llvm-6502/utils/TableGen/DAGISelEmitter.cpp

2665 lines
104 KiB
C++
Raw Normal View History

//===- DAGISelEmitter.cpp - Generate an instruction selector --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend emits a DAG instruction selector.
//
//===----------------------------------------------------------------------===//
#include "DAGISelEmitter.h"
#include "Record.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Debug.h"
#include <algorithm>
#include <set>
using namespace llvm;
//===----------------------------------------------------------------------===//
// Helpers for working with extended types.
/// FilterVTs - Filter a list of VT's according to a predicate.
///
template<typename T>
static std::vector<MVT::ValueType>
FilterVTs(const std::vector<MVT::ValueType> &InVTs, T Filter) {
std::vector<MVT::ValueType> Result;
for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
if (Filter(InVTs[i]))
Result.push_back(InVTs[i]);
return Result;
}
template<typename T>
static std::vector<unsigned char>
FilterEVTs(const std::vector<unsigned char> &InVTs, T Filter) {
std::vector<unsigned char> Result;
for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
if (Filter((MVT::ValueType)InVTs[i]))
Result.push_back(InVTs[i]);
return Result;
}
static std::vector<unsigned char>
ConvertVTs(const std::vector<MVT::ValueType> &InVTs) {
std::vector<unsigned char> Result;
for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
Result.push_back(InVTs[i]);
return Result;
}
static bool LHSIsSubsetOfRHS(const std::vector<unsigned char> &LHS,
const std::vector<unsigned char> &RHS) {
if (LHS.size() > RHS.size()) return false;
for (unsigned i = 0, e = LHS.size(); i != e; ++i)
if (std::find(RHS.begin(), RHS.end(), LHS[i]) == RHS.end())
return false;
return true;
}
/// isExtIntegerVT - Return true if the specified extended value type vector
/// contains isInt or an integer value type.
static bool isExtIntegerInVTs(std::vector<unsigned char> EVTs) {
assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
return EVTs[0] == MVT::isInt || !(FilterEVTs(EVTs, MVT::isInteger).empty());
}
/// isExtFloatingPointVT - Return true if the specified extended value type
/// vector contains isFP or a FP value type.
static bool isExtFloatingPointInVTs(std::vector<unsigned char> EVTs) {
assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
return EVTs[0] == MVT::isFP || !(FilterEVTs(EVTs, MVT::isFloatingPoint).empty());
}
//===----------------------------------------------------------------------===//
// SDTypeConstraint implementation
//
SDTypeConstraint::SDTypeConstraint(Record *R) {
OperandNo = R->getValueAsInt("OperandNum");
if (R->isSubClassOf("SDTCisVT")) {
ConstraintType = SDTCisVT;
x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
} else if (R->isSubClassOf("SDTCisPtrTy")) {
ConstraintType = SDTCisPtrTy;
} else if (R->isSubClassOf("SDTCisInt")) {
ConstraintType = SDTCisInt;
} else if (R->isSubClassOf("SDTCisFP")) {
ConstraintType = SDTCisFP;
} else if (R->isSubClassOf("SDTCisSameAs")) {
ConstraintType = SDTCisSameAs;
x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
} else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
ConstraintType = SDTCisVTSmallerThanOp;
x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
R->getValueAsInt("OtherOperandNum");
} else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
ConstraintType = SDTCisOpSmallerThanOp;
x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
R->getValueAsInt("BigOperandNum");
} else {
std::cerr << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
exit(1);
}
}
/// getOperandNum - Return the node corresponding to operand #OpNo in tree
/// N, which has NumResults results.
TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo,
TreePatternNode *N,
unsigned NumResults) const {
assert(NumResults <= 1 &&
"We only work with nodes with zero or one result so far!");
if (OpNo < NumResults)
return N; // FIXME: need value #
else
return N->getChild(OpNo-NumResults);
}
/// ApplyTypeConstraint - Given a node in a pattern, apply this type
/// constraint to the nodes operands. This returns true if it makes a
/// change, false otherwise. If a type contradiction is found, throw an
/// exception.
bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
const SDNodeInfo &NodeInfo,
TreePattern &TP) const {
unsigned NumResults = NodeInfo.getNumResults();
assert(NumResults <= 1 &&
"We only work with nodes with zero or one result so far!");
// Check that the number of operands is sane.
if (NodeInfo.getNumOperands() >= 0) {
if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands())
TP.error(N->getOperator()->getName() + " node requires exactly " +
itostr(NodeInfo.getNumOperands()) + " operands!");
}
const CodeGenTarget &CGT = TP.getDAGISelEmitter().getTargetInfo();
TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults);
switch (ConstraintType) {
default: assert(0 && "Unknown constraint type!");
case SDTCisVT:
// Operand must be a particular type.
return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP);
case SDTCisPtrTy: {
// Operand must be same as target pointer type.
return NodeToApply->UpdateNodeType(CGT.getPointerType(), TP);
}
case SDTCisInt: {
// If there is only one integer type supported, this must be it.
std::vector<MVT::ValueType> IntVTs =
FilterVTs(CGT.getLegalValueTypes(), MVT::isInteger);
// If we found exactly one supported integer type, apply it.
if (IntVTs.size() == 1)
return NodeToApply->UpdateNodeType(IntVTs[0], TP);
return NodeToApply->UpdateNodeType(MVT::isInt, TP);
}
case SDTCisFP: {
// If there is only one FP type supported, this must be it.
std::vector<MVT::ValueType> FPVTs =
FilterVTs(CGT.getLegalValueTypes(), MVT::isFloatingPoint);
// If we found exactly one supported FP type, apply it.
if (FPVTs.size() == 1)
return NodeToApply->UpdateNodeType(FPVTs[0], TP);
return NodeToApply->UpdateNodeType(MVT::isFP, TP);
}
case SDTCisSameAs: {
TreePatternNode *OtherNode =
getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults);
return NodeToApply->UpdateNodeType(OtherNode->getExtTypes(), TP) |
OtherNode->UpdateNodeType(NodeToApply->getExtTypes(), TP);
}
case SDTCisVTSmallerThanOp: {
// The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
// have an integer type that is smaller than the VT.
if (!NodeToApply->isLeaf() ||
!dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) ||
!static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
->isSubClassOf("ValueType"))
TP.error(N->getOperator()->getName() + " expects a VT operand!");
MVT::ValueType VT =
getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
if (!MVT::isInteger(VT))
TP.error(N->getOperator()->getName() + " VT operand must be integer!");
TreePatternNode *OtherNode =
getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults);
// It must be integer.
bool MadeChange = false;
MadeChange |= OtherNode->UpdateNodeType(MVT::isInt, TP);
// This code only handles nodes that have one type set. Assert here so
// that we can change this if we ever need to deal with multiple value
// types at this point.
assert(OtherNode->getExtTypes().size() == 1 && "Node has too many types!");
if (OtherNode->hasTypeSet() && OtherNode->getTypeNum(0) <= VT)
OtherNode->UpdateNodeType(MVT::Other, TP); // Throw an error.
return false;
}
case SDTCisOpSmallerThanOp: {
TreePatternNode *BigOperand =
getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults);
// Both operands must be integer or FP, but we don't care which.
bool MadeChange = false;
// This code does not currently handle nodes which have multiple types,
// where some types are integer, and some are fp. Assert that this is not
// the case.
assert(!(isExtIntegerInVTs(NodeToApply->getExtTypes()) &&
isExtFloatingPointInVTs(NodeToApply->getExtTypes())) &&
!(isExtIntegerInVTs(BigOperand->getExtTypes()) &&
isExtFloatingPointInVTs(BigOperand->getExtTypes())) &&
"SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
if (isExtIntegerInVTs(NodeToApply->getExtTypes()))
MadeChange |= BigOperand->UpdateNodeType(MVT::isInt, TP);
else if (isExtFloatingPointInVTs(NodeToApply->getExtTypes()))
MadeChange |= BigOperand->UpdateNodeType(MVT::isFP, TP);
if (isExtIntegerInVTs(BigOperand->getExtTypes()))
MadeChange |= NodeToApply->UpdateNodeType(MVT::isInt, TP);
else if (isExtFloatingPointInVTs(BigOperand->getExtTypes()))
MadeChange |= NodeToApply->UpdateNodeType(MVT::isFP, TP);
std::vector<MVT::ValueType> VTs = CGT.getLegalValueTypes();
if (isExtIntegerInVTs(NodeToApply->getExtTypes())) {
VTs = FilterVTs(VTs, MVT::isInteger);
} else if (isExtFloatingPointInVTs(NodeToApply->getExtTypes())) {
VTs = FilterVTs(VTs, MVT::isFloatingPoint);
} else {
VTs.clear();
}
switch (VTs.size()) {
default: // Too many VT's to pick from.
case 0: break; // No info yet.
case 1:
// Only one VT of this flavor. Cannot ever satisify the constraints.
return NodeToApply->UpdateNodeType(MVT::Other, TP); // throw
case 2:
// If we have exactly two possible types, the little operand must be the
// small one, the big operand should be the big one. Common with
// float/double for example.
assert(VTs[0] < VTs[1] && "Should be sorted!");
MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP);
MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP);
break;
}
return MadeChange;
}
}
return false;
}
//===----------------------------------------------------------------------===//
// SDNodeInfo implementation
//
SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
EnumName = R->getValueAsString("Opcode");
SDClassName = R->getValueAsString("SDClass");
Record *TypeProfile = R->getValueAsDef("TypeProfile");
NumResults = TypeProfile->getValueAsInt("NumResults");
NumOperands = TypeProfile->getValueAsInt("NumOperands");
// Parse the properties.
Properties = 0;
std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
if (PropList[i]->getName() == "SDNPCommutative") {
Properties |= 1 << SDNPCommutative;
} else if (PropList[i]->getName() == "SDNPAssociative") {
Properties |= 1 << SDNPAssociative;
} else if (PropList[i]->getName() == "SDNPHasChain") {
Properties |= 1 << SDNPHasChain;
} else {
std::cerr << "Unknown SD Node property '" << PropList[i]->getName()
<< "' on node '" << R->getName() << "'!\n";
exit(1);
}
}
// Parse the type constraints.
std::vector<Record*> ConstraintList =
TypeProfile->getValueAsListOfDefs("Constraints");
TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
}
//===----------------------------------------------------------------------===//
// TreePatternNode implementation
//
TreePatternNode::~TreePatternNode() {
#if 0 // FIXME: implement refcounted tree nodes!
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
delete getChild(i);
#endif
}
/// UpdateNodeType - Set the node type of N to VT if VT contains
/// information. If N already contains a conflicting type, then throw an
/// exception. This returns true if any information was updated.
///
bool TreePatternNode::UpdateNodeType(const std::vector<unsigned char> &ExtVTs,
TreePattern &TP) {
assert(!ExtVTs.empty() && "Cannot update node type with empty type vector!");
if (ExtVTs[0] == MVT::isUnknown || LHSIsSubsetOfRHS(getExtTypes(), ExtVTs))
return false;
if (isTypeCompletelyUnknown() || LHSIsSubsetOfRHS(ExtVTs, getExtTypes())) {
setTypes(ExtVTs);
return true;
}
if (ExtVTs[0] == MVT::isInt && isExtIntegerInVTs(getExtTypes())) {
assert(hasTypeSet() && "should be handled above!");
std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger);
if (getExtTypes() == FVTs)
return false;
setTypes(FVTs);
return true;
}
if (ExtVTs[0] == MVT::isFP && isExtFloatingPointInVTs(getExtTypes())) {
assert(hasTypeSet() && "should be handled above!");
std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isFloatingPoint);
if (getExtTypes() == FVTs)
return false;
setTypes(FVTs);
return true;
}
// If we know this is an int or fp type, and we are told it is a specific one,
// take the advice.
