StoreInst>(QueryInst)) {
MemPtr = S->getPointerOperand();
MemSize = TD->getTypeStoreSize(S->getOperand(0)->getType());
MemVolatile = S->isVolatile();
} else if (LoadInst* L = dyn_cast<LoadInst>(QueryInst)) {
MemPtr = L->getPointerOperand();
MemSize = TD->getTypeStoreSize(L->getType());
MemVolatile = L->isVolatile();
} else if (VAArgInst* V = dyn_cast<VAArgInst>(QueryInst)) {
MemPtr = V->getOperand(0);
MemSize = TD->getTypeStoreSize(V->getType());
} else if (FreeInst* F = dyn_cast<FreeInst>(QueryInst)) {
MemPtr = F->getPointerOperand();
// FreeInsts erase the entire structure, not just a field.
MemSize = ~0UL;
} else {
assert((isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) &&
"Can only get dependency info for memory instructions!");
return getCallSiteDependency(CallSite::get(QueryInst), ScanIt, BB);
}
// Walk backwards through the basic block, looking for dependencies
while (ScanIt != BB->begin()) {
Instruction *Inst = --ScanIt;
// If the access is volatile and this is a volatile load/store, return a
// dependence.
if (MemVolatile &&
((isa<LoadInst>(Inst) && cast<LoadInst>(Inst)->isVolatile()) ||
(isa<StoreInst>(Inst) && cast<StoreInst>(Inst)->isVolatile())))
return MemDepResult::get(Inst);
// Values depend on loads if the pointers are must aliased. This means that
// a load depends on another must aliased load from the same value.
if (LoadInst *L = dyn_cast<LoadInst>(Inst)) {
Value *Pointer = L->getPointerOperand();
uint64_t PointerSize = TD->getTypeStoreSize(L->getType());
// If we found a pointer, check if it could be the same as our pointer
AliasAnalysis::AliasResult R =
AA->alias(Pointer, PointerSize, MemPtr, MemSize);
if (R == AliasAnalysis::NoAlias)
continue;
// May-alias loads don't depend on each other without a dependence.
if (isa<LoadInst>(QueryInst) && R == AliasAnalysis::MayAlias)
continue;
return MemDepResult::get(Inst);
}
// If this is an allocation, and if we know that the accessed pointer is to
// the allocation, return None. This means that there is no dependence and
// the access can be optimized based on that. For example, a load could
// turn into undef.
if (AllocationInst *AI = dyn_cast<AllocationInst>(Inst)) {
Value *AccessPtr = MemPtr->getUnderlyingObject();
if (AccessPtr == AI ||
AA->alias(AI, 1, AccessPtr, 1) == AliasAnalysis::MustAlias)
return MemDepResult::getNone();
continue;
}
// See if this instruction mod/ref's the pointer.
AliasAnalysis::ModRefResult MRR = AA->getModRefInfo(Inst, MemPtr, MemSize);
if (MRR == AliasAnalysis::NoModRef)
continue;
// Loads don't depend on read-only instructions.
if (isa<LoadInst>(QueryInst) && MRR == AliasAnalysis::Ref)
continue;
// Otherwise, there is a dependence.
return MemDepResult::get(Inst);
}
// If we found nothing, return the non-local flag.
return MemDepResult::getNonLocal();
}
/// getDependency - Return the instruction on which a memory operation
/// depends.
MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
Instruction *ScanPos = QueryInst;
// Check for a cached result
MemDepResult &LocalCache = LocalDeps[QueryInst];
// If the cached entry is non-dirty, just return it. Note that this depends
// on MemDepResult's default constructing to 'dirty'.
if (!LocalCache.isDirty())
return LocalCache;
// Otherwise, if we have a dirty entry, we know we can start the scan at that
// instruction, which may save us some work.
if (Instruction *Inst = LocalCache.getInst()) {
ScanPos = Inst;
SmallPtrSet<Instruction*, 4> &InstMap = ReverseLocalDeps[Inst];
InstMap.erase(QueryInst);
if (InstMap.empty())
ReverseLocalDeps.erase(Inst);
}
// Do the scan.
LocalCache = getDependencyFrom(QueryInst, ScanPos, QueryInst->getParent());
// Remember the result!
if (Instruction *I = LocalCache.getInst())
ReverseLocalDeps[I].insert(QueryInst);
return LocalCache;
}
/// getNonLocalDependency - Perform a full dependency query for the
/// specified instruction, returning the set of blocks that the value is
/// potentially live across. The returned set of results will include a
/// "NonLocal" result for all blocks where the value is live across.
