llvm-6502/lib/Target/R600/SIInstrInfo.cpp

1020 lines
36 KiB
C++
Raw Normal View History

//===-- SIInstrInfo.cpp - SI Instruction Information ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief SI Implementation of TargetInstrInfo.
//
//===----------------------------------------------------------------------===//
#include "SIInstrInfo.h"
#include "AMDGPUTargetMachine.h"
#include "SIDefines.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/MC/MCInstrDesc.h"
using namespace llvm;
SIInstrInfo::SIInstrInfo(AMDGPUTargetMachine &tm)
: AMDGPUInstrInfo(tm),
RI(tm) { }
//===----------------------------------------------------------------------===//
// TargetInstrInfo callbacks
//===----------------------------------------------------------------------===//
void
SIInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI, DebugLoc DL,
unsigned DestReg, unsigned SrcReg,
bool KillSrc) const {
// If we are trying to copy to or from SCC, there is a bug somewhere else in
// the backend. While it may be theoretically possible to do this, it should
// never be necessary.
assert(DestReg != AMDGPU::SCC && SrcReg != AMDGPU::SCC);
static const int16_t Sub0_15[] = {
AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7,
AMDGPU::sub8, AMDGPU::sub9, AMDGPU::sub10, AMDGPU::sub11,
AMDGPU::sub12, AMDGPU::sub13, AMDGPU::sub14, AMDGPU::sub15, 0
};
static const int16_t Sub0_7[] = {
AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7, 0
};
static const int16_t Sub0_3[] = {
AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3, 0
};
static const int16_t Sub0_2[] = {
AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, 0
};
static const int16_t Sub0_1[] = {
AMDGPU::sub0, AMDGPU::sub1, 0
};
unsigned Opcode;
const int16_t *SubIndices;
if (AMDGPU::M0 == DestReg) {
// Check if M0 isn't already set to this value
for (MachineBasicBlock::reverse_iterator E = MBB.rend(),
I = MachineBasicBlock::reverse_iterator(MI); I != E; ++I) {
if (!I->definesRegister(AMDGPU::M0))
continue;
unsigned Opc = I->getOpcode();
if (Opc != TargetOpcode::COPY && Opc != AMDGPU::S_MOV_B32)
break;
if (!I->readsRegister(SrcReg))
break;
// The copy isn't necessary
return;
}
}
if (AMDGPU::SReg_32RegClass.contains(DestReg)) {
assert(AMDGPU::SReg_32RegClass.contains(SrcReg));
BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
return;
} else if (AMDGPU::SReg_64RegClass.contains(DestReg)) {
assert(AMDGPU::SReg_64RegClass.contains(SrcReg));
BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
return;
} else if (AMDGPU::SReg_128RegClass.contains(DestReg)) {
assert(AMDGPU::SReg_128RegClass.contains(SrcReg));
Opcode = AMDGPU::S_MOV_B32;
SubIndices = Sub0_3;
} else if (AMDGPU::SReg_256RegClass.contains(DestReg)) {
assert(AMDGPU::SReg_256RegClass.contains(SrcReg));
Opcode = AMDGPU::S_MOV_B32;
SubIndices = Sub0_7;
} else if (AMDGPU::SReg_512RegClass.contains(DestReg)) {
assert(AMDGPU::SReg_512RegClass.contains(SrcReg));
Opcode = AMDGPU::S_MOV_B32;
SubIndices = Sub0_15;
} else if (AMDGPU::VReg_32RegClass.contains(DestReg)) {
assert(AMDGPU::VReg_32RegClass.contains(SrcReg) ||
AMDGPU::SReg_32RegClass.contains(SrcReg));
BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
return;
} else if (AMDGPU::VReg_64RegClass.contains(DestReg)) {
assert(AMDGPU::VReg_64RegClass.contains(SrcReg) ||
AMDGPU::SReg_64RegClass.contains(SrcReg));
Opcode = AMDGPU::V_MOV_B32_e32;
SubIndices = Sub0_1;
} else if (AMDGPU::VReg_96RegClass.contains(DestReg)) {
assert(AMDGPU::VReg_96RegClass.contains(SrcReg));
Opcode = AMDGPU::V_MOV_B32_e32;
SubIndices = Sub0_2;
} else if (AMDGPU::VReg_128RegClass.contains(DestReg)) {
assert(AMDGPU::VReg_128RegClass.contains(SrcReg) ||
AMDGPU::SReg_128RegClass.contains(SrcReg));