//
// Similarly, we should probably set the type here to the intersection of
// {isInt|isFP} and ExtVTs
if ((getExtTypeNum(0) == MVT::isInt && isExtIntegerInVTs(ExtVTs)) ||
(getExtTypeNum(0) == MVT::isFP && isExtFloatingPointInVTs(ExtVTs))) {
setTypes(ExtVTs);
return true;
}
if (isLeaf()) {
dump();
std::cerr << " ";
TP.error("Type inference contradiction found in node!");
} else {
TP.error("Type inference contradiction found in node " +
getOperator()->getName() + "!");
}
return true; // unreachable
}
void TreePatternNode::print(std::ostream &OS) const {
if (isLeaf()) {
OS << *getLeafValue();
} else {
OS << "(" << getOperator()->getName();
}
// FIXME: At some point we should handle printing all the value types for
// nodes that are multiply typed.
switch (getExtTypeNum(0)) {
case MVT::Other: OS << ":Other"; break;
case MVT::isInt: OS << ":isInt"; break;
case MVT::isFP : OS << ":isFP"; break;
case MVT::isUnknown: ; /*OS << ":?";*/ break;
default: OS << ":" << getTypeNum(0); break;
}
if (!isLeaf()) {
if (getNumChildren() != 0) {
OS << " ";
getChild(0)->print(OS);
for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
OS << ", ";
getChild(i)->print(OS);
}
}
OS << ")";
}
if (!PredicateFn.empty())
OS << "<<P:" << PredicateFn << ">>";
if (TransformFn)
OS << "<<X:" << TransformFn->getName() << ">>";
if (!getName().empty())
OS << ":$" << getName();
}
void TreePatternNode::dump() const {
print(std::cerr);
}
/// isIsomorphicTo - Return true if this node is recursively isomorphic to
/// the specified node. For this comparison, all of the state of the node
/// is considered, except for the assigned name. Nodes with differing names
/// that are otherwise identical are considered isomorphic.
bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N) const {
if (N == this) return true;
if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
getPredicateFn() != N->getPredicateFn() ||
getTransformFn() != N->getTransformFn())
return false;
if (isLeaf()) {
if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue()))
if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue()))
return DI->getDef() == NDI->getDef();
return getLeafValue() == N->getLeafValue();
}
if (N->getOperator() != getOperator() ||
N->getNumChildren() != getNumChildren()) return false;
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
if (!getChild(i)->isIsomorphicTo(N->getChild(i)))
return false;
return true;
}
/// clone - Make a copy of this tree and all of its children.
///
TreePatternNode *TreePatternNode::clone() const {
TreePatternNode *New;
if (isLeaf()) {
New = new TreePatternNode(getLeafValue());
} else {
std::vector<TreePatternNode*> CChildren;
CChildren.reserve(Children.size());
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
CChildren.push_back(getChild(i)->clone());
New = new TreePatternNode(getOperator(), CChildren);
}
New->setName(getName());
New->setTypes(getExtTypes());
New->setPredicateFn(getPredicateFn());
New->setTransformFn(getTransformFn());
return New;
}
/// SubstituteFormalArguments - Replace the formal arguments in this tree
/// with actual values specified by ArgMap.
void TreePatternNode::
SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
if (isLeaf()) return;
for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
TreePatternNode *Child = getChild(i);
if (Child->isLeaf()) {
Init *Val = Child->getLeafValue();
if (dynamic_cast<DefInit*>(Val) &&
static_cast<DefInit*>(Val)->getDef()->getName() == "node") {
// We found a use of a formal argument, replace it with its value.
Child = ArgMap[Child->getName()];
assert(Child && "Couldn't find formal argument!");
setChild(i, Child);
}
} else {
getChild(i)->SubstituteFormalArguments(ArgMap);
}
}
}
/// InlinePatternFragments - If this pattern refers to any pattern
/// fragments, inline them into place, giving us a pattern without any
/// PatFrag references.
TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
if (isLeaf()) return this; // nothing to do.
Record *Op = getOperator();
if (!Op->isSubClassOf("PatFrag")) {
// Just recursively inline children nodes.
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
setChild(i, getChild(i)->InlinePatternFragments(TP));
return this;
}
// Otherwise, we found a reference to a fragment. First, look up its
// TreePattern record.
TreePattern *Frag = TP.getDAGISelEmitter().getPatternFragment(Op);
// Verify that we are passing the right number of operands.
if (Frag->getNumArgs() != Children.size())
TP.error("'" + Op->getName() + "' fragment requires " +
utostr(Frag->getNumArgs()) + " operands!");
TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
// Resolve formal arguments to their actual value.
if (Frag->getNumArgs()) {
// Compute the map of formal to actual arguments.
std::map<std::string, TreePatternNode*> ArgMap;
for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
FragTree->SubstituteFormalArguments(ArgMap);
}
FragTree->setName(getName());
FragTree->UpdateNodeType(getExtTypes(), TP);
// Get a new copy of this fragment to stitch into here.
//delete this; // FIXME: implement refcounting!
return FragTree;
}
/// getIntrinsicType - Check to see if the specified record has an intrinsic
/// type which should be applied to it. This infer the type of register
/// references from the register file information, for example.
///
static std::vector<unsigned char> getIntrinsicType(Record *R, bool NotRegisters,
TreePattern &TP) {
// Some common return values
std::vector<unsigned char> Unknown(1, MVT::isUnknown);
std::vector<unsigned char> Other(1, MVT::Other);
// Check to see if this is a register or a register class...
if (R->isSubClassOf("RegisterClass")) {
if (NotRegisters)
return Unknown;
const CodeGenRegisterClass &RC =
TP.getDAGISelEmitter().getTargetInfo().getRegisterClass(R);
return ConvertVTs(RC.getValueTypes());
} else if (R->isSubClassOf("PatFrag")) {
// Pattern fragment types will be resolved when they are inlined.
return Unknown;
} else if (R->isSubClassOf("Register")) {
// If the register appears in exactly one regclass, and the regclass has one
// value type, use it as the known type.
const CodeGenTarget &T = TP.getDAGISelEmitter().getTargetInfo();
if (const CodeGenRegisterClass *RC = T.getRegisterClassForRegister(R))
return ConvertVTs(RC->getValueTypes());
return Unknown;
} else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
// Using a VTSDNode or CondCodeSDNode.
return Other;
} else if (R->isSubClassOf("ComplexPattern")) {
std::vector<unsigned char>
ComplexPat(1, TP.getDAGISelEmitter().getComplexPattern(R).getValueType());
return ComplexPat;
} else if (R->getName() == "node" || R->getName() == "srcvalue") {
// Placeholder.
return Unknown;
}
TP.error("Unknown node flavor used in pattern: " + R->getName());
return Other;
}
/// ApplyTypeConstraints - Apply all of the type constraints relevent to
/// this node and its children in the tree. This returns true if it makes a
/// change, false otherwise. If a type contradiction is found, throw an
/// exception.
bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
if (isLeaf()) {
if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
// If it's a regclass or something else known, include the type.
return UpdateNodeType(getIntrinsicType(DI->getDef(), NotRegisters, TP),
TP);
} else if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) {
// Int inits are always integers. :)
bool MadeChange = UpdateNodeType(MVT::isInt, TP);
if (hasTypeSet()) {
// At some point, it may make sense for this tree pattern to have
// multiple types. Assert here that it does not, so we revisit this
// code when appropriate.
assert(getExtTypes().size() == 1 && "TreePattern has too many types!");
unsigned Size = MVT::getSizeInBits(getTypeNum(0));
// Make sure that the value is representable for this type.
if (Size < 32) {
int Val = (II->getValue() << (32-Size)) >> (32-Size);
if (Val != II->getValue())
TP.error("Sign-extended integer value '" + itostr(II->getValue()) +
"' is out of range for type 'MVT::" +
getEnumName(getTypeNum(0)) + "'!");
}
}
return MadeChange;
}
return false;
}
// special handling for set, which isn't really an SDNode.
if (getOperator()->getName() == "set") {
assert (getNumChildren() == 2 && "Only handle 2 operand set's for now!");
bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters);
// Types of operands must match.
MadeChange |= getChild(0)->UpdateNodeType(getChild(1)->getExtTypes(), TP);
MadeChange |= getChild(1)->UpdateNodeType(getChild(0)->getExtTypes(), TP);
MadeChange |= UpdateNodeType(MVT::isVoid, TP);
return MadeChange;
} else if (getOperator()->isSubClassOf("SDNode")) {
const SDNodeInfo &NI = TP.getDAGISelEmitter().getSDNodeInfo(getOperator());
bool MadeChange = NI.ApplyTypeConstraints(this, TP);
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
// Branch, etc. do not produce results and top-level forms in instr pattern
// must have void types.
if (NI.getNumResults() == 0)
MadeChange |= UpdateNodeType(MVT::isVoid, TP);
return MadeChange;
} else if (getOperator()->isSubClassOf("Instruction")) {
const DAGInstruction &Inst =
TP.getDAGISelEmitter().getInstruction(getOperator());
bool MadeChange = false;
unsigned NumResults = Inst.getNumResults();
assert(NumResults <= 1 &&
"Only supports zero or one result instrs!");
// Apply the result type to the node
if (NumResults == 0) {
MadeChange = UpdateNodeType(MVT::isVoid, TP);
} else {
Record *ResultNode = Inst.getResult(0);
assert(ResultNode->isSubClassOf("RegisterClass") &&
"Operands should be register classes!");
const CodeGenRegisterClass &RC =
TP.getDAGISelEmitter().getTargetInfo().getRegisterClass(ResultNode);
MadeChange = UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
}
if (getNumChildren() != Inst.getNumOperands())
TP.error("Instruction '" + getOperator()->getName() + " expects " +
utostr(Inst.getNumOperands()) + " operands, not " +
utostr(getNumChildren()) + " operands!");
for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
Record *OperandNode = Inst.getOperand(i);
MVT::ValueType VT;
if (OperandNode->isSubClassOf("RegisterClass")) {
const CodeGenRegisterClass &RC =
TP.getDAGISelEmitter().getTargetInfo().getRegisterClass(OperandNode);
//VT = RC.getValueTypeNum(0);
MadeChange |=getChild(i)->UpdateNodeType(ConvertVTs(RC.getValueTypes()),
TP);
} else if (OperandNode->isSubClassOf("Operand")) {
VT = getValueType(OperandNode->getValueAsDef("Type"));
MadeChange |= getChild(i)->UpdateNodeType(VT, TP);
} else {
assert(0 && "Unknown operand type!");
abort();
}
MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
}
return MadeChange;
} else {
assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
// Node transforms always take one operand, and take and return the same
// type.
if (getNumChildren() != 1)
TP.error("Node transform '" + getOperator()->getName() +
"' requires one operand!");
bool MadeChange = UpdateNodeType(getChild(0)->getExtTypes(), TP);
MadeChange |= getChild(0)->UpdateNodeType(getExtTypes(), TP);
return MadeChange;
}
}
/// canPatternMatch - If it is impossible for this pattern to match on this
/// target, fill in Reason and return false. Otherwise, return true. This is
/// used as a santity check for .td files (to prevent people from writing stuff
/// that can never possibly work), and to prevent the pattern permuter from
/// generating stuff that is useless.
bool TreePatternNode::canPatternMatch(std::string &Reason, DAGISelEmitter &ISE){
if (isLeaf()) return true;
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
if (!getChild(i)->canPatternMatch(Reason, ISE))
return false;
// If this node is a commutative operator, check that the LHS isn't an
// immediate.
const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(getOperator());
if (NodeInfo.hasProperty(SDNodeInfo::SDNPCommutative)) {
// Scan all of the operands of the node and make sure that only the last one
// is a constant node.
for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i)
if (!getChild(i)->isLeaf() &&
getChild(i)->getOperator()->getName() == "imm") {
Reason = "Immediate value must be on the RHS of commutative operators!";
return false;
}
}
return true;
}
//===----------------------------------------------------------------------===//
// TreePattern implementation
//
TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) {
isInputPattern = isInput;
for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i)));
}
TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) {
isInputPattern = isInput;
Trees.push_back(ParseTreePattern(Pat));
}
TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) {
isInputPattern = isInput;
Trees.push_back(Pat);
}
void TreePattern::error(const std::string &Msg) const {
dump();
throw "In " + TheRecord->getName() + ": " + Msg;
}
TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) {
Record *Operator = Dag->getNodeType();
if (Operator->isSubClassOf("ValueType")) {
// If the operator is a ValueType, then this must be "type cast" of a leaf
// node.
if (Dag->getNumArgs() != 1)
error("Type cast only takes one operand!");
Init *Arg = Dag->getArg(0);
TreePatternNode *New;
if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) {
Record *R = DI->getDef();
if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
Dag->setArg(0, new DagInit(R,
std::vector<std::pair<Init*, std::string> >()));
return ParseTreePattern(Dag);
}
New = new TreePatternNode(DI);
} else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
New = ParseTreePattern(DI);
} else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
New = new TreePatternNode(II);
if (!Dag->getArgName(0).empty())
error("Constant int argument should not have a name!");
} else {
Arg->dump();
error("Unknown leaf value for tree pattern!");
return 0;
}
// Apply the type cast.
