llvm-6502/lib/VMCore/PassManagerT.h

759 lines
27 KiB
C
Raw Normal View History

//===- PassManagerT.h - Container for Passes ---------------------*- C++ -*--=//
//
// This file defines the PassManagerT class. This class is used to hold,
// maintain, and optimize execution of Pass's. The PassManager class ensures
// that analysis results are available before a pass runs, and that Pass's are
// destroyed when the PassManager is destroyed.
//
// The PassManagerT template is instantiated three times to do its job. The
// public PassManager class is a Pimpl around the PassManagerT<Module> interface
// to avoid having all of the PassManager clients being exposed to the
// implementation details herein.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_PASSMANAGER_T_H
#define LLVM_PASSMANAGER_T_H
#include "llvm/Pass.h"
#include "Support/CommandLine.h"
#include "Support/LeakDetector.h"
#include <algorithm>
#include <iostream>
class Annotable;
//===----------------------------------------------------------------------===//
// Pass debugging information. Often it is useful to find out what pass is
// running when a crash occurs in a utility. When this library is compiled with
// debugging on, a command line option (--debug-pass) is enabled that causes the
// pass name to be printed before it executes.
//
// Different debug levels that can be enabled...
enum PassDebugLevel {
None, Arguments, Structure, Executions, Details
};
static cl::opt<enum PassDebugLevel>
PassDebugging("debug-pass", cl::Hidden,
cl::desc("Print PassManager debugging information"),
cl::values(
clEnumVal(None , "disable debug output"),
clEnumVal(Arguments , "print pass arguments to pass to 'opt'"),
clEnumVal(Structure , "print pass structure before run()"),
clEnumVal(Executions, "print pass name before it is executed"),
clEnumVal(Details , "print pass details when it is executed"),
0));
//===----------------------------------------------------------------------===//
// PMDebug class - a set of debugging functions, that are not to be
// instantiated by the template.
//
struct PMDebug {
static void PerformPassStartupStuff(Pass *P) {
// If debugging is enabled, print out argument information...
if (PassDebugging >= Arguments) {
std::cerr << "Pass Arguments: ";
PrintArgumentInformation(P);
std::cerr << "\n";
// Print the pass execution structure
if (PassDebugging >= Structure)
P->dumpPassStructure();
}
}
static void PrintArgumentInformation(const Pass *P);
static void PrintPassInformation(unsigned,const char*,Pass *, Annotable *);
static void PrintAnalysisSetInfo(unsigned,const char*,Pass *P,
const std::vector<AnalysisID> &);
};
//===----------------------------------------------------------------------===//
// TimingInfo Class - This class is used to calculate information about the
// amount of time each pass takes to execute. This only happens when
// -time-passes is enabled on the command line.
//
struct TimeRecord { // TimeRecord - Data we collect and print for each pass
double Elapsed; // Wall clock time elapsed in seconds
double UserTime; // User time elapsed
double SystemTime; // System time elapsed
unsigned long MaxRSS; // Maximum resident set size (in bytes)
unsigned long RSSTemp; // Temp for calculating maxrss
TimeRecord() : Elapsed(0), UserTime(0), SystemTime(0), MaxRSS(0) {}
void passStart(const TimeRecord &T);
void passEnd(const TimeRecord &T);
void sum(const TimeRecord &TR);
bool operator<(const TimeRecord &TR) const;
void print(const char *PassName, const TimeRecord &TotalTime) const;
};
class TimingInfo {
std::map<Pass*, TimeRecord> TimingData;
TimingInfo() {} // Private ctor, must use create member
public:
// Create method. If Timing is enabled, this creates and returns a new timing
// object, otherwise it returns null.
//
static TimingInfo *create();
// TimingDtor - Print out information about timing information
~TimingInfo();
void passStarted(Pass *P);
void passEnded(Pass *P);
};
//===----------------------------------------------------------------------===//
// Declare the PassManagerTraits which will be specialized...
//
template<class UnitType> class PassManagerTraits; // Do not define.
//===----------------------------------------------------------------------===//
// PassManagerT - Container object for passes. The PassManagerT destructor
// deletes all passes contained inside of the PassManagerT, so you shouldn't
// delete passes manually, and all passes should be dynamically allocated.
//
template<typename UnitType>
class PassManagerT : public PassManagerTraits<UnitType>,public AnalysisResolver{
typedef PassManagerTraits<UnitType> Traits;
typedef typename Traits::PassClass PassClass;
typedef typename Traits::SubPassClass SubPassClass;
typedef typename Traits::BatcherClass BatcherClass;
typedef typename Traits::ParentClass ParentClass;
friend typename Traits::PassClass;
friend typename Traits::SubPassClass;
friend class Traits;
friend class ImmutablePass;
std::vector<PassClass*> Passes; // List of passes to run
std::vector<ImmutablePass*> ImmutablePasses; // List of immutable passes
// The parent of this pass manager...