Opcode = AMDGPU::V_MOV_B32_e32;
SubIndices = Sub0_3;
} else if (AMDGPU::VReg_256RegClass.contains(DestReg)) {
assert(AMDGPU::VReg_256RegClass.contains(SrcReg) ||
AMDGPU::SReg_256RegClass.contains(SrcReg));
Opcode = AMDGPU::V_MOV_B32_e32;
SubIndices = Sub0_7;
} else if (AMDGPU::VReg_512RegClass.contains(DestReg)) {
assert(AMDGPU::VReg_512RegClass.contains(SrcReg) ||
AMDGPU::SReg_512RegClass.contains(SrcReg));
Opcode = AMDGPU::V_MOV_B32_e32;
SubIndices = Sub0_15;
} else {
llvm_unreachable("Can't copy register!");
}
while (unsigned SubIdx = *SubIndices++) {
MachineInstrBuilder Builder = BuildMI(MBB, MI, DL,
get(Opcode), RI.getSubReg(DestReg, SubIdx));
Builder.addReg(RI.getSubReg(SrcReg, SubIdx), getKillRegState(KillSrc));
if (*SubIndices)
Builder.addReg(DestReg, RegState::Define | RegState::Implicit);
}
}
unsigned SIInstrInfo::commuteOpcode(unsigned Opcode) const {
int NewOpc;
// Try to map original to commuted opcode
if ((NewOpc = AMDGPU::getCommuteRev(Opcode)) != -1)
return NewOpc;
// Try to map commuted to original opcode
if ((NewOpc = AMDGPU::getCommuteOrig(Opcode)) != -1)
return NewOpc;
return Opcode;
}
void SIInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned SrcReg, bool isKill,
int FrameIndex,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
SIMachineFunctionInfo *MFI = MBB.getParent()->getInfo<SIMachineFunctionInfo>();
DebugLoc DL = MBB.findDebugLoc(MI);
unsigned KillFlag = isKill ? RegState::Kill : 0;
if (TRI->getCommonSubClass(RC, &AMDGPU::SGPR_32RegClass)) {
unsigned Lane = MFI->SpillTracker.getNextLane(MRI);
BuildMI(MBB, MI, DL, get(AMDGPU::V_WRITELANE_B32),
MFI->SpillTracker.LaneVGPR)
.addReg(SrcReg, KillFlag)
.addImm(Lane);
MFI->SpillTracker.addSpilledReg(FrameIndex, MFI->SpillTracker.LaneVGPR,
Lane);
} else {
for (unsigned i = 0, e = RC->getSize() / 4; i != e; ++i) {
unsigned SubReg = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
BuildMI(MBB, MI, MBB.findDebugLoc(MI), get(AMDGPU::COPY), SubReg)
.addReg(SrcReg, 0, RI.getSubRegFromChannel(i));
storeRegToStackSlot(MBB, MI, SubReg, isKill, FrameIndex + i,
&AMDGPU::SReg_32RegClass, TRI);
}
}
}
void SIInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned DestReg, int FrameIndex,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
SIMachineFunctionInfo *MFI = MBB.getParent()->getInfo<SIMachineFunctionInfo>();
DebugLoc DL = MBB.findDebugLoc(MI);
if (TRI->getCommonSubClass(RC, &AMDGPU::SReg_32RegClass)) {
SIMachineFunctionInfo::SpilledReg Spill =
MFI->SpillTracker.getSpilledReg(FrameIndex);
assert(Spill.VGPR);
BuildMI(MBB, MI, DL, get(AMDGPU::V_READLANE_B32), DestReg)
.addReg(Spill.VGPR)
.addImm(Spill.Lane);
} else {
for (unsigned i = 0, e = RC->getSize() / 4; i != e; ++i) {
unsigned Flags = RegState::Define;
if (i == 0) {
Flags |= RegState::Undef;
}
unsigned SubReg = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
loadRegFromStackSlot(MBB, MI, SubReg, FrameIndex + i,
&AMDGPU::SReg_32RegClass, TRI);
BuildMI(MBB, MI, DL, get(AMDGPU::COPY))
.addReg(DestReg, Flags, RI.getSubRegFromChannel(i))
.addReg(SubReg);
}
}
}
MachineInstr *SIInstrInfo::commuteInstruction(MachineInstr *MI,
bool NewMI) const {
MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
if (MI->getNumOperands() < 3 || !MI->getOperand(1).isReg())
return 0;
// Cannot commute VOP2 if src0 is SGPR.
if (isVOP2(MI->getOpcode()) && MI->getOperand(1).isReg() &&
RI.isSGPRClass(MRI.getRegClass(MI->getOperand(1).getReg())))
return 0;
if (!MI->getOperand(2).isReg()) {
// XXX: Commute instructions with FPImm operands
if (NewMI || MI->getOperand(2).isFPImm() ||
(!isVOP2(MI->getOpcode()) && !isVOP3(MI->getOpcode()))) {
return 0;
}
// XXX: Commute VOP3 instructions with abs and neg set.