New->UpdateNodeType(getValueType(Operator), *this);
New->setName(Dag->getArgName(0));
return New;
}
// Verify that this is something that makes sense for an operator.
if (!Operator->isSubClassOf("PatFrag") && !Operator->isSubClassOf("SDNode") &&
!Operator->isSubClassOf("Instruction") &&
!Operator->isSubClassOf("SDNodeXForm") &&
Operator->getName() != "set")
error("Unrecognized node '" + Operator->getName() + "'!");
// Check to see if this is something that is illegal in an input pattern.
if (isInputPattern && (Operator->isSubClassOf("Instruction") ||
Operator->isSubClassOf("SDNodeXForm")))
error("Cannot use '" + Operator->getName() + "' in an input pattern!");
std::vector<TreePatternNode*> Children;
for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) {
Init *Arg = Dag->getArg(i);
if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
Children.push_back(ParseTreePattern(DI));
if (Children.back()->getName().empty())
Children.back()->setName(Dag->getArgName(i));
} else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) {
Record *R = DefI->getDef();
// Direct reference to a leaf DagNode or PatFrag? Turn it into a
// TreePatternNode if its own.
if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
Dag->setArg(i, new DagInit(R,
std::vector<std::pair<Init*, std::string> >()));
--i; // Revisit this node...
} else {
TreePatternNode *Node = new TreePatternNode(DefI);
Node->setName(Dag->getArgName(i));
Children.push_back(Node);
// Input argument?
if (R->getName() == "node") {
if (Dag->getArgName(i).empty())
error("'node' argument requires a name to match with operand list");
Args.push_back(Dag->getArgName(i));
}
}
} else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
TreePatternNode *Node = new TreePatternNode(II);
if (!Dag->getArgName(i).empty())
error("Constant int argument should not have a name!");
Children.push_back(Node);
} else {
std::cerr << '"';
Arg->dump();
std::cerr << "\": ";
error("Unknown leaf value for tree pattern!");
}
}
return new TreePatternNode(Operator, Children);
}
/// InferAllTypes - Infer/propagate as many types throughout the expression
/// patterns as possible. Return true if all types are infered, false
/// otherwise. Throw an exception if a type contradiction is found.
bool TreePattern::InferAllTypes() {
bool MadeChange = true;
while (MadeChange) {
MadeChange = false;
for (unsigned i = 0, e = Trees.size(); i != e; ++i)
MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
}
bool HasUnresolvedTypes = false;
for (unsigned i = 0, e = Trees.size(); i != e; ++i)
HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
return !HasUnresolvedTypes;
}
void TreePattern::print(std::ostream &OS) const {
OS << getRecord()->getName();
if (!Args.empty()) {
OS << "(" << Args[0];
for (unsigned i = 1, e = Args.size(); i != e; ++i)
OS << ", " << Args[i];
OS << ")";
}
OS << ": ";
if (Trees.size() > 1)
OS << "[\n";
for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
OS << "\t";
Trees[i]->print(OS);
OS << "\n";
}
if (Trees.size() > 1)
OS << "]\n";
}
void TreePattern::dump() const { print(std::cerr); }
//===----------------------------------------------------------------------===//
// DAGISelEmitter implementation
//
// Parse all of the SDNode definitions for the target, populating SDNodes.
void DAGISelEmitter::ParseNodeInfo() {
std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
while (!Nodes.empty()) {
SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
Nodes.pop_back();
}
}
/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
/// map, and emit them to the file as functions.
void DAGISelEmitter::ParseNodeTransforms(std::ostream &OS) {
OS << "\n// Node transformations.\n";
std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
while (!Xforms.empty()) {
Record *XFormNode = Xforms.back();
Record *SDNode = XFormNode->getValueAsDef("Opcode");
std::string Code = XFormNode->getValueAsCode("XFormFunction");
SDNodeXForms.insert(std::make_pair(XFormNode,
std::make_pair(SDNode, Code)));
if (!Code.empty()) {
std::string ClassName = getSDNodeInfo(SDNode).getSDClassName();
const char *C2 = ClassName == "SDNode" ? "N" : "inN";
OS << "inline SDOperand Transform_" << XFormNode->getName()
<< "(SDNode *" << C2 << ") {\n";
if (ClassName != "SDNode")
OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
OS << Code << "\n}\n";
}
Xforms.pop_back();
}
}
void DAGISelEmitter::ParseComplexPatterns() {
std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
while (!AMs.empty()) {
ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
AMs.pop_back();
}
}
/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
/// file, building up the PatternFragments map. After we've collected them all,
/// inline fragments together as necessary, so that there are no references left
/// inside a pattern fragment to a pattern fragment.
///
/// This also emits all of the predicate functions to the output file.
///
void DAGISelEmitter::ParsePatternFragments(std::ostream &OS) {
std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
// First step, parse all of the fragments and emit predicate functions.
OS << "\n// Predicate functions.\n";
for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
PatternFragments[Fragments[i]] = P;
// Validate the argument list, converting it to map, to discard duplicates.
std::vector<std::string> &Args = P->getArgList();
std::set<std::string> OperandsMap(Args.begin(), Args.end());
if (OperandsMap.count(""))
P->error("Cannot have unnamed 'node' values in pattern fragment!");
// Parse the operands list.
DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
if (OpsList->getNodeType()->getName() != "ops")
P->error("Operands list should start with '(ops ... '!");
// Copy over the arguments.
Args.clear();
for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) ||
static_cast<DefInit*>(OpsList->getArg(j))->
getDef()->getName() != "node")
P->error("Operands list should all be 'node' values.");
if (OpsList->getArgName(j).empty())
P->error("Operands list should have names for each operand!");
if (!OperandsMap.count(OpsList->getArgName(j)))
P->error("'" + OpsList->getArgName(j) +
"' does not occur in pattern or was multiply specified!");
OperandsMap.erase(OpsList->getArgName(j));
Args.push_back(OpsList->getArgName(j));
}
if (!OperandsMap.empty())
P->error("Operands list does not contain an entry for operand '" +
*OperandsMap.begin() + "'!");
// If there is a code init for this fragment, emit the predicate code and
// keep track of the fact that this fragment uses it.
std::string Code = Fragments[i]->getValueAsCode("Predicate");
if (!Code.empty()) {
assert(!P->getOnlyTree()->isLeaf() && "Can't be a leaf!");
std::string ClassName =
getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName();
const char *C2 = ClassName == "SDNode" ? "N" : "inN";
OS << "inline bool Predicate_" << Fragments[i]->getName()
<< "(SDNode *" << C2 << ") {\n";
if (ClassName != "SDNode")
OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
OS << Code << "\n}\n";
P->getOnlyTree()->setPredicateFn("Predicate_"+Fragments[i]->getName());
}
// If there is a node transformation corresponding to this, keep track of
// it.
Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
P->getOnlyTree()->setTransformFn(Transform);
}
OS << "\n\n";
// Now that we've parsed all of the tree fragments, do a closure on them so
// that there are not references to PatFrags left inside of them.
for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
E = PatternFragments.end(); I != E; ++I) {
TreePattern *ThePat = I->second;
ThePat->InlinePatternFragments();
// Infer as many types as possible. Don't worry about it if we don't infer
// all of them, some may depend on the inputs of the pattern.
try {
ThePat->InferAllTypes();
} catch (...) {
// If this pattern fragment is not supported by this target (no types can
// satisfy its constraints), just ignore it. If the bogus pattern is
// actually used by instructions, the type consistency error will be
// reported there.
}
// If debugging, print out the pattern fragment result.
DEBUG(ThePat->dump());
}
}
/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
/// instruction input. Return true if this is a real use.
static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
std::map<std::string, TreePatternNode*> &InstInputs,
std::vector<Record*> &InstImpInputs) {
// No name -> not interesting.
if (Pat->getName().empty()) {
if (Pat->isLeaf()) {
DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
if (DI && DI->getDef()->isSubClassOf("RegisterClass"))
I->error("Input " + DI->getDef()->getName() + " must be named!");
else if (DI && DI->getDef()->isSubClassOf("Register"))
InstImpInputs.push_back(DI->getDef());
}
return false;
}
Record *Rec;
if (Pat->isLeaf()) {
DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
Rec = DI->getDef();
} else {
assert(Pat->getNumChildren() == 0 && "can't be a use with children!");
Rec = Pat->getOperator();
}
// SRCVALUE nodes are ignored.
if (Rec->getName() == "srcvalue")
return false;
TreePatternNode *&Slot = InstInputs[Pat->getName()];
if (!Slot) {
Slot = Pat;
} else {
Record *SlotRec;
if (Slot->isLeaf()) {
SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef();
} else {
assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
SlotRec = Slot->getOperator();
}
// Ensure that the inputs agree if we've already seen this input.
if (Rec != SlotRec)
I->error("All $" + Pat->getName() + " inputs must agree with each other");
if (Slot->getExtTypes() != Pat->getExtTypes())
I->error("All $" + Pat->getName() + " inputs must agree with each other");
}
return true;
}
/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
/// part of "I", the instruction), computing the set of inputs and outputs of
/// the pattern. Report errors if we see anything naughty.
void DAGISelEmitter::
FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
std::map<std::string, TreePatternNode*> &InstInputs,
std::map<std::string, Record*> &InstResults,
std::vector<Record*> &InstImpInputs,
std::vector<Record*> &InstImpResults) {
if (Pat->isLeaf()) {
bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
if (!isUse && Pat->getTransformFn())
I->error("Cannot specify a transform function for a non-input value!");
return;
} else if (Pat->getOperator()->getName() != "set") {
// If this is not a set, verify that the children nodes are not void typed,
// and recurse.
for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
if (Pat->getChild(i)->getExtTypeNum(0) == MVT::isVoid)
I->error("Cannot have void nodes inside of patterns!");
FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
InstImpInputs, InstImpResults);
}
// If this is a non-leaf node with no children, treat it basically as if
// it were a leaf. This handles nodes like (imm).
bool isUse = false;
if (Pat->getNumChildren() == 0)
isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
if (!isUse && Pat->getTransformFn())
I->error("Cannot specify a transform function for a non-input value!");
return;
}
// Otherwise, this is a set, validate and collect instruction results.
if (Pat->getNumChildren() == 0)
I->error("set requires operands!");
else if (Pat->getNumChildren() & 1)
I->error("set requires an even number of operands");
if (Pat->getTransformFn())
I->error("Cannot specify a transform function on a set node!");
// Check the set destinations.
unsigned NumValues = Pat->getNumChildren()/2;
for (unsigned i = 0; i != NumValues; ++i) {
TreePatternNode *Dest = Pat->getChild(i);
if (!Dest->isLeaf())
I->error("set destination should be a register!");
DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
if (!Val)
I->error("set destination should be a register!");
if (Val->getDef()->isSubClassOf("RegisterClass")) {
if (Dest->getName().empty())
I->error("set destination must have a name!");
if (InstResults.count(Dest->getName()))
I->error("cannot set '" + Dest->getName() +"' multiple times");
InstResults[Dest->getName()] = Val->getDef();
} else if (Val->getDef()->isSubClassOf("Register")) {
InstImpResults.push_back(Val->getDef());
} else {
I->error("set destination should be a register!");
}
// Verify and collect info from the computation.