ParentClass * const Parent;
// The current batcher if one is in use, or null
BatcherClass *Batcher;
// CurrentAnalyses - As the passes are being run, this map contains the
// analyses that are available to the current pass for use. This is accessed
// through the getAnalysis() function in this class and in Pass.
//
std::map<AnalysisID, Pass*> CurrentAnalyses;
// LastUseOf - This map keeps track of the last usage in our pipeline of a
// particular pass. When executing passes, the memory for .first is free'd
// after .second is run.
//
std::map<Pass*, Pass*> LastUseOf;
public:
PassManagerT(ParentClass *Par = 0) : Parent(Par), Batcher(0) {}
~PassManagerT() {
// Delete all of the contained passes...
for (typename std::vector<PassClass*>::iterator
I = Passes.begin(), E = Passes.end(); I != E; ++I)
delete *I;
for (std::vector<ImmutablePass*>::iterator
I = ImmutablePasses.begin(), E = ImmutablePasses.end(); I != E; ++I)
delete *I;
}
// run - Run all of the queued passes on the specified module in an optimal
// way.
virtual bool runOnUnit(UnitType *M) {
bool MadeChanges = false;
closeBatcher();
CurrentAnalyses.clear();
// Add any immutable passes to the CurrentAnalyses set...
for (unsigned i = 0, e = ImmutablePasses.size(); i != e; ++i)
if (const PassInfo *PI = ImmutablePasses[i]->getPassInfo()) {
CurrentAnalyses[PI] = ImmutablePasses[i];
const std::vector<const PassInfo*> &II = PI->getInterfacesImplemented();
for (unsigned i = 0, e = II.size(); i != e; ++i)
CurrentAnalyses[II[i]] = ImmutablePasses[i];
}
// LastUserOf - This contains the inverted LastUseOfMap...
std::map<Pass *, std::vector<Pass*> > LastUserOf;
for (std::map<Pass*, Pass*>::iterator I = LastUseOf.begin(),
E = LastUseOf.end(); I != E; ++I)
LastUserOf[I->second].push_back(I->first);
// Output debug information...
if (Parent == 0) PMDebug::PerformPassStartupStuff(this);
// Run all of the passes
for (unsigned i = 0, e = Passes.size(); i < e; ++i) {
PassClass *P = Passes[i];
PMDebug::PrintPassInformation(getDepth(), "Executing Pass", P,
(Annotable*)M);
// Get information about what analyses the pass uses...
AnalysisUsage AnUsage;
P->getAnalysisUsage(AnUsage);
PMDebug::PrintAnalysisSetInfo(getDepth(), "Required", P,
AnUsage.getRequiredSet());
// All Required analyses should be available to the pass as it runs! Here
// we fill in the AnalysisImpls member of the pass so that it can
// successfully use the getAnalysis() method to retrieve the
// implementations it needs.
//
P->AnalysisImpls.clear();
P->AnalysisImpls.reserve(AnUsage.getRequiredSet().size());
for (std::vector<const PassInfo *>::const_iterator
I = AnUsage.getRequiredSet().begin(),
E = AnUsage.getRequiredSet().end(); I != E; ++I) {
Pass *Impl = getAnalysisOrNullUp(*I);
if (Impl == 0) {
std::cerr << "Analysis '" << (*I)->getPassName()
<< "' used but not available!";
assert(0 && "Analysis used but not available!");
} else if (PassDebugging == Details) {
if ((*I)->getPassName() != std::string(Impl->getPassName()))
std::cerr << " Interface '" << (*I)->getPassName()
<< "' implemented by '" << Impl->getPassName() << "'\n";
}
P->AnalysisImpls.push_back(std::make_pair(*I, Impl));
}
// Run the sub pass!
startPass(P);
bool Changed = runPass(P, M);
endPass(P);
MadeChanges |= Changed;
// Check for memory leaks by the pass...
LeakDetector::checkForGarbage(std::string("after running pass '") +
P->getPassName() + "'");
if (Changed)
PMDebug::PrintPassInformation(getDepth()+1, "Made Modification", P,
(Annotable*)M);
PMDebug::PrintAnalysisSetInfo(getDepth(), "Preserved", P,
AnUsage.getPreservedSet());
// Erase all analyses not in the preserved set...
if (!AnUsage.preservesAll()) {
const std::vector<AnalysisID> &PreservedSet = AnUsage.getPreservedSet();
for (std::map<AnalysisID, Pass*>::iterator I = CurrentAnalyses.begin(),
E = CurrentAnalyses.end(); I != E; )
if (std::find(PreservedSet.begin(), PreservedSet.end(), I->first) !=
PreservedSet.end())
++I; // This analysis is preserved, leave it in the available set...
else {
if (!dynamic_cast<ImmutablePass*>(I->second)) {
#if MAP_DOESNT_HAVE_BROKEN_ERASE_MEMBER
I = CurrentAnalyses.erase(I); // Analysis not preserved!