if (isVOP3(MI->getOpcode()) &&
(MI->getOperand(AMDGPU::getNamedOperandIdx(MI->getOpcode(),
AMDGPU::OpName::abs)).getImm() ||
MI->getOperand(AMDGPU::getNamedOperandIdx(MI->getOpcode(),
AMDGPU::OpName::neg)).getImm()))
return 0;
unsigned Reg = MI->getOperand(1).getReg();
unsigned SubReg = MI->getOperand(1).getSubReg();
MI->getOperand(1).ChangeToImmediate(MI->getOperand(2).getImm());
MI->getOperand(2).ChangeToRegister(Reg, false);
MI->getOperand(2).setSubReg(SubReg);
} else {
MI = TargetInstrInfo::commuteInstruction(MI, NewMI);
}
if (MI)
MI->setDesc(get(commuteOpcode(MI->getOpcode())));
return MI;
}
MachineInstr *SIInstrInfo::buildMovInstr(MachineBasicBlock *MBB,
MachineBasicBlock::iterator I,
unsigned DstReg,
unsigned SrcReg) const {
return BuildMI(*MBB, I, MBB->findDebugLoc(I), get(AMDGPU::V_MOV_B32_e32),
DstReg) .addReg(SrcReg);
}
bool SIInstrInfo::isMov(unsigned Opcode) const {
switch(Opcode) {
default: return false;
case AMDGPU::S_MOV_B32:
case AMDGPU::S_MOV_B64:
case AMDGPU::V_MOV_B32_e32:
case AMDGPU::V_MOV_B32_e64:
return true;
}
}
bool
SIInstrInfo::isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
return RC != &AMDGPU::EXECRegRegClass;
}
namespace llvm {
namespace AMDGPU {
// Helper function generated by tablegen. We are wrapping this with
// an SIInstrInfo function that reutrns bool rather than int.
int isDS(uint16_t Opcode);
}
}
bool SIInstrInfo::isDS(uint16_t Opcode) const {
return ::AMDGPU::isDS(Opcode) != -1;
}
int SIInstrInfo::isMIMG(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::MIMG;
}
int SIInstrInfo::isSMRD(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::SMRD;
}
bool SIInstrInfo::isVOP1(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::VOP1;
}
bool SIInstrInfo::isVOP2(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::VOP2;
}
bool SIInstrInfo::isVOP3(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::VOP3;
}
bool SIInstrInfo::isVOPC(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::VOPC;
}
bool SIInstrInfo::isSALUInstr(const MachineInstr &MI) const {
return get(MI.getOpcode()).TSFlags & SIInstrFlags::SALU;
}
bool SIInstrInfo::isInlineConstant(const MachineOperand &MO) const {
union {
int32_t I;
float F;
} Imm;
if (MO.isImm()) {
Imm.I = MO.getImm();
} else if (MO.isFPImm()) {
Imm.F = MO.getFPImm()->getValueAPF().convertToFloat();
} else {
return false;
}
// The actual type of the operand does not seem to matter as long
// as the bits match one of the inline immediate values. For example:
//
// -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
// so it is a legal inline immediate.
//
// 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
// floating-point, so it is a legal inline immediate.
return (Imm.I >= -16 && Imm.I <= 64) ||
Imm.F == 0.0f || Imm.F == 0.5f || Imm.F == -0.5f || Imm.F == 1.0f ||
Imm.F == -1.0f || Imm.F == 2.0f || Imm.F == -2.0f || Imm.F == 4.0f ||
Imm.F == -4.0f;
}
bool SIInstrInfo::isLiteralConstant(const MachineOperand &MO) const {
return (MO.isImm() || MO.isFPImm()) && !isInlineConstant(MO);
}
bool SIInstrInfo::verifyInstruction(const MachineInstr *MI,
StringRef &ErrInfo) const {
uint16_t Opcode = MI->getOpcode();
int Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0);
int Src1Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1);
int Src2Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2);
// Make sure the number of operands is correct.
const MCInstrDesc &Desc = get(Opcode);
if (!Desc.isVariadic() &&
Desc.getNumOperands() != MI->getNumExplicitOperands()) {
ErrInfo = "Instruction has wrong number of operands.";
return false;
}
// Make sure the register classes are correct
for (unsigned i = 0, e = Desc.getNumOperands(); i != e; ++i) {
switch (Desc.OpInfo[i].OperandType) {
case MCOI::OPERAND_REGISTER:
break;
case MCOI::OPERAND_IMMEDIATE:
if (!MI->getOperand(i).isImm() && !MI->getOperand(i).isFPImm()) {
ErrInfo = "Expected immediate, but got non-immediate";
return false;
}
// Fall-through
default:
continue;
}
if (!MI->getOperand(i).isReg())
continue;
int RegClass = Desc.OpInfo[i].RegClass;
if (RegClass != -1) {
unsigned Reg = MI->getOperand(i).getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg))
continue;
const TargetRegisterClass *RC = RI.getRegClass(RegClass);
if (!RC->contains(Reg)) {
ErrInfo = "Operand has incorrect register class.";
return false;
}
}
}
// Verify VOP*
if (isVOP1(Opcode) || isVOP2(Opcode) || isVOP3(Opcode) || isVOPC(Opcode)) {
unsigned ConstantBusCount = 0;
unsigned SGPRUsed = AMDGPU::NoRegister;
for (int i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isUse() &&
!TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
// EXEC register uses the constant bus.