FindPatternInputsAndOutputs(I, Pat->getChild(i+NumValues),
InstInputs, InstResults,
InstImpInputs, InstImpResults);
}
}
/// ParseInstructions - Parse all of the instructions, inlining and resolving
/// any fragments involved. This populates the Instructions list with fully
/// resolved instructions.
void DAGISelEmitter::ParseInstructions() {
std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
ListInit *LI = 0;
if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern")))
LI = Instrs[i]->getValueAsListInit("Pattern");
// If there is no pattern, only collect minimal information about the
// instruction for its operand list. We have to assume that there is one
// result, as we have no detailed info.
if (!LI || LI->getSize() == 0) {
std::vector<Record*> Results;
std::vector<Record*> Operands;
CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName());
if (InstInfo.OperandList.size() != 0) {
// FIXME: temporary hack...
if (InstInfo.noResults) {
// These produce no results
for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j)
Operands.push_back(InstInfo.OperandList[j].Rec);
} else {
// Assume the first operand is the result.
Results.push_back(InstInfo.OperandList[0].Rec);
// The rest are inputs.
for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j)
Operands.push_back(InstInfo.OperandList[j].Rec);
}
}
// Create and insert the instruction.
std::vector<Record*> ImpResults;
std::vector<Record*> ImpOperands;
Instructions.insert(std::make_pair(Instrs[i],
DAGInstruction(0, Results, Operands, ImpResults,
ImpOperands)));
continue; // no pattern.
}
// Parse the instruction.
TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
// Inline pattern fragments into it.
I->InlinePatternFragments();
// Infer as many types as possible. If we cannot infer all of them, we can
// never do anything with this instruction pattern: report it to the user.
if (!I->InferAllTypes())
I->error("Could not infer all types in pattern!");
// InstInputs - Keep track of all of the inputs of the instruction, along
// with the record they are declared as.
std::map<std::string, TreePatternNode*> InstInputs;
// InstResults - Keep track of all the virtual registers that are 'set'
// in the instruction, including what reg class they are.
std::map<std::string, Record*> InstResults;
std::vector<Record*> InstImpInputs;
std::vector<Record*> InstImpResults;
// Verify that the top-level forms in the instruction are of void type, and
// fill in the InstResults map.
for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
TreePatternNode *Pat = I->getTree(j);
if (Pat->getExtTypeNum(0) != MVT::isVoid)
I->error("Top-level forms in instruction pattern should have"
" void types");
// Find inputs and outputs, and verify the structure of the uses/defs.
FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
InstImpInputs, InstImpResults);
}
// Now that we have inputs and outputs of the pattern, inspect the operands
// list for the instruction. This determines the order that operands are
// added to the machine instruction the node corresponds to.
unsigned NumResults = InstResults.size();
// Parse the operands list from the (ops) list, validating it.
std::vector<std::string> &Args = I->getArgList();
assert(Args.empty() && "Args list should still be empty here!");
CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName());
// Check that all of the results occur first in the list.
std::vector<Record*> Results;
for (unsigned i = 0; i != NumResults; ++i) {
if (i == CGI.OperandList.size())
I->error("'" + InstResults.begin()->first +
"' set but does not appear in operand list!");
const std::string &OpName = CGI.OperandList[i].Name;
// Check that it exists in InstResults.
Record *R = InstResults[OpName];
if (R == 0)
I->error("Operand $" + OpName + " should be a set destination: all "
"outputs must occur before inputs in operand list!");
if (CGI.OperandList[i].Rec != R)
I->error("Operand $" + OpName + " class mismatch!");
// Remember the return type.
Results.push_back(CGI.OperandList[i].Rec);
// Okay, this one checks out.
InstResults.erase(OpName);
}
// Loop over the inputs next. Make a copy of InstInputs so we can destroy
// the copy while we're checking the inputs.
std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
std::vector<TreePatternNode*> ResultNodeOperands;
std::vector<Record*> Operands;
for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) {
const std::string &OpName = CGI.OperandList[i].Name;
if (OpName.empty())
I->error("Operand #" + utostr(i) + " in operands list has no name!");
if (!InstInputsCheck.count(OpName))
I->error("Operand $" + OpName +
" does not appear in the instruction pattern");
TreePatternNode *InVal = InstInputsCheck[OpName];
InstInputsCheck.erase(OpName); // It occurred, remove from map.
if (InVal->isLeaf() &&
dynamic_cast<DefInit*>(InVal->getLeafValue())) {
Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
if (CGI.OperandList[i].Rec != InRec &&
!InRec->isSubClassOf("ComplexPattern"))
I->error("Operand $" + OpName +
"'s register class disagrees between the operand and pattern");
}
Operands.push_back(CGI.OperandList[i].Rec);
// Construct the result for the dest-pattern operand list.
TreePatternNode *OpNode = InVal->clone();
// No predicate is useful on the result.
OpNode->setPredicateFn("");
// Promote the xform function to be an explicit node if set.
if (Record *Xform = OpNode->getTransformFn()) {
OpNode->setTransformFn(0);
std::vector<TreePatternNode*> Children;
Children.push_back(OpNode);
OpNode = new TreePatternNode(Xform, Children);
}
ResultNodeOperands.push_back(OpNode);
}
if (!InstInputsCheck.empty())
I->error("Input operand $" + InstInputsCheck.begin()->first +
" occurs in pattern but not in operands list!");
TreePatternNode *ResultPattern =
new TreePatternNode(I->getRecord(), ResultNodeOperands);
// Create and insert the instruction.
DAGInstruction TheInst(I, Results, Operands, InstImpResults, InstImpInputs);
Instructions.insert(std::make_pair(I->getRecord(), TheInst));
// Use a temporary tree pattern to infer all types and make sure that the
// constructed result is correct. This depends on the instruction already
// being inserted into the Instructions map.
TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
Temp.InferAllTypes();
DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
TheInsertedInst.setResultPattern(Temp.getOnlyTree());
DEBUG(I->dump());
}
// If we can, convert the instructions to be patterns that are matched!
for (std::map<Record*, DAGInstruction>::iterator II = Instructions.begin(),
E = Instructions.end(); II != E; ++II) {
DAGInstruction &TheInst = II->second;
TreePattern *I = TheInst.getPattern();
if (I == 0) continue; // No pattern.
if (I->getNumTrees() != 1) {
std::cerr << "CANNOT HANDLE: " << I->getRecord()->getName() << " yet!";
continue;
}
TreePatternNode *Pattern = I->getTree(0);
TreePatternNode *SrcPattern;
if (Pattern->getOperator()->getName() == "set") {
if (Pattern->getNumChildren() != 2)
continue; // Not a set of a single value (not handled so far)
SrcPattern = Pattern->getChild(1)->clone();
} else{
// Not a set (store or something?)
SrcPattern = Pattern;
}
std::string Reason;
if (!SrcPattern->canPatternMatch(Reason, *this))
I->error("Instruction can never match: " + Reason);
Record *Instr = II->first;
TreePatternNode *DstPattern = TheInst.getResultPattern();
PatternsToMatch.
push_back(PatternToMatch(Instr->getValueAsListInit("Predicates"),
SrcPattern, DstPattern));
}
}
void DAGISelEmitter::ParsePatterns() {
std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch");
TreePattern *Pattern = new TreePattern(Patterns[i], Tree, true, *this);
// Inline pattern fragments into it.
Pattern->InlinePatternFragments();
// Infer as many types as possible. If we cannot infer all of them, we can
// never do anything with this pattern: report it to the user.
if (!Pattern->InferAllTypes())
Pattern->error("Could not infer all types in pattern!");
// Validate that the input pattern is correct.
{
std::map<std::string, TreePatternNode*> InstInputs;
std::map<std::string, Record*> InstResults;
std::vector<Record*> InstImpInputs;
std::vector<Record*> InstImpResults;
FindPatternInputsAndOutputs(Pattern, Pattern->getOnlyTree(),
InstInputs, InstResults,
InstImpInputs, InstImpResults);
}
ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs");
if (LI->getSize() == 0) continue; // no pattern.
// Parse the instruction.
TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this);
// Inline pattern fragments into it.
Result->InlinePatternFragments();
// Infer as many types as possible. If we cannot infer all of them, we can
// never do anything with this pattern: report it to the user.
if (!Result->InferAllTypes())
Result->error("Could not infer all types in pattern result!");
if (Result->getNumTrees() != 1)
Result->error("Cannot handle instructions producing instructions "
"with temporaries yet!");
std::string Reason;
if (!Pattern->getOnlyTree()->canPatternMatch(Reason, *this))
Pattern->error("Pattern can never match: " + Reason);
PatternsToMatch.
push_back(PatternToMatch(Patterns[i]->getValueAsListInit("Predicates"),
Pattern->getOnlyTree(),
Result->getOnlyTree()));
}
}
/// CombineChildVariants - Given a bunch of permutations of each child of the
/// 'operator' node, put them together in all possible ways.
static void CombineChildVariants(TreePatternNode *Orig,
const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
std::vector<TreePatternNode*> &OutVariants,
DAGISelEmitter &ISE) {
// Make sure that each operand has at least one variant to choose from.
for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
if (ChildVariants[i].empty())
return;
// The end result is an all-pairs construction of the resultant pattern.
std::vector<unsigned> Idxs;
Idxs.resize(ChildVariants.size());
bool NotDone = true;
while (NotDone) {
// Create the variant and add it to the output list.
std::vector<TreePatternNode*> NewChildren;
for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
NewChildren.push_back(ChildVariants[i][Idxs[i]]);
TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren);
// Copy over properties.
R->setName(Orig->getName());
R->setPredicateFn(Orig->getPredicateFn());
R->setTransformFn(Orig->getTransformFn());
R->setTypes(Orig->getExtTypes());
// If this pattern cannot every match, do not include it as a variant.
std::string ErrString;
if (!R->canPatternMatch(ErrString, ISE)) {
delete R;
} else {
bool AlreadyExists = false;
// Scan to see if this pattern has already been emitted. We can get
// duplication due to things like commuting:
// (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
// which are the same pattern. Ignore the dups.
for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
if (R->isIsomorphicTo(OutVariants[i])) {
AlreadyExists = true;
break;
}
if (AlreadyExists)
delete R;
else
OutVariants.push_back(R);
}
// Increment indices to the next permutation.
NotDone = false;
// Look for something we can increment without causing a wrap-around.
for (unsigned IdxsIdx = 0; IdxsIdx != Idxs.size(); ++IdxsIdx) {
if (++Idxs[IdxsIdx] < ChildVariants[IdxsIdx].size()) {
NotDone = true; // Found something to increment.
break;
}
Idxs[IdxsIdx] = 0;
}
}
}
/// CombineChildVariants - A helper function for binary operators.