///
/// This method assumes the instruction returns a "nonlocal" dependency
/// within its own block.
///
const MemoryDependenceAnalysis::NonLocalDepInfo &
MemoryDependenceAnalysis::getNonLocalDependency(Instruction *QueryInst) {
assert(getDependency(QueryInst).isNonLocal() &&
"getNonLocalDependency should only be used on insts with non-local deps!");
PerInstNLInfo &CacheP = NonLocalDeps[QueryInst];
NonLocalDepInfo &Cache = CacheP.first;
/// DirtyBlocks - This is the set of blocks that need to be recomputed. In
/// the cached case, this can happen due to instructions being deleted etc. In
/// the uncached case, this starts out as the set of predecessors we care
/// about.
SmallVector<BasicBlock*, 32> DirtyBlocks;
if (!Cache.empty()) {
// Okay, we have a cache entry. If we know it is not dirty, just return it
// with no computation.
if (!CacheP.second) {
NumCacheNonLocal++;
return Cache;
}
// If we already have a partially computed set of results, scan them to
// determine what is dirty, seeding our initial DirtyBlocks worklist.
for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
I != E; ++I)
if (I->second.isDirty())
DirtyBlocks.push_back(I->first);
// Sort the cache so that we can do fast binary search lookups below.
std::sort(Cache.begin(), Cache.end());
++NumCacheDirtyNonLocal;
//cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
// << Cache.size() << " cached: " << *QueryInst;
} else {
// Seed DirtyBlocks with each of the preds of QueryInst's block.
BasicBlock *QueryBB = QueryInst->getParent();
DirtyBlocks.append(pred_begin(QueryBB), pred_end(QueryBB));
NumUncacheNonLocal++;
}
// Visited checked first, vector in sorted order.
SmallPtrSet<BasicBlock*, 64> Visited;
unsigned NumSortedEntries = Cache.size();
// Iterate while we still have blocks to update.
while (!DirtyBlocks.empty()) {
BasicBlock *DirtyBB = DirtyBlocks.back();
DirtyBlocks.pop_back();
// Already processed this block?
if (!Visited.insert(DirtyBB))
continue;
// Do a binary search to see if we already have an entry for this block in
// the cache set. If so, find it.
NonLocalDepInfo::iterator Entry =
std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
std::make_pair(DirtyBB, MemDepResult()));
if (Entry != Cache.begin() && (&*Entry)[-1].first == DirtyBB)
--Entry;
MemDepResult *ExistingResult = 0;
if (Entry != Cache.begin()+NumSortedEntries &&
Entry->first == DirtyBB) {
// If we already have an entry, and if it isn't already dirty, the block
// is done.
if (!Entry->second.isDirty())
continue;
// Otherwise, remember this slot so we can update the value.
ExistingResult = &Entry->second;
}
// If the dirty entry has a pointer, start scanning from it so we don't have
// to rescan the entire block.
BasicBlock::iterator ScanPos = DirtyBB->end();
if (ExistingResult) {
if (Instruction *Inst = ExistingResult->getInst()) {
ScanPos = Inst;
// We're removing QueryInst's use of Inst.
SmallPtrSet<Instruction*, 4> &InstMap = ReverseNonLocalDeps[Inst];
InstMap.erase(QueryInst);
if (InstMap.empty()) ReverseNonLocalDeps.erase(Inst);
}
}
// Find out if this block has a local dependency for QueryInst.
MemDepResult Dep = getDependencyFrom(QueryInst, ScanPos, DirtyBB);
// If we had a dirty entry for the block, update it. Otherwise, just add
// a new entry.
if (ExistingResult)
*ExistingResult = Dep;
else
Cache.push_back(std::make_pair(DirtyBB, Dep));
// If the block has a dependency (i.e. it isn't completely transparent to
// the value), remember the association!
if (!Dep.isNonLocal()) {
// Keep the ReverseNonLocalDeps map up to date so we can efficiently
// update this when we remove instructions.
if (Instruction *Inst = Dep.getInst())
ReverseNonLocalDeps[Inst].insert(QueryInst);
} else {
// If the block *is* completely transparent to the load, we need to check
// the predecessors of this block. Add them to our worklist.
DirtyBlocks.append(pred_begin(DirtyBB), pred_end(DirtyBB));
}
}
return Cache;
}
/// removeInstruction - Remove an instruction from the dependence analysis,
/// updating the dependence of instructions that previously depended on it.
/// This method attempts to keep the cache coherent using the reverse map.
void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
// Walk through the Non-local dependencies, removing this one as the value
// for any cached queries.
NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
if (NLDI != NonLocalDeps.end()) {
NonLocalDepInfo &BlockMap = NLDI->second.first;
for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
DI != DE; ++DI)
if (Instruction *Inst = DI->second.getInst())
ReverseNonLocalDeps[Inst].erase(RemInst);
NonLocalDeps.erase(NLDI);
}
// If we have a cached local dependence query for this instruction, remove it.
//
LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
if (LocalDepEntry != LocalDeps.end()) {
// Remove us from DepInst's reverse set now that the local dep info is gone.
if (Instruction *Inst = LocalDepEntry->second.getInst()) {
SmallPtrSet<Instruction*, 4> &RLD = ReverseLocalDeps[Inst];
RLD.erase(RemInst);
if (RLD.empty())
ReverseLocalDeps.erase(Inst);
}
// Remove this local dependency info.
LocalDeps.erase(LocalDepEntry);
}
// Loop over all of the things that depend on the instruction we're removing.
//
SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
if (ReverseDepIt != ReverseLocalDeps.end()) {
SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
// RemInst can't be the terminator if it has stuff depending on it.
assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
"Nothing can locally depend on a terminator");
// Anything that was locally dependent on RemInst is now going to be
// dependent on the instruction after RemInst. It will have the dirty flag
// set so it will rescan. This saves having to scan the entire block to get
// to this point.
Instruction *NewDepInst = next(BasicBlock::iterator(RemInst));
for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
E = ReverseDeps.end(); I != E; ++I) {
Instruction *InstDependingOnRemInst = *I;
assert(InstDependingOnRemInst != RemInst &&
"Already removed our local dep info");
LocalDeps[InstDependingOnRemInst] = MemDepResult::getDirty(NewDepInst);
// Make sure to remember that new things depend on NewDepInst.
ReverseDepsToAdd.push_back(std::make_pair(NewDepInst,
InstDependingOnRemInst));
}
ReverseLocalDeps.erase(ReverseDepIt);
// Add new reverse deps after scanning the set, to avoid invalidating the
// 'ReverseDeps' reference.
while (!ReverseDepsToAdd.empty()) {
ReverseLocalDeps[ReverseDepsToAdd.back().first]
.insert(ReverseDepsToAdd.back().second);
ReverseDepsToAdd.pop_back();
}
}
ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
if (ReverseDepIt != ReverseNonLocalDeps.end()) {
SmallPtrSet<Instruction*, 4>& set = ReverseDepIt->second;
for (SmallPtrSet<Instruction*, 4>::iterator I = set.begin(), E = set.end();
I != E; ++I) {
assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
PerInstNLInfo &INLD = NonLocalDeps[*I];
// The information is now dirty!
INLD.second = true;
for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
DE = INLD.first.end(); DI != DE; ++DI) {
if (DI->second.getInst() != RemInst) continue;
// Convert to a dirty entry for the subsequent instruction.
Instruction *NextI = 0;
if (!RemInst->isTerminator()) {
NextI = next(BasicBlock::iterator(RemInst));
ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
}
DI->second = MemDepResult::getDirty(NextI);
}
}
ReverseNonLocalDeps.erase(ReverseDepIt);
// Add new reverse deps after scanning the set, to avoid invalidating 'Set'
while (!ReverseDepsToAdd.empty()) {
ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
.insert(ReverseDepsToAdd.back().second);
ReverseDepsToAdd.pop_back();
}
}
assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
AA->deleteValue(RemInst);
DEBUG(verifyRemoved(RemInst));
}
/// verifyRemoved - Verify that the specified instruction does not occur
/// in our internal data structures.
void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
E = LocalDeps.end(); I != E; ++I) {
assert(I->first != D && "Inst occurs in data structures");
assert(I->second.getInst() != D &&
"Inst occurs in data structures");
}
for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
E = NonLocalDeps.end(); I != E; ++I) {
assert(I->first != D && "Inst occurs in data structures");
const PerInstNLInfo &INLD = I->second;
for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
EE = INLD.first.end(); II != EE; ++II)
assert(II->second.getInst() != D && "Inst occurs in data structures");
}
for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
E = ReverseLocalDeps.end(); I != E; ++I) {
assert(I->first != D && "Inst occurs in data structures");
for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
EE = I->second.end(); II != EE; ++II)
assert(*II != D && "Inst occurs in data structures");
}
for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
E = ReverseNonLocalDeps.end();
I != E; ++I) {
assert(I->first != D && "Inst occurs in data structures");
for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
EE = I->second.end(); II != EE; ++II)
assert(*II != D && "Inst occurs in data structures");
}
}