if (!MO.isImplicit() && MO.getReg() == AMDGPU::EXEC)
++ConstantBusCount;
// SGPRs use the constant bus
if (MO.getReg() == AMDGPU::M0 || MO.getReg() == AMDGPU::VCC ||
(!MO.isImplicit() &&
(AMDGPU::SGPR_32RegClass.contains(MO.getReg()) ||
AMDGPU::SGPR_64RegClass.contains(MO.getReg())))) {
if (SGPRUsed != MO.getReg()) {
++ConstantBusCount;
SGPRUsed = MO.getReg();
}
}
}
// Literal constants use the constant bus.
if (isLiteralConstant(MO))
++ConstantBusCount;
}
if (ConstantBusCount > 1) {
ErrInfo = "VOP* instruction uses the constant bus more than once";
return false;
}
}
// Verify SRC1 for VOP2 and VOPC
if (Src1Idx != -1 && (isVOP2(Opcode) || isVOPC(Opcode))) {
const MachineOperand &Src1 = MI->getOperand(Src1Idx);
if (Src1.isImm() || Src1.isFPImm()) {
ErrInfo = "VOP[2C] src1 cannot be an immediate.";
return false;
}
}
// Verify VOP3
if (isVOP3(Opcode)) {
if (Src0Idx != -1 && isLiteralConstant(MI->getOperand(Src0Idx))) {
ErrInfo = "VOP3 src0 cannot be a literal constant.";
return false;
}
if (Src1Idx != -1 && isLiteralConstant(MI->getOperand(Src1Idx))) {
ErrInfo = "VOP3 src1 cannot be a literal constant.";
return false;
}
if (Src2Idx != -1 && isLiteralConstant(MI->getOperand(Src2Idx))) {
ErrInfo = "VOP3 src2 cannot be a literal constant.";
return false;
}
}
return true;
}
unsigned SIInstrInfo::getVALUOp(const MachineInstr &MI) {
switch (MI.getOpcode()) {
default: return AMDGPU::INSTRUCTION_LIST_END;
case AMDGPU::REG_SEQUENCE: return AMDGPU::REG_SEQUENCE;
case AMDGPU::COPY: return AMDGPU::COPY;
case AMDGPU::PHI: return AMDGPU::PHI;
case AMDGPU::S_MOV_B32:
return MI.getOperand(1).isReg() ?
TargetOpcode::COPY : AMDGPU::V_MOV_B32_e32;
case AMDGPU::S_ADD_I32: return AMDGPU::V_ADD_I32_e32;
case AMDGPU::S_ADDC_U32: return AMDGPU::V_ADDC_U32_e32;
case AMDGPU::S_SUB_I32: return AMDGPU::V_SUB_I32_e32;
case AMDGPU::S_SUBB_U32: return AMDGPU::V_SUBB_U32_e32;
case AMDGPU::S_AND_B32: return AMDGPU::V_AND_B32_e32;
case AMDGPU::S_OR_B32: return AMDGPU::V_OR_B32_e32;
case AMDGPU::S_XOR_B32: return AMDGPU::V_XOR_B32_e32;
case AMDGPU::S_MIN_I32: return AMDGPU::V_MIN_I32_e32;
case AMDGPU::S_MIN_U32: return AMDGPU::V_MIN_U32_e32;
case AMDGPU::S_MAX_I32: return AMDGPU::V_MAX_I32_e32;
case AMDGPU::S_MAX_U32: return AMDGPU::V_MAX_U32_e32;
case AMDGPU::S_ASHR_I32: return AMDGPU::V_ASHR_I32_e32;
case AMDGPU::S_ASHR_I64: return AMDGPU::V_ASHR_I64;
case AMDGPU::S_LSHL_B32: return AMDGPU::V_LSHL_B32_e32;
case AMDGPU::S_LSHL_B64: return AMDGPU::V_LSHL_B64;
case AMDGPU::S_LSHR_B32: return AMDGPU::V_LSHR_B32_e32;
case AMDGPU::S_LSHR_B64: return AMDGPU::V_LSHR_B64;
}
}
bool SIInstrInfo::isSALUOpSupportedOnVALU(const MachineInstr &MI) const {
return getVALUOp(MI) != AMDGPU::INSTRUCTION_LIST_END;
}
const TargetRegisterClass *SIInstrInfo::getOpRegClass(const MachineInstr &MI,
unsigned OpNo) const {
const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
const MCInstrDesc &Desc = get(MI.getOpcode());
if (MI.isVariadic() || OpNo >= Desc.getNumOperands() ||
Desc.OpInfo[OpNo].RegClass == -1)
return MRI.getRegClass(MI.getOperand(OpNo).getReg());
unsigned RCID = Desc.OpInfo[OpNo].RegClass;
return RI.getRegClass(RCID);
}