///
static void CombineChildVariants(TreePatternNode *Orig,
const std::vector<TreePatternNode*> &LHS,
const std::vector<TreePatternNode*> &RHS,
std::vector<TreePatternNode*> &OutVariants,
DAGISelEmitter &ISE) {
std::vector<std::vector<TreePatternNode*> > ChildVariants;
ChildVariants.push_back(LHS);
ChildVariants.push_back(RHS);
CombineChildVariants(Orig, ChildVariants, OutVariants, ISE);
}
static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
std::vector<TreePatternNode *> &Children) {
assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
Record *Operator = N->getOperator();
// Only permit raw nodes.
if (!N->getName().empty() || !N->getPredicateFn().empty() ||
N->getTransformFn()) {
Children.push_back(N);
return;
}
if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
Children.push_back(N->getChild(0));
else
GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
Children.push_back(N->getChild(1));
else
GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
}
/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
/// the (potentially recursive) pattern by using algebraic laws.
///
static void GenerateVariantsOf(TreePatternNode *N,
std::vector<TreePatternNode*> &OutVariants,
DAGISelEmitter &ISE) {
// We cannot permute leaves.
if (N->isLeaf()) {
OutVariants.push_back(N);
return;
}
// Look up interesting info about the node.
const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(N->getOperator());
// If this node is associative, reassociate.
if (NodeInfo.hasProperty(SDNodeInfo::SDNPAssociative)) {
// Reassociate by pulling together all of the linked operators
std::vector<TreePatternNode*> MaximalChildren;
GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
// Only handle child sizes of 3. Otherwise we'll end up trying too many
// permutations.
if (MaximalChildren.size() == 3) {
// Find the variants of all of our maximal children.
std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
GenerateVariantsOf(MaximalChildren[0], AVariants, ISE);
GenerateVariantsOf(MaximalChildren[1], BVariants, ISE);
GenerateVariantsOf(MaximalChildren[2], CVariants, ISE);
// There are only two ways we can permute the tree:
// (A op B) op C and A op (B op C)
// Within these forms, we can also permute A/B/C.
// Generate legal pair permutations of A/B/C.
std::vector<TreePatternNode*> ABVariants;
std::vector<TreePatternNode*> BAVariants;
std::vector<TreePatternNode*> ACVariants;
std::vector<TreePatternNode*> CAVariants;
std::vector<TreePatternNode*> BCVariants;
std::vector<TreePatternNode*> CBVariants;
CombineChildVariants(N, AVariants, BVariants, ABVariants, ISE);
CombineChildVariants(N, BVariants, AVariants, BAVariants, ISE);
CombineChildVariants(N, AVariants, CVariants, ACVariants, ISE);
CombineChildVariants(N, CVariants, AVariants, CAVariants, ISE);
CombineChildVariants(N, BVariants, CVariants, BCVariants, ISE);
CombineChildVariants(N, CVariants, BVariants, CBVariants, ISE);
// Combine those into the result: (x op x) op x
CombineChildVariants(N, ABVariants, CVariants, OutVariants, ISE);
CombineChildVariants(N, BAVariants, CVariants, OutVariants, ISE);
CombineChildVariants(N, ACVariants, BVariants, OutVariants, ISE);
CombineChildVariants(N, CAVariants, BVariants, OutVariants, ISE);
CombineChildVariants(N, BCVariants, AVariants, OutVariants, ISE);
CombineChildVariants(N, CBVariants, AVariants, OutVariants, ISE);
// Combine those into the result: x op (x op x)
CombineChildVariants(N, CVariants, ABVariants, OutVariants, ISE);
CombineChildVariants(N, CVariants, BAVariants, OutVariants, ISE);
CombineChildVariants(N, BVariants, ACVariants, OutVariants, ISE);
CombineChildVariants(N, BVariants, CAVariants, OutVariants, ISE);
CombineChildVariants(N, AVariants, BCVariants, OutVariants, ISE);
CombineChildVariants(N, AVariants, CBVariants, OutVariants, ISE);
return;
}
}
// Compute permutations of all children.
std::vector<std::vector<TreePatternNode*> > ChildVariants;
ChildVariants.resize(N->getNumChildren());
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
GenerateVariantsOf(N->getChild(i), ChildVariants[i], ISE);
// Build all permutations based on how the children were formed.
CombineChildVariants(N, ChildVariants, OutVariants, ISE);
// If this node is commutative, consider the commuted order.
if (NodeInfo.hasProperty(SDNodeInfo::SDNPCommutative)) {
assert(N->getNumChildren()==2 &&"Commutative but doesn't have 2 children!");
// Consider the commuted order.
CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
OutVariants, ISE);
}
}
// GenerateVariants - Generate variants. For example, commutative patterns can
// match multiple ways. Add them to PatternsToMatch as well.
void DAGISelEmitter::GenerateVariants() {
DEBUG(std::cerr << "Generating instruction variants.\n");
// Loop over all of the patterns we've collected, checking to see if we can
// generate variants of the instruction, through the exploitation of
// identities. This permits the target to provide agressive matching without
// the .td file having to contain tons of variants of instructions.
//
// Note that this loop adds new patterns to the PatternsToMatch list, but we
// intentionally do not reconsider these. Any variants of added patterns have
// already been added.
//
for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
std::vector<TreePatternNode*> Variants;
GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this);
assert(!Variants.empty() && "Must create at least original variant!");
Variants.erase(Variants.begin()); // Remove the original pattern.
if (Variants.empty()) // No variants for this pattern.
continue;
DEBUG(std::cerr << "FOUND VARIANTS OF: ";
PatternsToMatch[i].getSrcPattern()->dump();
std::cerr << "\n");
for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
TreePatternNode *Variant = Variants[v];
DEBUG(std::cerr << " VAR#" << v << ": ";
Variant->dump();
std::cerr << "\n");
// Scan to see if an instruction or explicit pattern already matches this.
bool AlreadyExists = false;
for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
// Check to see if this variant already exists.
if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern())) {
DEBUG(std::cerr << " *** ALREADY EXISTS, ignoring variant.\n");
AlreadyExists = true;
break;
}
}
// If we already have it, ignore the variant.
if (AlreadyExists) continue;
// Otherwise, add it to the list of patterns we have.
PatternsToMatch.
push_back(PatternToMatch(PatternsToMatch[i].getPredicates(),
Variant, PatternsToMatch[i].getDstPattern()));
}
DEBUG(std::cerr << "\n");
}
}
// NodeIsComplexPattern - return true if N is a leaf node and a subclass of
// ComplexPattern.
static bool NodeIsComplexPattern(TreePatternNode *N)
{
return (N->isLeaf() &&
dynamic_cast<DefInit*>(N->getLeafValue()) &&
static_cast<DefInit*>(N->getLeafValue())->getDef()->
isSubClassOf("ComplexPattern"));
}
// NodeGetComplexPattern - return the pointer to the ComplexPattern if N
// is a leaf node and a subclass of ComplexPattern, else it returns NULL.
static const ComplexPattern *NodeGetComplexPattern(TreePatternNode *N,
DAGISelEmitter &ISE)
{
if (N->isLeaf() &&
dynamic_cast<DefInit*>(N->getLeafValue()) &&
static_cast<DefInit*>(N->getLeafValue())->getDef()->
isSubClassOf("ComplexPattern")) {
return &ISE.getComplexPattern(static_cast<DefInit*>(N->getLeafValue())
->getDef());
}
return NULL;
}
/// getPatternSize - Return the 'size' of this pattern. We want to match large
/// patterns before small ones. This is used to determine the size of a
/// pattern.
static unsigned getPatternSize(TreePatternNode *P, DAGISelEmitter &ISE) {
assert(isExtIntegerInVTs(P->getExtTypes()) ||
isExtFloatingPointInVTs(P->getExtTypes()) ||
P->getExtTypeNum(0) == MVT::isVoid ||
P->getExtTypeNum(0) == MVT::Flag &&
"Not a valid pattern node to size!");
unsigned Size = 1; // The node itself.
// FIXME: This is a hack to statically increase the priority of patterns
// which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
// Later we can allow complexity / cost for each pattern to be (optionally)
// specified. To get best possible pattern match we'll need to dynamically
// calculate the complexity of all patterns a dag can potentially map to.
const ComplexPattern *AM = NodeGetComplexPattern(P, ISE);
if (AM)
Size += AM->getNumOperands();
// Count children in the count if they are also nodes.
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
TreePatternNode *Child = P->getChild(i);
if (!Child->isLeaf() && Child->getExtTypeNum(0) != MVT::Other)
Size += getPatternSize(Child, ISE);
else if (Child->isLeaf()) {
if (dynamic_cast<IntInit*>(Child->getLeafValue()))
++Size; // Matches a ConstantSDNode.
else if (NodeIsComplexPattern(Child))
Size += getPatternSize(Child, ISE);
}
}
return Size;
}
/// getResultPatternCost - Compute the number of instructions for this pattern.
/// This is a temporary hack. We should really include the instruction
/// latencies in this calculation.
static unsigned getResultPatternCost(TreePatternNode *P) {
if (P->isLeaf()) return 0;
unsigned Cost = P->getOperator()->isSubClassOf("Instruction");
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
Cost += getResultPatternCost(P->getChild(i));
return Cost;
}
// PatternSortingPredicate - return true if we prefer to match LHS before RHS.
// In particular, we want to match maximal patterns first and lowest cost within
// a particular complexity first.
struct PatternSortingPredicate {
PatternSortingPredicate(DAGISelEmitter &ise) : ISE(ise) {};
DAGISelEmitter &ISE;
bool operator()(PatternToMatch *LHS,
PatternToMatch *RHS) {
unsigned LHSSize = getPatternSize(LHS->getSrcPattern(), ISE);
unsigned RHSSize = getPatternSize(RHS->getSrcPattern(), ISE);
if (LHSSize > RHSSize) return true; // LHS -> bigger -> less cost
if (LHSSize < RHSSize) return false;
// If the patterns have equal complexity, compare generated instruction cost
return getResultPatternCost(LHS->getDstPattern()) <
getResultPatternCost(RHS->getDstPattern());
}
};
/// getRegisterValueType - Look up and return the first ValueType of specified
/// RegisterClass record
static MVT::ValueType getRegisterValueType(Record *R, const CodeGenTarget &T) {
if (const CodeGenRegisterClass *RC = T.getRegisterClassForRegister(R))
return RC->getValueTypeNum(0);
return MVT::Other;
}
/// RemoveAllTypes - A quick recursive walk over a pattern which removes all
/// type information from it.
static void RemoveAllTypes(TreePatternNode *N) {
N->removeTypes();
if (!N->isLeaf())
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
RemoveAllTypes(N->getChild(i));
}
Record *DAGISelEmitter::getSDNodeNamed(const std::string &Name) const {
Record *N = Records.getDef(Name);
assert(N && N->isSubClassOf("SDNode") && "Bad argument");
return N;
}
/// NodeHasChain - return true if TreePatternNode has the property
/// 'hasChain', meaning it reads a ctrl-flow chain operand and writes
/// a chain result.
static bool NodeHasChain(TreePatternNode *N, DAGISelEmitter &ISE)
{
if (N->isLeaf()) return false;
Record *Operator = N->getOperator();
if (!Operator->isSubClassOf("SDNode")) return false;
const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(Operator);
return NodeInfo.hasProperty(SDNodeInfo::SDNPHasChain);
}
static bool PatternHasCtrlDep(TreePatternNode *N, DAGISelEmitter &ISE)
{
if (NodeHasChain(N, ISE))
return true;
else {
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
TreePatternNode *Child = N->getChild(i);
if (PatternHasCtrlDep(Child, ISE))
return true;
}
}
return false;
}
class PatternCodeEmitter {
private:
DAGISelEmitter &ISE;
// Predicates.
