mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-01 00:33:09 +00:00
192 lines
6.6 KiB
C++
192 lines
6.6 KiB
C++
|
//===-- SILowerControlFlow.cpp - Use predicates for control flow ----------===//
|
||
|
//
|
||
|
// The LLVM Compiler Infrastructure
|
||
|
//
|
||
|
// This file is distributed under the University of Illinois Open Source
|
||
|
// License. See LICENSE.TXT for details.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
/// \file
|
||
|
/// \brief This pass lowers the pseudo control flow instructions (SI_IF_NZ, ELSE, ENDIF)
|
||
|
/// to predicated instructions.
|
||
|
///
|
||
|
/// All control flow (except loops) is handled using predicated instructions and
|
||
|
/// a predicate stack. Each Scalar ALU controls the operations of 64 Vector
|
||
|
/// ALUs. The Scalar ALU can update the predicate for any of the Vector ALUs
|
||
|
/// by writting to the 64-bit EXEC register (each bit corresponds to a
|
||
|
/// single vector ALU). Typically, for predicates, a vector ALU will write
|
||
|
/// to its bit of the VCC register (like EXEC VCC is 64-bits, one for each
|
||
|
/// Vector ALU) and then the ScalarALU will AND the VCC register with the
|
||
|
/// EXEC to update the predicates.
|
||
|
///
|
||
|
/// For example:
|
||
|
/// %VCC = V_CMP_GT_F32 %VGPR1, %VGPR2
|
||
|
/// SI_IF_NZ %VCC
|
||
|
/// %VGPR0 = V_ADD_F32 %VGPR0, %VGPR0
|
||
|
/// ELSE
|
||
|
/// %VGPR0 = V_SUB_F32 %VGPR0, %VGPR0
|
||
|
/// ENDIF
|
||
|
///
|
||
|
/// becomes:
|
||
|
///
|
||
|
/// %SGPR0 = S_AND_SAVEEXEC_B64 %VCC // Save and update the exec mask
|
||
|
/// %SGPR0 = S_XOR_B64 %SGPR0, %EXEC // Clear live bits from saved exec mask
|
||
|
/// S_CBRANCH_EXECZ label0 // This instruction is an
|
||
|
/// // optimization which allows us to
|
||
|
/// // branch if all the bits of
|
||
|
/// // EXEC are zero.
|
||
|
/// %VGPR0 = V_ADD_F32 %VGPR0, %VGPR0 // Do the IF block of the branch
|
||
|
///
|
||
|
/// label0:
|
||
|
/// %SGPR0 = S_OR_SAVEEXEC_B64 %EXEC // Restore the exec mask for the Then block
|
||
|
/// %EXEC = S_XOR_B64 %SGPR0, %EXEC // Clear live bits from saved exec mask
|
||
|
/// S_BRANCH_EXECZ label1 // Use our branch optimization
|
||
|
/// // instruction again.
|
||
|
/// %VGPR0 = V_SUB_F32 %VGPR0, %VGPR // Do the THEN block
|
||
|
/// label1:
|
||
|
/// %EXEC = S_OR_B64 %EXEC, %SGPR2 // Re-enable saved exec mask bits
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "AMDGPU.h"
|
||
|
#include "SIInstrInfo.h"
|
||
|
#include "SIMachineFunctionInfo.h"
|
||
|
#include "llvm/CodeGen/MachineFunction.h"
|
||
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
||
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
||
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
||
|
|
||
|
using namespace llvm;
|
||
|
|
||
|
namespace {
|
||
|
|
||
|
class SILowerControlFlowPass : public MachineFunctionPass {
|
||
|
|
||
|
private:
|
||
|
static char ID;
|
||
|
const TargetInstrInfo *TII;
|
||
|
std::vector<unsigned> PredicateStack;
|
||
|
std::vector<unsigned> UnusedRegisters;
|
||
|
|
||
|
unsigned allocReg();
|
||
|
void freeReg(unsigned Reg);
|
||
|
|
||
|
public:
|
||
|
SILowerControlFlowPass(TargetMachine &tm) :
|
||
|
MachineFunctionPass(ID), TII(tm.getInstrInfo()) { }
|
||
|
|
||
|
virtual bool runOnMachineFunction(MachineFunction &MF);
|
||
|
|
||
|
const char *getPassName() const {
|
||
|
return "SI Lower control flow instructions";
|
||
|
}
|
||
|
|
||
|
};
|
||
|
|
||
|
} // End anonymous namespace
|
||
|
|
||
|
char SILowerControlFlowPass::ID = 0;
|
||
|
|
||
|
FunctionPass *llvm::createSILowerControlFlowPass(TargetMachine &tm) {
|
||
|
return new SILowerControlFlowPass(tm);
|
||
|
}
|
||
|
|
||
|
bool SILowerControlFlowPass::runOnMachineFunction(MachineFunction &MF) {
|
||
|
|
||
|
// Find all the unused registers that can be used for the predicate stack.