bool SIInstrInfo::canReadVGPR(const MachineInstr &MI, unsigned OpNo) const {
switch (MI.getOpcode()) {
case AMDGPU::COPY:
case AMDGPU::REG_SEQUENCE:
return RI.hasVGPRs(getOpRegClass(MI, 0));
default:
return RI.hasVGPRs(getOpRegClass(MI, OpNo));
}
}
void SIInstrInfo::legalizeOpWithMove(MachineInstr *MI, unsigned OpIdx) const {
MachineBasicBlock::iterator I = MI;
MachineOperand &MO = MI->getOperand(OpIdx);
MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
unsigned RCID = get(MI->getOpcode()).OpInfo[OpIdx].RegClass;
const TargetRegisterClass *RC = RI.getRegClass(RCID);
unsigned Opcode = AMDGPU::V_MOV_B32_e32;
if (MO.isReg()) {
Opcode = AMDGPU::COPY;
} else if (RI.isSGPRClass(RC)) {
Opcode = AMDGPU::S_MOV_B32;
}
const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(RC);
unsigned Reg = MRI.createVirtualRegister(VRC);
BuildMI(*MI->getParent(), I, MI->getParent()->findDebugLoc(I), get(Opcode),
Reg).addOperand(MO);
MO.ChangeToRegister(Reg, false);
}
unsigned SIInstrInfo::buildExtractSubReg(MachineBasicBlock::iterator MI,
MachineRegisterInfo &MRI,
MachineOperand &SuperReg,
const TargetRegisterClass *SuperRC,
unsigned SubIdx,
const TargetRegisterClass *SubRC)
const {
assert(SuperReg.isReg());
unsigned NewSuperReg = MRI.createVirtualRegister(SuperRC);
unsigned SubReg = MRI.createVirtualRegister(SubRC);
// Just in case the super register is itself a sub-register, copy it to a new
// value so we don't need to wory about merging its subreg index with the
// SubIdx passed to this function. The register coalescer should be able to
// eliminate this extra copy.
BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(TargetOpcode::COPY),
NewSuperReg)
.addOperand(SuperReg);
BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(TargetOpcode::COPY),
SubReg)
.addReg(NewSuperReg, 0, SubIdx);
return SubReg;
}
void SIInstrInfo::legalizeOperands(MachineInstr *MI) const {
MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
int Src0Idx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
AMDGPU::OpName::src0);
int Src1Idx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
AMDGPU::OpName::src1);
int Src2Idx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
AMDGPU::OpName::src2);
// Legalize VOP2
if (isVOP2(MI->getOpcode()) && Src1Idx != -1) {
MachineOperand &Src0 = MI->getOperand(Src0Idx);
MachineOperand &Src1 = MI->getOperand(Src1Idx);
// If the instruction implicitly reads VCC, we can't have any SGPR operands,
// so move any.
bool ReadsVCC = MI->readsRegister(AMDGPU::VCC, &RI);
if (ReadsVCC && Src0.isReg() &&
RI.isSGPRClass(MRI.getRegClass(Src0.getReg()))) {
legalizeOpWithMove(MI, Src0Idx);
return;
}
if (ReadsVCC && Src1.isReg() &&
RI.isSGPRClass(MRI.getRegClass(Src1.getReg()))) {
legalizeOpWithMove(MI, Src1Idx);
return;
}
// Legalize VOP2 instructions where src1 is not a VGPR. An SGPR input must
// be the first operand, and there can only be one.
if (Src1.isImm() || Src1.isFPImm() ||
(Src1.isReg() && RI.isSGPRClass(MRI.getRegClass(Src1.getReg())))) {
if (MI->isCommutable()) {
if (commuteInstruction(MI))
return;
}
legalizeOpWithMove(MI, Src1Idx);
}
}
// XXX - Do any VOP3 instructions read VCC?