ListInit *Predicates;
// Instruction selector pattern.
TreePatternNode *Pattern;
// Matched instruction.
TreePatternNode *Instruction;
unsigned PatternNo;
std::ostream &OS;
// Node to name mapping
std::map<std::string,std::string> VariableMap;
// Names of all the folded nodes which produce chains.
std::vector<std::pair<std::string, unsigned> > FoldedChains;
unsigned TmpNo;
public:
PatternCodeEmitter(DAGISelEmitter &ise, ListInit *preds,
TreePatternNode *pattern, TreePatternNode *instr,
unsigned PatNum, std::ostream &os) :
ISE(ise), Predicates(preds), Pattern(pattern), Instruction(instr),
PatternNo(PatNum), OS(os), TmpNo(0) {}
/// EmitMatchCode - Emit a matcher for N, going to the label for PatternNo
/// if the match fails. At this point, we already know that the opcode for N
/// matches, and the SDNode for the result has the RootName specified name.
void EmitMatchCode(TreePatternNode *N, const std::string &RootName,
bool &FoundChain, bool isRoot = false) {
// Emit instruction predicates. Each predicate is just a string for now.
if (isRoot) {
for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) {
Record *Def = Pred->getDef();
if (Def->isSubClassOf("Predicate")) {
if (i == 0)
OS << " if (";
else
OS << " && ";
OS << "!(" << Def->getValueAsString("CondString") << ")";
if (i == e-1)
OS << ") goto P" << PatternNo << "Fail;\n";
} else {
Def->dump();
assert(0 && "Unknown predicate type!");
}
}
}
}
if (N->isLeaf()) {
if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
OS << " if (cast<ConstantSDNode>(" << RootName
<< ")->getSignExtended() != " << II->getValue() << ")\n"
<< " goto P" << PatternNo << "Fail;\n";
return;
} else if (!NodeIsComplexPattern(N)) {
assert(0 && "Cannot match this as a leaf value!");
abort();
}
}
// If this node has a name associated with it, capture it in VariableMap. If
// we already saw this in the pattern, emit code to verify dagness.
if (!N->getName().empty()) {
std::string &VarMapEntry = VariableMap[N->getName()];
if (VarMapEntry.empty()) {
VarMapEntry = RootName;
} else {
// If we get here, this is a second reference to a specific name. Since
// we already have checked that the first reference is valid, we don't
// have to recursively match it, just check that it's the same as the
// previously named thing.
OS << " if (" << VarMapEntry << " != " << RootName
<< ") goto P" << PatternNo << "Fail;\n";
return;
}
}
// Emit code to load the child nodes and match their contents recursively.
unsigned OpNo = 0;
bool HasChain = NodeHasChain(N, ISE);
if (HasChain) {
OpNo = 1;
if (!isRoot) {
const SDNodeInfo &CInfo = ISE.getSDNodeInfo(N->getOperator());
OS << " if (!" << RootName << ".hasOneUse()) goto P"
<< PatternNo << "Fail; // Multiple uses of actual result?\n";
OS << " if (CodeGenMap.count(" << RootName
<< ".getValue(" << CInfo.getNumResults() << "))) goto P"
<< PatternNo << "Fail; // Already selected for a chain use?\n";
}
}
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
OS << " SDOperand " << RootName << OpNo << " = "
<< RootName << ".getOperand(" << OpNo << ");\n";
TreePatternNode *Child = N->getChild(i);
if (!Child->isLeaf()) {
// If it's not a leaf, recursively match.
const SDNodeInfo &CInfo = ISE.getSDNodeInfo(Child->getOperator());
OS << " if (" << RootName << OpNo << ".getOpcode() != "
<< CInfo.getEnumName() << ") goto P" << PatternNo << "Fail;\n";
EmitMatchCode(Child, RootName + utostr(OpNo), FoundChain);
if (NodeHasChain(Child, ISE)) {
FoldedChains.push_back(std::make_pair(RootName + utostr(OpNo),
CInfo.getNumResults()));
}
} else {
// If this child has a name associated with it, capture it in VarMap. If
// we already saw this in the pattern, emit code to verify dagness.
if (!Child->getName().empty()) {
std::string &VarMapEntry = VariableMap[Child->getName()];
if (VarMapEntry.empty()) {
VarMapEntry = RootName + utostr(OpNo);
} else {
// If we get here, this is a second reference to a specific name. Since
// we already have checked that the first reference is valid, we don't
// have to recursively match it, just check that it's the same as the
// previously named thing.
OS << " if (" << VarMapEntry << " != " << RootName << OpNo
<< ") goto P" << PatternNo << "Fail;\n";
continue;
}
}
// Handle leaves of various types.
if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
Record *LeafRec = DI->getDef();
if (LeafRec->isSubClassOf("RegisterClass")) {
// Handle register references. Nothing to do here.
} else if (LeafRec->isSubClassOf("Register")) {
// Handle register references.
} else if (LeafRec->isSubClassOf("ComplexPattern")) {
// Handle complex pattern. Nothing to do here.
} else if (LeafRec->getName() == "srcvalue") {
// Place holder for SRCVALUE nodes. Nothing to do here.
} else if (LeafRec->isSubClassOf("ValueType")) {
// Make sure this is the specified value type.
OS << " if (cast<VTSDNode>(" << RootName << OpNo << ")->getVT() != "
<< "MVT::" << LeafRec->getName() << ") goto P" << PatternNo
<< "Fail;\n";
} else if (LeafRec->isSubClassOf("CondCode")) {
// Make sure this is the specified cond code.
OS << " if (cast<CondCodeSDNode>(" << RootName << OpNo
<< ")->get() != " << "ISD::" << LeafRec->getName()
<< ") goto P" << PatternNo << "Fail;\n";
} else {
Child->dump();
std::cerr << " ";
assert(0 && "Unknown leaf type!");
}
} else if (IntInit *II = dynamic_cast<IntInit*>(Child->getLeafValue())) {
OS << " if (!isa<ConstantSDNode>(" << RootName << OpNo << ") ||\n"
<< " cast<ConstantSDNode>(" << RootName << OpNo
<< ")->getSignExtended() != " << II->getValue() << ")\n"
<< " goto P" << PatternNo << "Fail;\n";
} else {
Child->dump();
assert(0 && "Unknown leaf type!");
}
}
}
if (HasChain) {
if (!FoundChain) {
OS << " SDOperand Chain = " << RootName << ".getOperand(0);\n";
FoundChain = true;
}
}
// If there is a node predicate for this, emit the call.
if (!N->getPredicateFn().empty())
OS << " if (!" << N->getPredicateFn() << "(" << RootName
<< ".Val)) goto P" << PatternNo << "Fail;\n";
}
/// EmitResultCode - Emit the action for a pattern. Now that it has matched
/// we actually have to build a DAG!
std::pair<unsigned, unsigned>
EmitResultCode(TreePatternNode *N, bool isRoot = false) {
// This is something selected from the pattern we matched.
if (!N->getName().empty()) {
assert(!isRoot && "Root of pattern cannot be a leaf!");
std::string &Val = VariableMap[N->getName()];
assert(!Val.empty() &&
"Variable referenced but not defined and not caught earlier!");
if (Val[0] == 'T' && Val[1] == 'm' && Val[2] == 'p') {
// Already selected this operand, just return the tmpval.
return std::make_pair(1, atoi(Val.c_str()+3));
}
const ComplexPattern *CP;
unsigned ResNo = TmpNo++;
unsigned NumRes = 1;
if (!N->isLeaf() && N->getOperator()->getName() == "imm") {
assert(N->getExtTypes().size() == 1 && "Multiple types not handled!");
switch (N->getTypeNum(0)) {
default: assert(0 && "Unknown type for constant node!");
case MVT::i1: OS << " bool Tmp"; break;
case MVT::i8: OS << " unsigned char Tmp"; break;
case MVT::i16: OS << " unsigned short Tmp"; break;
case MVT::i32: OS << " unsigned Tmp"; break;
case MVT::i64: OS << " uint64_t Tmp"; break;
}
OS << ResNo << "C = cast<ConstantSDNode>(" << Val << ")->getValue();\n";
OS << " SDOperand Tmp" << utostr(ResNo)
<< " = CurDAG->getTargetConstant(Tmp"
<< ResNo << "C, MVT::" << getEnumName(N->getTypeNum(0)) << ");\n";
} else if (!N->isLeaf() && N->getOperator()->getName() == "tglobaladdr") {
OS << " SDOperand Tmp" << ResNo << " = " << Val << ";\n";
} else if (!N->isLeaf() && N->getOperator()->getName() == "tconstpool") {
OS << " SDOperand Tmp" << ResNo << " = " << Val << ";\n";
} else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){
OS << " SDOperand Tmp" << ResNo << " = " << Val << ";\n";
} else if (N->isLeaf() && (CP = NodeGetComplexPattern(N, ISE))) {
std::string Fn = CP->getSelectFunc();
NumRes = CP->getNumOperands();
OS << " SDOperand ";
for (unsigned i = 0; i != NumRes; ++i)
OS << "Tmp" << (i+ResNo) << ",";
OS << ";\n";
OS << " if (!" << Fn << "(" << Val;
for (unsigned i = 0; i < NumRes; i++)
OS << ", Tmp" << i + ResNo;
OS << ")) goto P" << PatternNo << "Fail;\n";
TmpNo = ResNo + NumRes;
} else {
OS << " SDOperand Tmp" << ResNo << " = Select(" << Val << ");\n";
}
// Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
// value if used multiple times by this pattern result.
Val = "Tmp"+utostr(ResNo);
return std::make_pair(NumRes, ResNo);
}
if (N->isLeaf()) {
// If this is an explicit register reference, handle it.
if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
unsigned ResNo = TmpNo++;
if (DI->getDef()->isSubClassOf("Register")) {
OS << " SDOperand Tmp" << ResNo << " = CurDAG->getRegister("
<< ISE.getQualifiedName(DI->getDef()) << ", MVT::"
<< getEnumName(N->getTypeNum(0))
<< ");\n";
return std::make_pair(1, ResNo);
}
} else if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
unsigned ResNo = TmpNo++;
assert(N->getExtTypes().size() == 1 && "Multiple types not handled!");
OS << " SDOperand Tmp" << ResNo << " = CurDAG->getTargetConstant("
<< II->getValue() << ", MVT::"
<< getEnumName(N->getTypeNum(0))
<< ");\n";
return std::make_pair(1, ResNo);
}
N->dump();
assert(0 && "Unknown leaf type!");
return std::make_pair(1, ~0U);
}
Record *Op = N->getOperator();
if (Op->isSubClassOf("Instruction")) {
const CodeGenTarget &CGT = ISE.getTargetInfo();
CodeGenInstruction &II = CGT.getInstruction(Op->getName());
const DAGInstruction &Inst = ISE.getInstruction(Op);
bool HasImpInputs = Inst.getNumImpOperands() > 0;
bool HasImpResults = Inst.getNumImpResults() > 0;
bool HasInFlag = II.hasInFlag || HasImpInputs;
bool HasOutFlag = II.hasOutFlag || HasImpResults;
bool HasChain = II.hasCtrlDep;
if (isRoot && PatternHasCtrlDep(Pattern, ISE))
HasChain = true;
if (HasInFlag || HasOutFlag)
OS << " SDOperand InFlag = SDOperand(0, 0);\n";
// Determine operand emission order. Complex pattern first.
std::vector<std::pair<unsigned, TreePatternNode*> > EmitOrder;
std::vector<std::pair<unsigned, TreePatternNode*> >::iterator OI;
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
TreePatternNode *Child = N->getChild(i);
if (i == 0) {
EmitOrder.push_back(std::make_pair(i, Child));
OI = EmitOrder.begin();
} else if (NodeIsComplexPattern(Child)) {
OI = EmitOrder.insert(OI, std::make_pair(i, Child));
} else {
EmitOrder.push_back(std::make_pair(i, Child));
}
}
// Emit all of the operands.