#else
// GCC 2.95.3 STL doesn't have correct erase member!
CurrentAnalyses.erase(I);
I = CurrentAnalyses.begin();
#endif
} else {
++I;
}
}
}
// Add the current pass to the set of passes that have been run, and are
// thus available to users.
//
if (const PassInfo *PI = P->getPassInfo()) {
CurrentAnalyses[PI] = P;
// This pass is the current implementation of all of the interfaces it
// implements as well.
//
const std::vector<const PassInfo*> &II = PI->getInterfacesImplemented();
for (unsigned i = 0, e = II.size(); i != e; ++i)
CurrentAnalyses[II[i]] = P;
}
// Free memory for any passes that we are the last use of...
std::vector<Pass*> &DeadPass = LastUserOf[P];
for (std::vector<Pass*>::iterator I = DeadPass.begin(),E = DeadPass.end();
I != E; ++I) {
PMDebug::PrintPassInformation(getDepth()+1, "Freeing Pass", *I,
(Annotable*)M);
(*I)->releaseMemory();
}
}
return MadeChanges;
}
// dumpPassStructure - Implement the -debug-passes=PassStructure option
virtual void dumpPassStructure(unsigned Offset = 0) {
std::cerr << std::string(Offset*2, ' ') << Traits::getPMName()
<< " Pass Manager\n";
for (typename std::vector<PassClass*>::iterator
I = Passes.begin(), E = Passes.end(); I != E; ++I) {
PassClass *P = *I;
P->dumpPassStructure(Offset+1);
// Loop through and see which classes are destroyed after this one...
for (std::map<Pass*, Pass*>::iterator I = LastUseOf.begin(),
E = LastUseOf.end(); I != E; ++I) {
if (P == I->second) {
std::cerr << "--" << std::string(Offset*2, ' ');
I->first->dumpPassStructure(0);
}
}
}
}
Pass *getAnalysisOrNullDown(const PassInfo *ID) const {
std::map<AnalysisID, Pass*>::const_iterator I = CurrentAnalyses.find(ID);
if (I != CurrentAnalyses.end())
return I->second; // Found it.
if (Batcher)
return ((AnalysisResolver*)Batcher)->getAnalysisOrNullDown(ID);
return 0;
}
Pass *getAnalysisOrNullUp(const PassInfo *ID) const {
std::map<AnalysisID, Pass*>::const_iterator I = CurrentAnalyses.find(ID);
if (I != CurrentAnalyses.end())
return I->second; // Found it.
if (Parent) // Try scanning...
return Parent->getAnalysisOrNullUp(ID);
return 0;
}
// {start/end}Pass - Called when a pass is started, it just propogates
// information up to the top level PassManagerT object to tell it that a pass
// has started or ended. This is used to gather timing information about
// passes.
//
void startPass(Pass *P) {
if (Parent) Parent->startPass(P);
else PassStarted(P);
}
void endPass(Pass *P) {
if (Parent) Parent->endPass(P);
else PassEnded(P);
}
// markPassUsed - Inform higher level pass managers (and ourselves)
// that these analyses are being used by this pass. This is used to
// make sure that analyses are not free'd before we have to use
// them...
//
void markPassUsed(const PassInfo *P, Pass *User) {
std::map<AnalysisID, Pass*>::const_iterator I = CurrentAnalyses.find(P);
if (I != CurrentAnalyses.end()) {
LastUseOf[I->second] = User; // Local pass, extend the lifetime
} else {
// Pass not in current available set, must be a higher level pass
// available to us, propogate to parent pass manager... We tell the
// parent that we (the passmanager) are using the analysis so that it
// frees the analysis AFTER this pass manager runs.
//
if (Parent) {
Parent->markPassUsed(P, this);
} else {
assert(0 && "Pass available but not found! "
"Perhaps this is a module pass requiring a function pass?");
}
}
}
// Return the number of parent PassManagers that exist
virtual unsigned getDepth() const {
if (Parent == 0) return 0;
return 1 + Parent->getDepth();
}
virtual unsigned getNumContainedPasses() const { return Passes.size(); }
virtual const Pass *getContainedPass(unsigned N) const {
assert(N < Passes.size() && "Pass number out of range!");
return Passes[N];
}
// add - Add a pass to the queue of passes to run. This gives ownership of
// the Pass to the PassManager. When the PassManager is destroyed, the pass
// will be destroyed as well, so there is no need to delete the pass. This
// implies that all passes MUST be new'd.
//
void add(PassClass *P) {
// Get information about what analyses the pass uses...