// Legalize VOP3
if (isVOP3(MI->getOpcode())) {
int VOP3Idx[3] = {Src0Idx, Src1Idx, Src2Idx};
unsigned SGPRReg = AMDGPU::NoRegister;
for (unsigned i = 0; i < 3; ++i) {
int Idx = VOP3Idx[i];
if (Idx == -1)
continue;
MachineOperand &MO = MI->getOperand(Idx);
if (MO.isReg()) {
if (!RI.isSGPRClass(MRI.getRegClass(MO.getReg())))
continue; // VGPRs are legal
assert(MO.getReg() != AMDGPU::SCC && "SCC operand to VOP3 instruction");
if (SGPRReg == AMDGPU::NoRegister || SGPRReg == MO.getReg()) {
SGPRReg = MO.getReg();
// We can use one SGPR in each VOP3 instruction.
continue;
}
} else if (!isLiteralConstant(MO)) {
// If it is not a register and not a literal constant, then it must be
// an inline constant which is always legal.
continue;
}
// If we make it this far, then the operand is not legal and we must
// legalize it.
legalizeOpWithMove(MI, Idx);
}
}
// Legalize REG_SEQUENCE
// The register class of the operands much be the same type as the register
// class of the output.
if (MI->getOpcode() == AMDGPU::REG_SEQUENCE) {
const TargetRegisterClass *RC = NULL, *SRC = NULL, *VRC = NULL;
for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) {
if (!MI->getOperand(i).isReg() ||
!TargetRegisterInfo::isVirtualRegister(MI->getOperand(i).getReg()))
continue;
const TargetRegisterClass *OpRC =
MRI.getRegClass(MI->getOperand(i).getReg());
if (RI.hasVGPRs(OpRC)) {
VRC = OpRC;
} else {
SRC = OpRC;
}
}
// If any of the operands are VGPR registers, then they all most be
// otherwise we will create illegal VGPR->SGPR copies when legalizing
// them.
if (VRC || !RI.isSGPRClass(getOpRegClass(*MI, 0))) {
if (!VRC) {
assert(SRC);
VRC = RI.getEquivalentVGPRClass(SRC);
}
RC = VRC;
} else {
RC = SRC;
}
// Update all the operands so they have the same type.
for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) {
if (!MI->getOperand(i).isReg() ||
!TargetRegisterInfo::isVirtualRegister(MI->getOperand(i).getReg()))
continue;
unsigned DstReg = MRI.createVirtualRegister(RC);
BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
get(AMDGPU::COPY), DstReg)
.addOperand(MI->getOperand(i));
MI->getOperand(i).setReg(DstReg);
}
}
// Legalize MUBUF* instructions
// FIXME: If we start using the non-addr64 instructions for compute, we
// may need to legalize them here.
int SRsrcIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
AMDGPU::OpName::srsrc);
int VAddrIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
AMDGPU::OpName::vaddr);
if (SRsrcIdx != -1 && VAddrIdx != -1) {
const TargetRegisterClass *VAddrRC =
RI.getRegClass(get(MI->getOpcode()).OpInfo[VAddrIdx].RegClass);
if(VAddrRC->getSize() == 8 &&
MRI.getRegClass(MI->getOperand(SRsrcIdx).getReg()) != VAddrRC) {
// We have a MUBUF instruction that uses a 64-bit vaddr register and
// srsrc has the incorrect register class. In order to fix this, we
// need to extract the pointer from the resource descriptor (srsrc),
// add it to the value of vadd, then store the result in the vaddr
// operand. Then, we need to set the pointer field of the resource
// descriptor to zero.
MachineBasicBlock &MBB = *MI->getParent();
MachineOperand &SRsrcOp = MI->getOperand(SRsrcIdx);
MachineOperand &VAddrOp = MI->getOperand(VAddrIdx);
unsigned SRsrcPtrLo, SRsrcPtrHi, VAddrLo, VAddrHi;
unsigned NewVAddrLo = MRI.createVirtualRegister(&AMDGPU::VReg_32RegClass);
unsigned NewVAddrHi = MRI.createVirtualRegister(&AMDGPU::VReg_32RegClass);
unsigned NewVAddr = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
unsigned Zero64 = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
unsigned SRsrcFormatLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
unsigned SRsrcFormatHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
unsigned NewSRsrc = MRI.createVirtualRegister(&AMDGPU::SReg_128RegClass);
// SRsrcPtrLo = srsrc:sub0
SRsrcPtrLo = buildExtractSubReg(MI, MRI, SRsrcOp,
&AMDGPU::VReg_128RegClass, AMDGPU::sub0, &AMDGPU::VReg_32RegClass);
// SRsrcPtrHi = srsrc:sub1
SRsrcPtrHi = buildExtractSubReg(MI, MRI, SRsrcOp,
&AMDGPU::VReg_128RegClass, AMDGPU::sub1, &AMDGPU::VReg_32RegClass);