std::vector<std::pair<unsigned, unsigned> > NumTemps(EmitOrder.size());
for (unsigned i = 0, e = EmitOrder.size(); i != e; ++i) {
unsigned OpOrder = EmitOrder[i].first;
TreePatternNode *Child = EmitOrder[i].second;
std::pair<unsigned, unsigned> NumTemp = EmitResultCode(Child);
NumTemps[OpOrder] = NumTemp;
}
// List all the operands in the right order.
std::vector<unsigned> Ops;
for (unsigned i = 0, e = NumTemps.size(); i != e; i++) {
for (unsigned j = 0; j < NumTemps[i].first; j++)
Ops.push_back(NumTemps[i].second + j);
}
// Emit all the chain and CopyToReg stuff.
if (HasChain)
OS << " Chain = Select(Chain);\n";
if (HasInFlag)
EmitInFlags(Pattern, "N", HasChain, II.hasInFlag, true);
unsigned NumResults = Inst.getNumResults();
unsigned ResNo = TmpNo++;
if (!isRoot) {
OS << " SDOperand Tmp" << ResNo << " = CurDAG->getTargetNode("
<< II.Namespace << "::" << II.TheDef->getName();
if (N->getTypeNum(0) != MVT::isVoid)
OS << ", MVT::" << getEnumName(N->getTypeNum(0));
if (HasOutFlag)
OS << ", MVT::Flag";
unsigned LastOp = 0;
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
LastOp = Ops[i];
OS << ", Tmp" << LastOp;
}
OS << ");\n";
if (HasChain) {
// Must have at least one result
OS << " Chain = Tmp" << LastOp << ".getValue("
<< NumResults << ");\n";
}
} else if (HasChain || HasOutFlag) {
OS << " SDOperand Result = CurDAG->getTargetNode("
<< II.Namespace << "::" << II.TheDef->getName();
// Output order: results, chain, flags
// Result types.
if (NumResults > 0) {
if (N->getTypeNum(0) != MVT::isVoid)
OS << ", MVT::" << getEnumName(N->getTypeNum(0));
}
if (HasChain)
OS << ", MVT::Other";
if (HasOutFlag)
OS << ", MVT::Flag";
// Inputs.
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
OS << ", Tmp" << Ops[i];
if (HasChain) OS << ", Chain";
if (HasInFlag) OS << ", InFlag";
OS << ");\n";
unsigned ValNo = 0;
for (unsigned i = 0; i < NumResults; i++) {
OS << " CodeGenMap[N.getValue(" << ValNo << ")] = Result"
<< ".getValue(" << ValNo << ");\n";
ValNo++;
}
if (HasChain)
OS << " Chain = Result.getValue(" << ValNo << ");\n";
if (HasOutFlag)
OS << " InFlag = Result.getValue("
<< ValNo + (unsigned)HasChain << ");\n";
if (HasImpResults) {
if (EmitCopyFromRegs(N, HasChain)) {
OS << " CodeGenMap[N.getValue(" << ValNo << ")] = "
<< "Result.getValue(" << ValNo << ");\n";
ValNo++;
HasChain = true;
}
}
// User does not expect that the instruction produces a chain!
bool AddedChain = HasChain && !NodeHasChain(Pattern, ISE);
if (NodeHasChain(Pattern, ISE))
OS << " CodeGenMap[N.getValue(" << ValNo++ << ")] = Chain;\n";
if (FoldedChains.size() > 0) {
OS << " ";
for (unsigned j = 0, e = FoldedChains.size(); j < e; j++)
OS << "CodeGenMap[" << FoldedChains[j].first << ".getValue("
<< FoldedChains[j].second << ")] = ";
OS << "Chain;\n";
}
if (HasOutFlag)
OS << " CodeGenMap[N.getValue(" << ValNo << ")] = InFlag;\n";
if (AddedChain && HasOutFlag) {
if (NumResults == 0) {
OS << " return Result.getValue(N.ResNo+1);\n";
} else {
OS << " if (N.ResNo < " << NumResults << ")\n";
OS << " return Result.getValue(N.ResNo);\n";
OS << " else\n";
OS << " return Result.getValue(N.ResNo+1);\n";
}
} else {
OS << " return Result.getValue(N.ResNo);\n";
}
} else {
// If this instruction is the root, and if there is only one use of it,
// use SelectNodeTo instead of getTargetNode to avoid an allocation.
OS << " if (N.Val->hasOneUse()) {\n";
OS << " return CurDAG->SelectNodeTo(N.Val, "
<< II.Namespace << "::" << II.TheDef->getName();
if (N->getTypeNum(0) != MVT::isVoid)
OS << ", MVT::" << getEnumName(N->getTypeNum(0));
if (HasOutFlag)
OS << ", MVT::Flag";
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
OS << ", Tmp" << Ops[i];
if (HasInFlag)
OS << ", InFlag";
OS << ");\n";
OS << " } else {\n";
OS << " return CodeGenMap[N] = CurDAG->getTargetNode("
<< II.Namespace << "::" << II.TheDef->getName();
if (N->getTypeNum(0) != MVT::isVoid)
OS << ", MVT::" << getEnumName(N->getTypeNum(0));
if (HasOutFlag)
OS << ", MVT::Flag";
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
OS << ", Tmp" << Ops[i];
if (HasInFlag)
OS << ", InFlag";
OS << ");\n";
OS << " }\n";
}
return std::make_pair(1, ResNo);
} else if (Op->isSubClassOf("SDNodeXForm")) {
assert(N->getNumChildren() == 1 && "node xform should have one child!");
unsigned OpVal = EmitResultCode(N->getChild(0)).second;
unsigned ResNo = TmpNo++;
OS << " SDOperand Tmp" << ResNo << " = Transform_" << Op->getName()
<< "(Tmp" << OpVal << ".Val);\n";
if (isRoot) {
OS << " CodeGenMap[N] = Tmp" << ResNo << ";\n";
OS << " return Tmp" << ResNo << ";\n";
}
return std::make_pair(1, ResNo);
} else {
N->dump();
assert(0 && "Unknown node in result pattern!");
return std::make_pair(1, ~0U);
}
}
/// InsertOneTypeCheck - Insert a type-check for an unresolved type in 'Pat' and
/// add it to the tree. 'Pat' and 'Other' are isomorphic trees except that
/// 'Pat' may be missing types. If we find an unresolved type to add a check
/// for, this returns true otherwise false if Pat has all types.
bool InsertOneTypeCheck(TreePatternNode *Pat, TreePatternNode *Other,
const std::string &Prefix) {
// Did we find one?
if (!Pat->hasTypeSet()) {
// Move a type over from 'other' to 'pat'.
Pat->setTypes(Other->getExtTypes());
OS << " if (" << Prefix << ".Val->getValueType(0) != MVT::"
<< getName(Pat->getTypeNum(0)) << ") goto P" << PatternNo << "Fail;\n";
return true;
}
unsigned OpNo = (unsigned) NodeHasChain(Pat, ISE);
for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i, ++OpNo)
if (InsertOneTypeCheck(Pat->getChild(i), Other->getChild(i),
Prefix + utostr(OpNo)))
return true;
return false;
}
private:
/// EmitInFlags - Emit the flag operands for the DAG that is
/// being built.
void EmitInFlags(TreePatternNode *N, const std::string &RootName,
bool HasChain, bool HasInFlag, bool isRoot = false) {
const CodeGenTarget &T = ISE.getTargetInfo();
unsigned OpNo = (unsigned) NodeHasChain(N, ISE);
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
TreePatternNode *Child = N->getChild(i);
if (!Child->isLeaf()) {
EmitInFlags(Child, RootName + utostr(OpNo), HasChain, HasInFlag);
} else {
if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
Record *RR = DI->getDef();
if (RR->isSubClassOf("Register")) {
MVT::ValueType RVT = getRegisterValueType(RR, T);
if (RVT == MVT::Flag) {
OS << " InFlag = Select(" << RootName << OpNo << ");\n";
} else if (HasChain) {
OS << " SDOperand " << RootName << "CR" << i << ";\n";
OS << " " << RootName << "CR" << i
<< " = CurDAG->getCopyToReg(Chain, CurDAG->getRegister("
<< ISE.getQualifiedName(RR) << ", MVT::"
<< getEnumName(RVT) << ")"
<< ", Select(" << RootName << OpNo << "), InFlag);\n";
OS << " Chain = " << RootName << "CR" << i
<< ".getValue(0);\n";
OS << " InFlag = " << RootName << "CR" << i
<< ".getValue(1);\n";
} else {
OS << " InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode()"
<< ", CurDAG->getRegister(" << ISE.getQualifiedName(RR)
<< ", MVT::" << getEnumName(RVT) << ")"
<< ", Select(" << RootName << OpNo
<< "), InFlag).getValue(1);\n";
}
}
}
}
}
if (isRoot && HasInFlag) {
OS << " SDOperand " << RootName << OpNo << " = " << RootName
<< ".getOperand(" << OpNo << ");\n";
OS << " InFlag = Select(" << RootName << OpNo << ");\n";
}
}
/// EmitCopyFromRegs - Emit code to copy result to physical registers
/// as specified by the instruction. It returns true if any copy is
/// emitted.
bool EmitCopyFromRegs(TreePatternNode *N, bool HasChain) {
bool RetVal = false;
Record *Op = N->getOperator();
if (Op->isSubClassOf("Instruction")) {
const DAGInstruction &Inst = ISE.getInstruction(Op);
const CodeGenTarget &CGT = ISE.getTargetInfo();
CodeGenInstruction &II = CGT.getInstruction(Op->getName());
unsigned NumImpResults = Inst.getNumImpResults();
for (unsigned i = 0; i < NumImpResults; i++) {
Record *RR = Inst.getImpResult(i);
if (RR->isSubClassOf("Register")) {
MVT::ValueType RVT = getRegisterValueType(RR, CGT);
if (RVT != MVT::Flag) {
if (HasChain) {
OS << " Result = CurDAG->getCopyFromReg(Chain, "
<< ISE.getQualifiedName(RR)
<< ", MVT::" << getEnumName(RVT) << ", InFlag);\n";
OS << " Chain = Result.getValue(1);\n";
OS << " InFlag = Result.getValue(2);\n";
} else {
OS << " Chain;\n";
OS << " Result = CurDAG->getCopyFromReg("
<< "CurDAG->getEntryNode(), ISE.getQualifiedName(RR)"
<< ", MVT::" << getEnumName(RVT) << ", InFlag);\n";
OS << " Chain = Result.getValue(1);\n";
OS << " InFlag = Result.getValue(2);\n";
}
RetVal = true;
}
}
}
}
return RetVal;
}
};
/// EmitCodeForPattern - Given a pattern to match, emit code to the specified
/// stream to match the pattern, and generate the code for the match if it
/// succeeds.
void DAGISelEmitter::EmitCodeForPattern(PatternToMatch &Pattern,
std::ostream &OS) {
static unsigned PatternCount = 0;
unsigned PatternNo = PatternCount++;
OS << " { // Pattern #" << PatternNo << ": ";
Pattern.getSrcPattern()->print(OS);
OS << "\n // Emits: ";
Pattern.getDstPattern()->print(OS);
OS << "\n";
OS << " // Pattern complexity = "
<< getPatternSize(Pattern.getSrcPattern(), *this)
<< " cost = "
<< getResultPatternCost(Pattern.getDstPattern()) << "\n";
PatternCodeEmitter Emitter(*this, Pattern.getPredicates(),
Pattern.getSrcPattern(), Pattern.getDstPattern(),
PatternNo, OS);
// Emit the matcher, capturing named arguments in VariableMap.
bool FoundChain = false;
Emitter.EmitMatchCode(Pattern.getSrcPattern(), "N", FoundChain,
true /*the root*/);
// TP - Get *SOME* tree pattern, we don't care which.