|
||
|
for (TargetRegisterClass::iterator I = AMDGPU::SReg_64RegClass.begin(),
|
||
|
S = AMDGPU::SReg_64RegClass.end();
|
||
|
I != S; ++I) {
|
||
|
unsigned Reg = *I;
|
||
|
if (!MF.getRegInfo().isPhysRegUsed(Reg)) {
|
||
|
UnusedRegisters.insert(UnusedRegisters.begin(), Reg);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (MachineFunction::iterator BB = MF.begin(), BB_E = MF.end();
|
||
|
BB != BB_E; ++BB) {
|
||
|
MachineBasicBlock &MBB = *BB;
|
||
|
for (MachineBasicBlock::iterator I = MBB.begin(), Next = llvm::next(I);
|
||
|
I != MBB.end(); I = Next) {
|
||
|
Next = llvm::next(I);
|
||
|
MachineInstr &MI = *I;
|
||
|
unsigned Reg;
|
||
|
switch (MI.getOpcode()) {
|
||
|
default: break;
|
||
|
case AMDGPU::SI_IF_NZ:
|
||
|
Reg = allocReg();
|
||
|
BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::S_AND_SAVEEXEC_B64),
|
||
|
Reg)
|
||
|
.addOperand(MI.getOperand(0)); // VCC
|
||
|
BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::S_XOR_B64),
|
||
|
Reg)
|
||
|
.addReg(Reg)
|
||
|
.addReg(AMDGPU::EXEC);
|
||
|
MI.eraseFromParent();
|
||
|
PredicateStack.push_back(Reg);
|
||
|
break;
|
||
|
|
||
|
case AMDGPU::ELSE:
|
||
|
Reg = PredicateStack.back();
|
||
|
BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::S_OR_SAVEEXEC_B64),
|
||
|
Reg)
|
||
|
.addReg(Reg);
|
||
|
BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::S_XOR_B64),
|
||
|
AMDGPU::EXEC)
|
||
|
.addReg(Reg)
|
||
|
.addReg(AMDGPU::EXEC);
|
||
|
MI.eraseFromParent();
|
||
|
break;
|
||
|
|
||
|
case AMDGPU::ENDIF:
|
||
|
Reg = PredicateStack.back();
|
||
|
PredicateStack.pop_back();
|
||
|
BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::S_OR_B64),
|
||
|
AMDGPU::EXEC)
|
||
|
.addReg(AMDGPU::EXEC)
|
||
|
.addReg(Reg);
|
||
|
freeReg(Reg);
|
||
|
|
||
|
if (MF.getInfo<SIMachineFunctionInfo>()->ShaderType == ShaderType::PIXEL &&
|
||
|
PredicateStack.empty()) {
|
||
|
// If the exec mask is non-zero, skip the next two instructions
|
||
|
BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::S_CBRANCH_EXECNZ))
|
||
|
.addImm(3)
|
||
|
.addReg(AMDGPU::EXEC);
|
||
|
|
||
|
// Exec mask is zero: Export to NULL target...
|
||
|
BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::EXP))
|
||
|
.addImm(0)
|
||
|
.addImm(0x09) // V_008DFC_SQ_EXP_NULL
|
||
|
.addImm(0)
|
||
|
.addImm(1)
|
||
|
.addImm(1)
|
||
|
.addReg(AMDGPU::SREG_LIT_0)
|
||
|
.addReg(AMDGPU::SREG_LIT_0)
|
||
|
.addReg(AMDGPU::SREG_LIT_0)
|
||
|
.addReg(AMDGPU::SREG_LIT_0);
|
||
|
|
||
|
// ... and terminate wavefront
|
||
|
BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::S_ENDPGM));
|
||
|
}
|
||
|
MI.eraseFromParent();
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
unsigned SILowerControlFlowPass::allocReg() {
|
||
|
|
||
|
assert(!UnusedRegisters.empty() && "Ran out of registers for predicate stack");
|
||
|
unsigned Reg = UnusedRegisters.back();
|
||
|
UnusedRegisters.pop_back();
|
||
|
return Reg;
|
||
|
}
|
||
|
|
||
|
void SILowerControlFlowPass::freeReg(unsigned Reg) {
|
||
|
|
||
|
UnusedRegisters.push_back(Reg);
|
||
|
}
|