// VAddrLo = vaddr:sub0
VAddrLo = buildExtractSubReg(MI, MRI, VAddrOp,
&AMDGPU::VReg_64RegClass, AMDGPU::sub0, &AMDGPU::VReg_32RegClass);
// VAddrHi = vaddr:sub1
VAddrHi = buildExtractSubReg(MI, MRI, VAddrOp,
&AMDGPU::VReg_64RegClass, AMDGPU::sub1, &AMDGPU::VReg_32RegClass);
// NewVaddrLo = SRsrcPtrLo + VAddrLo
BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::V_ADD_I32_e32),
NewVAddrLo)
.addReg(SRsrcPtrLo)
.addReg(VAddrLo)
.addReg(AMDGPU::VCC, RegState::Define | RegState::Implicit);
// NewVaddrHi = SRsrcPtrHi + VAddrHi
BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::V_ADDC_U32_e32),
NewVAddrHi)
.addReg(SRsrcPtrHi)
.addReg(VAddrHi)
.addReg(AMDGPU::VCC, RegState::ImplicitDefine)
.addReg(AMDGPU::VCC, RegState::Implicit);
// NewVaddr = {NewVaddrHi, NewVaddrLo}
BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::REG_SEQUENCE),
NewVAddr)
.addReg(NewVAddrLo)
.addImm(AMDGPU::sub0)
.addReg(NewVAddrHi)
.addImm(AMDGPU::sub1);
// Zero64 = 0
BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B64),
Zero64)
.addImm(0);
// SRsrcFormatLo = RSRC_DATA_FORMAT{31-0}
BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32),
SRsrcFormatLo)
.addImm(AMDGPU::RSRC_DATA_FORMAT & 0xFFFFFFFF);
// SRsrcFormatHi = RSRC_DATA_FORMAT{63-32}
BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32),
SRsrcFormatHi)
.addImm(AMDGPU::RSRC_DATA_FORMAT >> 32);
// NewSRsrc = {Zero64, SRsrcFormat}
BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::REG_SEQUENCE),
NewSRsrc)
.addReg(Zero64)
.addImm(AMDGPU::sub0_sub1)
.addReg(SRsrcFormatLo)
.addImm(AMDGPU::sub2)
.addReg(SRsrcFormatHi)
.addImm(AMDGPU::sub3);
// Update the instruction to use NewVaddr
MI->getOperand(VAddrIdx).setReg(NewVAddr);
// Update the instruction to use NewSRsrc
MI->getOperand(SRsrcIdx).setReg(NewSRsrc);
}
}
}
void SIInstrInfo::moveToVALU(MachineInstr &TopInst) const {
SmallVector<MachineInstr *, 128> Worklist;
Worklist.push_back(&TopInst);
while (!Worklist.empty()) {
MachineInstr *Inst = Worklist.pop_back_val();
MachineBasicBlock *MBB = Inst->getParent();
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
// Handle some special cases
switch(Inst->getOpcode()) {
case AMDGPU::S_MOV_B64: {
DebugLoc DL = Inst->getDebugLoc();
// If the source operand is a register we can replace this with a
// copy
if (Inst->getOperand(1).isReg()) {
MachineInstr *Copy = BuildMI(*MBB, Inst, DL,
get(TargetOpcode::COPY))
.addOperand(Inst->getOperand(0))
.addOperand(Inst->getOperand(1));
Worklist.push_back(Copy);
} else {
// Otherwise, we need to split this into two movs, because there is
// no 64-bit VALU move instruction.
unsigned LoDst, HiDst, Dst;
LoDst = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
HiDst = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
Dst = MRI.createVirtualRegister(
MRI.getRegClass(Inst->getOperand(0).getReg()));
MachineInstr *Lo = BuildMI(*MBB, Inst, DL, get(AMDGPU::S_MOV_B32),
LoDst)
.addImm(Inst->getOperand(1).getImm() & 0xFFFFFFFF);
MachineInstr *Hi = BuildMI(*MBB, Inst, DL, get(AMDGPU::S_MOV_B32),
HiDst)
.addImm(Inst->getOperand(1).getImm() >> 32);
BuildMI(*MBB, Inst, DL, get(TargetOpcode::REG_SEQUENCE), Dst)
.addReg(LoDst)
.addImm(AMDGPU::sub0)
.addReg(HiDst)
.addImm(AMDGPU::sub1);
MRI.replaceRegWith(Inst->getOperand(0).getReg(), Dst);
Worklist.push_back(Lo);
Worklist.push_back(Hi);
}
Inst->eraseFromParent();
continue;
}
}
unsigned NewOpcode = getVALUOp(*Inst);
if (NewOpcode == AMDGPU::INSTRUCTION_LIST_END) {
// We cannot move this instruction to the VALU, so we should try to
// legalize its operands instead.
legalizeOperands(Inst);
continue;
}
// Use the new VALU Opcode.
const MCInstrDesc &NewDesc = get(NewOpcode);
Inst->setDesc(NewDesc);
// Remove any references to SCC. Vector instructions can't read from it, and
// We're just about to add the implicit use / defs of VCC, and we don't want
// both.
for (unsigned i = Inst->getNumOperands() - 1; i > 0; --i) {
MachineOperand &Op = Inst->getOperand(i);
if (Op.isReg() && Op.getReg() == AMDGPU::SCC)
Inst->RemoveOperand(i);
}
// Add the implict and explicit register definitions.