TreePattern &TP = *PatternFragments.begin()->second;
// At this point, we know that we structurally match the pattern, but the
// types of the nodes may not match. Figure out the fewest number of type
// comparisons we need to emit. For example, if there is only one integer
// type supported by a target, there should be no type comparisons at all for
// integer patterns!
//
// To figure out the fewest number of type checks needed, clone the pattern,
// remove the types, then perform type inference on the pattern as a whole.
// If there are unresolved types, emit an explicit check for those types,
// apply the type to the tree, then rerun type inference. Iterate until all
// types are resolved.
//
TreePatternNode *Pat = Pattern.getSrcPattern()->clone();
RemoveAllTypes(Pat);
do {
// Resolve/propagate as many types as possible.
try {
bool MadeChange = true;
while (MadeChange)
MadeChange = Pat->ApplyTypeConstraints(TP,true/*Ignore reg constraints*/);
} catch (...) {
assert(0 && "Error: could not find consistent types for something we"
" already decided was ok!");
abort();
}
// Insert a check for an unresolved type and add it to the tree. If we find
// an unresolved type to add a check for, this returns true and we iterate,
// otherwise we are done.
} while (Emitter.InsertOneTypeCheck(Pat, Pattern.getSrcPattern(), "N"));
Emitter.EmitResultCode(Pattern.getDstPattern(), true /*the root*/);
delete Pat;
OS << " }\n P" << PatternNo << "Fail:\n";
}
namespace {
/// CompareByRecordName - An ordering predicate that implements less-than by
/// comparing the names records.
struct CompareByRecordName {
bool operator()(const Record *LHS, const Record *RHS) const {
// Sort by name first.
if (LHS->getName() < RHS->getName()) return true;
// If both names are equal, sort by pointer.
return LHS->getName() == RHS->getName() && LHS < RHS;
}
};
}
void DAGISelEmitter::EmitInstructionSelector(std::ostream &OS) {
std::string InstNS = Target.inst_begin()->second.Namespace;
if (!InstNS.empty()) InstNS += "::";
// Group the patterns by their top-level opcodes.
std::map<Record*, std::vector<PatternToMatch*>,
CompareByRecordName> PatternsByOpcode;
for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
TreePatternNode *Node = PatternsToMatch[i].getSrcPattern();
if (!Node->isLeaf()) {
PatternsByOpcode[Node->getOperator()].push_back(&PatternsToMatch[i]);
} else {
const ComplexPattern *CP;
if (IntInit *II =
dynamic_cast<IntInit*>(Node->getLeafValue())) {
PatternsByOpcode[getSDNodeNamed("imm")].push_back(&PatternsToMatch[i]);
} else if ((CP = NodeGetComplexPattern(Node, *this))) {
std::vector<Record*> OpNodes = CP->getRootNodes();
for (unsigned j = 0, e = OpNodes.size(); j != e; j++) {
PatternsByOpcode[OpNodes[j]].insert(PatternsByOpcode[OpNodes[j]].begin(),
&PatternsToMatch[i]);
}
} else {
std::cerr << "Unrecognized opcode '";
Node->dump();
std::cerr << "' on tree pattern '";
std::cerr << PatternsToMatch[i].getDstPattern()->getOperator()->getName();
std::cerr << "'!\n";
exit(1);
}
}
}
// Emit one Select_* method for each top-level opcode. We do this instead of
// emitting one giant switch statement to support compilers where this will
// result in the recursive functions taking less stack space.
for (std::map<Record*, std::vector<PatternToMatch*>,
CompareByRecordName>::iterator PBOI = PatternsByOpcode.begin(),
E = PatternsByOpcode.end(); PBOI != E; ++PBOI) {
OS << "SDOperand Select_" << PBOI->first->getName() << "(SDOperand N) {\n";
const SDNodeInfo &OpcodeInfo = getSDNodeInfo(PBOI->first);
std::vector<PatternToMatch*> &Patterns = PBOI->second;
// We want to emit all of the matching code now. However, we want to emit
// the matches in order of minimal cost. Sort the patterns so the least
// cost one is at the start.
std::stable_sort(Patterns.begin(), Patterns.end(),
PatternSortingPredicate(*this));
for (unsigned i = 0, e = Patterns.size(); i != e; ++i)
EmitCodeForPattern(*Patterns[i], OS);
OS << " std::cerr << \"Cannot yet select: \";\n"
<< " N.Val->dump(CurDAG);\n"
<< " std::cerr << '\\n';\n"
<< " abort();\n"
<< "}\n\n";
}
// Emit boilerplate.
OS << "// The main instruction selector code.\n"
<< "SDOperand SelectCode(SDOperand N) {\n"
<< " if (N.getOpcode() >= ISD::BUILTIN_OP_END &&\n"
<< " N.getOpcode() < (ISD::BUILTIN_OP_END+" << InstNS
<< "INSTRUCTION_LIST_END))\n"
<< " return N; // Already selected.\n\n"
<< " std::map<SDOperand, SDOperand>::iterator CGMI = CodeGenMap.find(N);\n"
<< " if (CGMI != CodeGenMap.end()) return CGMI->second;\n"
<< " // Work arounds for GCC stack overflow bugs.\n"
<< " switch (N.getOpcode()) {\n"
<< " default: break;\n"
<< " case ISD::EntryToken: // These leaves remain the same.\n"
<< " case ISD::BasicBlock:\n"
<< " return N;\n"
<< " case ISD::AssertSext:\n"
<< " case ISD::AssertZext: {\n"
<< " SDOperand Tmp0 = Select(N.getOperand(0));\n"
<< " if (!N.Val->hasOneUse()) CodeGenMap[N] = Tmp0;\n"
<< " return Tmp0;\n"
<< " }\n"
<< " case ISD::TokenFactor:\n"
<< " if (N.getNumOperands() == 2) {\n"
<< " SDOperand Op0 = Select(N.getOperand(0));\n"
<< " SDOperand Op1 = Select(N.getOperand(1));\n"
<< " return CodeGenMap[N] =\n"
<< " CurDAG->getNode(ISD::TokenFactor, MVT::Other, Op0, Op1);\n"
<< " } else {\n"
<< " std::vector<SDOperand> Ops;\n"
<< " for (unsigned i = 0, e = N.getNumOperands(); i != e; ++i)\n"
<< " Ops.push_back(Select(N.getOperand(i)));\n"
<< " return CodeGenMap[N] = \n"
<< " CurDAG->getNode(ISD::TokenFactor, MVT::Other, Ops);\n"
<< " }\n"
<< " case ISD::CopyFromReg: {\n"
<< " SDOperand Chain = Select(N.getOperand(0));\n"
<< " unsigned Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();\n"
<< " MVT::ValueType VT = N.Val->getValueType(0);\n"
<< " if (N.Val->getNumValues() == 2) {\n"
<< " if (Chain == N.getOperand(0)) return N; // No change\n"
<< " SDOperand New = CurDAG->getCopyFromReg(Chain, Reg, VT);\n"
<< " CodeGenMap[N.getValue(0)] = New;\n"
<< " CodeGenMap[N.getValue(1)] = New.getValue(1);\n"
<< " return New.getValue(N.ResNo);\n"
<< " } else {\n"
<< " SDOperand Flag(0, 0);\n"
<< " if (N.getNumOperands() == 3) Flag = Select(N.getOperand(2));\n"
<< " if (Chain == N.getOperand(0) &&\n"
<< " (N.getNumOperands() == 2 || Flag == N.getOperand(2)))\n"
<< " return N; // No change\n"
<< " SDOperand New = CurDAG->getCopyFromReg(Chain, Reg, VT, Flag);\n"
<< " CodeGenMap[N.getValue(0)] = New;\n"
<< " CodeGenMap[N.getValue(1)] = New.getValue(1);\n"
<< " CodeGenMap[N.getValue(2)] = New.getValue(2);\n"
<< " return New.getValue(N.ResNo);\n"
<< " }\n"
<< " }\n"
<< " case ISD::CopyToReg: {\n"
<< " SDOperand Chain = Select(N.getOperand(0));\n"
<< " unsigned Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();\n"
<< " SDOperand Val = Select(N.getOperand(2));\n"
<< " SDOperand Result = N;\n"
<< " if (N.Val->getNumValues() == 1) {\n"
<< " if (Chain != N.getOperand(0) || Val != N.getOperand(2))\n"
<< " Result = CurDAG->getCopyToReg(Chain, Reg, Val);\n"
<< " return CodeGenMap[N] = Result;\n"
<< " } else {\n"
<< " SDOperand Flag(0, 0);\n"
<< " if (N.getNumOperands() == 4) Flag = Select(N.getOperand(3));\n"
<< " if (Chain != N.getOperand(0) || Val != N.getOperand(2) ||\n"
<< " (N.getNumOperands() == 4 && Flag != N.getOperand(3)))\n"
<< " Result = CurDAG->getCopyToReg(Chain, Reg, Val, Flag);\n"
<< " CodeGenMap[N.getValue(0)] = Result;\n"
<< " CodeGenMap[N.getValue(1)] = Result.getValue(1);\n"
<< " return Result.getValue(N.ResNo);\n"
<< " }\n"
<< " }\n";
// Loop over all of the case statements, emiting a call to each method we
// emitted above.
for (std::map<Record*, std::vector<PatternToMatch*>,
CompareByRecordName>::iterator PBOI = PatternsByOpcode.begin(),
E = PatternsByOpcode.end(); PBOI != E; ++PBOI) {
const SDNodeInfo &OpcodeInfo = getSDNodeInfo(PBOI->first);
OS << " case " << OpcodeInfo.getEnumName() << ": "
<< std::string(std::max(0, int(16-OpcodeInfo.getEnumName().size())), ' ')
<< "return Select_" << PBOI->first->getName() << "(N);\n";
}
OS << " } // end of big switch.\n\n"
<< " std::cerr << \"Cannot yet select: \";\n"
<< " N.Val->dump(CurDAG);\n"
<< " std::cerr << '\\n';\n"
<< " abort();\n"
<< "}\n";
}
void DAGISelEmitter::run(std::ostream &OS) {
EmitSourceFileHeader("DAG Instruction Selector for the " + Target.getName() +
" target", OS);
OS << "// *** NOTE: This file is #included into the middle of the target\n"
<< "// *** instruction selector class. These functions are really "
<< "methods.\n\n";
OS << "// Instance var to keep track of multiply used nodes that have \n"
<< "// already been selected.\n"
<< "std::map<SDOperand, SDOperand> CodeGenMap;\n";
ParseNodeInfo();
ParseNodeTransforms(OS);
ParseComplexPatterns();
ParsePatternFragments(OS);
ParseInstructions();
ParsePatterns();
// Generate variants. For example, commutative patterns can match
// multiple ways. Add them to PatternsToMatch as well.
GenerateVariants();
DEBUG(std::cerr << "\n\nALL PATTERNS TO MATCH:\n\n";
for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
std::cerr << "PATTERN: "; PatternsToMatch[i].getSrcPattern()->dump();
std::cerr << "\nRESULT: ";PatternsToMatch[i].getDstPattern()->dump();
std::cerr << "\n";
});
// At this point, we have full information about the 'Patterns' we need to
// parse, both implicitly from instructions as well as from explicit pattern
// definitions. Emit the resultant instruction selector.
EmitInstructionSelector(OS);
for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
E = PatternFragments.end(); I != E; ++I)
delete I->second;
PatternFragments.clear();
Instructions.clear();
}