llvm-6502/lib/Target/R600/SILowerControlFlow.cpp

192 lines
6.6 KiB
C++
Raw Normal View History

//===-- SILowerControlFlow.cpp - Use predicates for control flow ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief This pass lowers the pseudo control flow instructions (SI_IF_NZ, ELSE, ENDIF)
/// to predicated instructions.
///
/// All control flow (except loops) is handled using predicated instructions and
/// a predicate stack. Each Scalar ALU controls the operations of 64 Vector
/// ALUs. The Scalar ALU can update the predicate for any of the Vector ALUs
/// by writting to the 64-bit EXEC register (each bit corresponds to a
/// single vector ALU). Typically, for predicates, a vector ALU will write
/// to its bit of the VCC register (like EXEC VCC is 64-bits, one for each
/// Vector ALU) and then the ScalarALU will AND the VCC register with the
/// EXEC to update the predicates.
///
/// For example:
/// %VCC = V_CMP_GT_F32 %VGPR1, %VGPR2
/// SI_IF_NZ %VCC
/// %VGPR0 = V_ADD_F32 %VGPR0, %VGPR0
/// ELSE
/// %VGPR0 = V_SUB_F32 %VGPR0, %VGPR0
/// ENDIF
///
/// becomes:
///
/// %SGPR0 = S_AND_SAVEEXEC_B64 %VCC // Save and update the exec mask
/// %SGPR0 = S_XOR_B64 %SGPR0, %EXEC // Clear live bits from saved exec mask
/// S_CBRANCH_EXECZ label0 // This instruction is an
/// // optimization which allows us to
/// // branch if all the bits of
/// // EXEC are zero.
/// %VGPR0 = V_ADD_F32 %VGPR0, %VGPR0 // Do the IF block of the branch
///
/// label0:
/// %SGPR0 = S_OR_SAVEEXEC_B64 %EXEC // Restore the exec mask for the Then block
/// %EXEC = S_XOR_B64 %SGPR0, %EXEC // Clear live bits from saved exec mask
/// S_BRANCH_EXECZ label1 // Use our branch optimization
/// // instruction again.
/// %VGPR0 = V_SUB_F32 %VGPR0, %VGPR // Do the THEN block
/// label1:
/// %EXEC = S_OR_B64 %EXEC, %SGPR2 // Re-enable saved exec mask bits
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
using namespace llvm;
namespace {
class SILowerControlFlowPass : public MachineFunctionPass {
private:
static char ID;
const TargetInstrInfo *TII;
std::vector<unsigned> PredicateStack;
std::vector<unsigned> UnusedRegisters;
unsigned allocReg();
void freeReg(unsigned Reg);
public:
SILowerControlFlowPass(TargetMachine &tm) :
MachineFunctionPass(ID), TII(tm.getInstrInfo()) { }
virtual bool runOnMachineFunction(MachineFunction &MF);
const char *getPassName() const {
return "SI Lower control flow instructions";
}
};
} // End anonymous namespace
char SILowerControlFlowPass::ID = 0;
FunctionPass *llvm::createSILowerControlFlowPass(TargetMachine &tm) {
return new SILowerControlFlowPass(tm);
}
bool SILowerControlFlowPass::runOnMachineFunction(MachineFunction &MF) {
// Find all the unused registers that can be used for the predicate stack.
for (TargetRegisterClass::iterator I = AMDGPU::SReg_64RegClass.begin(),
S = AMDGPU::SReg_64RegClass.end();
I != S; ++I) {
unsigned Reg = *I;
if (!MF.getRegInfo().isPhysRegUsed(Reg)) {
UnusedRegisters.insert(UnusedRegisters.begin(), Reg);
}
}
for (MachineFunction::iterator BB = MF.begin(), BB_E = MF.end();
BB != BB_E; ++BB) {
MachineBasicBlock &MBB = *BB;
for (MachineBasicBlock::iterator I = MBB.begin(), Next = llvm::next(I);
I != MBB.end(); I = Next) {
Next = llvm::next(I);
MachineInstr &MI = *I;
unsigned Reg;
switch (MI.getOpcode()) {
default: break;
case AMDGPU::SI_IF_NZ:
Reg = allocReg();
BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::S_AND_SAVEEXEC_B64),
Reg)
.addOperand(MI.getOperand(0)); // VCC
BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::S_XOR_B64),
Reg)
.addReg(Reg)
.addReg(AMDGPU::EXEC);
MI.eraseFromParent();
PredicateStack.push_back(Reg);
break;
case AMDGPU::ELSE:
Reg = PredicateStack.back();
BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::S_OR_SAVEEXEC_B64),
Reg)
.addReg(Reg);
BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::S_XOR_B64),
AMDGPU::EXEC)
.addReg(Reg)
.addReg(AMDGPU::EXEC);
MI.eraseFromParent();
break;
case AMDGPU::ENDIF:
Reg = PredicateStack.back();
PredicateStack.pop_back();
BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::S_OR_B64),
AMDGPU::EXEC)
.addReg(AMDGPU::EXEC)
.addReg(Reg);
freeReg(Reg);
if (MF.getInfo<SIMachineFunctionInfo>()->ShaderType == ShaderType::PIXEL &&
PredicateStack.empty()) {
// If the exec mask is non-zero, skip the next two instructions
BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::S_CBRANCH_EXECNZ))
.addImm(3)
.addReg(AMDGPU::EXEC);
// Exec mask is zero: Export to NULL target...
BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::EXP))
.addImm(0)
.addImm(0x09) // V_008DFC_SQ_EXP_NULL
.addImm(0)
.addImm(1)
.addImm(1)
.addReg(AMDGPU::SREG_LIT_0)
.addReg(AMDGPU::SREG_LIT_0)
.addReg(AMDGPU::SREG_LIT_0)
.addReg(AMDGPU::SREG_LIT_0);
// ... and terminate wavefront
BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::S_ENDPGM));
}
MI.eraseFromParent();
break;
}
}
}
return true;
}
unsigned SILowerControlFlowPass::allocReg() {
assert(!UnusedRegisters.empty() && "Ran out of registers for predicate stack");
unsigned Reg = UnusedRegisters.back();
UnusedRegisters.pop_back();
return Reg;
}
void SILowerControlFlowPass::freeReg(unsigned Reg) {
UnusedRegisters.push_back(Reg);
}