if (NewDesc.ImplicitUses) {
for (unsigned i = 0; NewDesc.ImplicitUses[i]; ++i) {
unsigned Reg = NewDesc.ImplicitUses[i];
Inst->addOperand(MachineOperand::CreateReg(Reg, false, true));
}
}
if (NewDesc.ImplicitDefs) {
for (unsigned i = 0; NewDesc.ImplicitDefs[i]; ++i) {
unsigned Reg = NewDesc.ImplicitDefs[i];
Inst->addOperand(MachineOperand::CreateReg(Reg, true, true));
}
}
legalizeOperands(Inst);
// Update the destination register class.
const TargetRegisterClass *NewDstRC = getOpRegClass(*Inst, 0);
switch (Inst->getOpcode()) {
// For target instructions, getOpRegClass just returns the virtual
// register class associated with the operand, so we need to find an
// equivalent VGPR register class in order to move the instruction to the
// VALU.
case AMDGPU::COPY:
case AMDGPU::PHI:
case AMDGPU::REG_SEQUENCE:
if (RI.hasVGPRs(NewDstRC))
continue;
NewDstRC = RI.getEquivalentVGPRClass(NewDstRC);
if (!NewDstRC)
continue;
break;
default:
break;
}
unsigned DstReg = Inst->getOperand(0).getReg();
unsigned NewDstReg = MRI.createVirtualRegister(NewDstRC);
MRI.replaceRegWith(DstReg, NewDstReg);
for (MachineRegisterInfo::use_iterator I = MRI.use_begin(NewDstReg),
E = MRI.use_end(); I != E; ++I) {
MachineInstr &UseMI = *I->getParent();
if (!canReadVGPR(UseMI, I.getOperandNo())) {
Worklist.push_back(&UseMI);
}
}
}
}
//===----------------------------------------------------------------------===//
// Indirect addressing callbacks
//===----------------------------------------------------------------------===//
unsigned SIInstrInfo::calculateIndirectAddress(unsigned RegIndex,
unsigned Channel) const {
assert(Channel == 0);
return RegIndex;
}
const TargetRegisterClass *SIInstrInfo::getIndirectAddrRegClass() const {
return &AMDGPU::VReg_32RegClass;
}
MachineInstrBuilder SIInstrInfo::buildIndirectWrite(
MachineBasicBlock *MBB,
MachineBasicBlock::iterator I,
unsigned ValueReg,
unsigned Address, unsigned OffsetReg) const {
const DebugLoc &DL = MBB->findDebugLoc(I);
unsigned IndirectBaseReg = AMDGPU::VReg_32RegClass.getRegister(
getIndirectIndexBegin(*MBB->getParent()));
return BuildMI(*MBB, I, DL, get(AMDGPU::SI_INDIRECT_DST_V1))
.addReg(IndirectBaseReg, RegState::Define)
.addOperand(I->getOperand(0))
.addReg(IndirectBaseReg)
.addReg(OffsetReg)
.addImm(0)
.addReg(ValueReg);
}
MachineInstrBuilder SIInstrInfo::buildIndirectRead(
MachineBasicBlock *MBB,
MachineBasicBlock::iterator I,
unsigned ValueReg,
unsigned Address, unsigned OffsetReg) const {
const DebugLoc &DL = MBB->findDebugLoc(I);
unsigned IndirectBaseReg = AMDGPU::VReg_32RegClass.getRegister(
getIndirectIndexBegin(*MBB->getParent()));
return BuildMI(*MBB, I, DL, get(AMDGPU::SI_INDIRECT_SRC))
.addOperand(I->getOperand(0))
.addOperand(I->getOperand(1))
.addReg(IndirectBaseReg)
.addReg(OffsetReg)
.addImm(0);
}
void SIInstrInfo::reserveIndirectRegisters(BitVector &Reserved,
const MachineFunction &MF) const {
int End = getIndirectIndexEnd(MF);
int Begin = getIndirectIndexBegin(MF);
if (End == -1)
return;
for (int Index = Begin; Index <= End; ++Index)
Reserved.set(AMDGPU::VReg_32RegClass.getRegister(Index));
for (int Index = std::max(0, Begin - 1); Index <= End; ++Index)
Reserved.set(AMDGPU::VReg_64RegClass.getRegister(Index));
for (int Index = std::max(0, Begin - 2); Index <= End; ++Index)
Reserved.set(AMDGPU::VReg_96RegClass.getRegister(Index));
for (int Index = std::max(0, Begin - 3); Index <= End; ++Index)
Reserved.set(AMDGPU::VReg_128RegClass.getRegister(Index));
for (int Index = std::max(0, Begin - 7); Index <= End; ++Index)
Reserved.set(AMDGPU::VReg_256RegClass.getRegister(Index));
for (int Index = std::max(0, Begin - 15); Index <= End; ++Index)
Reserved.set(AMDGPU::VReg_512RegClass.getRegister(Index));
}