mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-21 19:32:16 +00:00
149 lines
5.3 KiB
C++
149 lines
5.3 KiB
C++
|
//===-- ARM64CleanupLocalDynamicTLSPass.cpp -----------------------*- C++ -*-=//
|
||
|
//
|
||
|
// The LLVM Compiler Infrastructure
|
||
|
//
|
||
|
// This file is distributed under the University of Illinois Open Source
|
||
|
// License. See LICENSE.TXT for details.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// Local-dynamic access to thread-local variables proceeds in three stages.
|
||
|
//
|
||
|
// 1. The offset of this Module's thread-local area from TPIDR_EL0 is calculated
|
||
|
// in much the same way as a general-dynamic TLS-descriptor access against
|
||
|
// the special symbol _TLS_MODULE_BASE.
|
||
|
// 2. The variable's offset from _TLS_MODULE_BASE_ is calculated using
|
||
|
// instructions with "dtprel" modifiers.
|
||
|
// 3. These two are added, together with TPIDR_EL0, to obtain the variable's
|
||
|
// true address.
|
||
|
//
|
||
|
// This is only better than general-dynamic access to the variable if two or
|
||
|
// more of the first stage TLS-descriptor calculations can be combined. This
|
||
|
// pass looks through a function and performs such combinations.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
#include "ARM64.h"
|
||
|
#include "ARM64InstrInfo.h"
|
||
|
#include "ARM64MachineFunctionInfo.h"
|
||
|
#include "ARM64TargetMachine.h"
|
||
|
#include "llvm/CodeGen/MachineDominators.h"
|
||
|
#include "llvm/CodeGen/MachineFunction.h"
|
||
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
||
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
||
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
||
|
using namespace llvm;
|
||
|
|
||
|
namespace {
|
||
|
struct LDTLSCleanup : public MachineFunctionPass {
|
||
|
static char ID;
|
||
|
LDTLSCleanup() : MachineFunctionPass(ID) {}
|
||
|
|
||
|
virtual bool runOnMachineFunction(MachineFunction &MF) {
|
||
|
ARM64FunctionInfo *AFI = MF.getInfo<ARM64FunctionInfo>();
|
||
|
if (AFI->getNumLocalDynamicTLSAccesses() < 2) {
|
||
|
// No point folding accesses if there isn't at least two.
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
|
||
|
return VisitNode(DT->getRootNode(), 0);
|
||
|
}
|
||
|
|
||
|
// Visit the dominator subtree rooted at Node in pre-order.
|
||
|
// If TLSBaseAddrReg is non-null, then use that to replace any
|
||
|
// TLS_base_addr instructions. Otherwise, create the register
|
||
|
// when the first such instruction is seen, and then use it
|
||
|
// as we encounter more instructions.
|
||
|
bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
|
||
|
MachineBasicBlock *BB = Node->getBlock();
|
||
|
bool Changed = false;
|
||
|
|
||
|
// Traverse the current block.
|
||
|
for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
|
||
|
++I) {
|
||
|
switch (I->getOpcode()) {
|
||
|
case ARM64::TLSDESC_BLR:
|
||
|
// Make sure it's a local dynamic access.
|
||
|
if (!I->getOperand(1).isSymbol() ||
|
||
|
strcmp(I->getOperand(1).getSymbolName(), "_TLS_MODULE_BASE_"))
|
||
|
break;
|
||
|
|
||
|
if (TLSBaseAddrReg)
|
||
|
I = replaceTLSBaseAddrCall(I, TLSBaseAddrReg);
|
||
|
else
|
||
|
I = setRegister(I, &TLSBaseAddrReg);
|
||
|
Changed = true;
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Visit the children of this block in the dominator tree.
|
||
|
for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
|
||
|
I != E; ++I) {
|
||
|
Changed |= VisitNode(*I, TLSBaseAddrReg);
|
||
|
}
|
||
|
|
||
|
return Changed;
|
||
|
}
|
||
|
|
||
|
// Replace the TLS_base_addr instruction I with a copy from
|
||
|
// TLSBaseAddrReg, returning the new instruction.
|
||
|
MachineInstr *replaceTLSBaseAddrCall(MachineInstr *I,
|
||
|
unsigned TLSBaseAddrReg) {
|
||
|
MachineFunction *MF = I->getParent()->getParent();
|
||
|
const ARM64TargetMachine *TM =
|
||
|
static_cast<const ARM64TargetMachine *>(&MF->getTarget());
|
||
|
const ARM64InstrInfo *TII = TM->getInstrInfo();
|
||
|
|
||
|
// Insert a Copy from TLSBaseAddrReg to x0, which is where the rest of the
|
||
|
// code sequence assumes the address will be.
|
||
|
MachineInstr *Copy =
|
||
|
BuildMI(*I->getParent(), I, I->getDebugLoc(),
|
||
|
TII->get(TargetOpcode::COPY), ARM64::X0).addReg(TLSBaseAddrReg);
|
||
|
|
||
|
// Erase the TLS_base_addr instruction.
|
||
|
I->eraseFromParent();
|
||
|
|
||
|
return Copy;
|
||
|
}
|
||
|
|
||
|
// Create a virtal register in *TLSBaseAddrReg, and populate it by
|
||
|
// inserting a copy instruction after I. Returns the new instruction.
|
||
|
MachineInstr *setRegister(MachineInstr *I, unsigned *TLSBaseAddrReg) {
|
||
|
MachineFunction *MF = I->getParent()->getParent();
|
||
|
const ARM64TargetMachine *TM =
|
||
|
static_cast<const ARM64TargetMachine *>(&MF->getTarget());
|
||
|
const ARM64InstrInfo *TII = TM->getInstrInfo();
|
||
|
|
||
|
// Create a virtual register for the TLS base address.
|
||
|
MachineRegisterInfo &RegInfo = MF->getRegInfo();
|
||
|
*TLSBaseAddrReg = RegInfo.createVirtualRegister(&ARM64::GPR64RegClass);
|
||
|
|
||
|
// Insert a copy from X0 to TLSBaseAddrReg for later.
|
||
|
MachineInstr *Next = I->getNextNode();
|
||
|
MachineInstr *Copy = BuildMI(*I->getParent(), Next, I->getDebugLoc(),
|
||
|
TII->get(TargetOpcode::COPY),
|
||
|
*TLSBaseAddrReg).addReg(ARM64::X0);
|
||
|
|
||
|
return Copy;
|
||
|
}
|
||
|
|
||
|
virtual const char *getPassName() const {
|
||
|
return "Local Dynamic TLS Access Clean-up";
|
||
|
}
|
||
|
|
||
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
||
|
AU.setPreservesCFG();
|
||
|
AU.addRequired<MachineDominatorTree>();
|
||
|
MachineFunctionPass::getAnalysisUsage(AU);
|
||
|
}
|
||
|
};
|
||
|
}
|
||
|
|
||
|
char LDTLSCleanup::ID = 0;
|
||
|
FunctionPass *llvm::createARM64CleanupLocalDynamicTLSPass() {
|
||
|
return new LDTLSCleanup();
|
||
|
}
|