AnalysisUsage AnUsage;
P->getAnalysisUsage(AnUsage);
const std::vector<AnalysisID> &Required = AnUsage.getRequiredSet();
// Loop over all of the analyses used by this pass,
for (std::vector<AnalysisID>::const_iterator I = Required.begin(),
E = Required.end(); I != E; ++I) {
if (getAnalysisOrNullDown(*I) == 0)
add((PassClass*)(*I)->createPass());
}
// Tell the pass to add itself to this PassManager... the way it does so
// depends on the class of the pass, and is critical to laying out passes in
// an optimal order..
//
P->addToPassManager(this, AnUsage);
}
private:
// addPass - These functions are used to implement the subclass specific
// behaviors present in PassManager. Basically the add(Pass*) method ends up
// reflecting its behavior into a Pass::addToPassManager call. Subclasses of
// Pass override it specifically so that they can reflect the type
// information inherent in "this" back to the PassManager.
//
// For generic Pass subclasses (which are interprocedural passes), we simply
// add the pass to the end of the pass list and terminate any accumulation of
// FunctionPass's that are present.
//
void addPass(PassClass *P, AnalysisUsage &AnUsage) {
const std::vector<AnalysisID> &RequiredSet = AnUsage.getRequiredSet();
// FIXME: If this pass being added isn't killed by any of the passes in the
// batcher class then we can reorder to pass to execute before the batcher
// does, which will potentially allow us to batch more passes!
//
//const std::vector<AnalysisID> &ProvidedSet = AnUsage.getProvidedSet();
if (Batcher /*&& ProvidedSet.empty()*/)
closeBatcher(); // This pass cannot be batched!
// Set the Resolver instance variable in the Pass so that it knows where to
// find this object...
//
setAnalysisResolver(P, this);
Passes.push_back(P);
// Inform higher level pass managers (and ourselves) that these analyses are
// being used by this pass. This is used to make sure that analyses are not
// free'd before we have to use them...
//
for (std::vector<AnalysisID>::const_iterator I = RequiredSet.begin(),
E = RequiredSet.end(); I != E; ++I)
markPassUsed(*I, P); // Mark *I as used by P
// Erase all analyses not in the preserved set...
if (!AnUsage.preservesAll()) {
const std::vector<AnalysisID> &PreservedSet = AnUsage.getPreservedSet();
for (std::map<AnalysisID, Pass*>::iterator I = CurrentAnalyses.begin(),
E = CurrentAnalyses.end(); I != E; ) {
if (std::find(PreservedSet.begin(), PreservedSet.end(), I->first) ==
PreservedSet.end()) { // Analysis not preserved!
CurrentAnalyses.erase(I); // Remove from available analyses
I = CurrentAnalyses.begin();
} else {
++I;
}
}
}
// Add this pass to the currently available set...
if (const PassInfo *PI = P->getPassInfo()) {
CurrentAnalyses[PI] = P;
// This pass is the current implementation of all of the interfaces it
// implements as well.
//
const std::vector<const PassInfo*> &II = PI->getInterfacesImplemented();
for (unsigned i = 0, e = II.size(); i != e; ++i)
CurrentAnalyses[II[i]] = P;
}
// For now assume that our results are never used...
LastUseOf[P] = P;
}
// For FunctionPass subclasses, we must be sure to batch the FunctionPass's
// together in a BatcherClass object so that all of the analyses are run
// together a function at a time.
//
void addPass(SubPassClass *MP, AnalysisUsage &AnUsage) {
if (Batcher == 0) // If we don't have a batcher yet, make one now.
Batcher = new BatcherClass(this);
// The Batcher will queue the passes up
MP->addToPassManager(Batcher, AnUsage);
}
// closeBatcher - Terminate the batcher that is being worked on.
void closeBatcher() {
if (Batcher) {
Passes.push_back(Batcher);
Batcher = 0;
}
}
public:
// When an ImmutablePass is added, it gets added to the top level pass
// manager.
void addPass(ImmutablePass *IP, AnalysisUsage &AU) {
if (Parent) { // Make sure this request goes to the top level passmanager...
Parent->addPass(IP, AU);
return;
}
// Set the Resolver instance variable in the Pass so that it knows where to
// find this object...
//
setAnalysisResolver(IP, this);
ImmutablePasses.push_back(IP);
// Add this pass to the currently available set...
if (const PassInfo *PI = IP->getPassInfo()) {
CurrentAnalyses[PI] = IP;
// This pass is the current implementation of all of the interfaces it
// implements as well.
//
const std::vector<const PassInfo*> &II = PI->getInterfacesImplemented();
for (unsigned i = 0, e = II.size(); i != e; ++i)
CurrentAnalyses[II[i]] = IP;
}
}
};
//===----------------------------------------------------------------------===//
// PassManagerTraits<BasicBlock> Specialization
//
// This pass manager is used to group together all of the BasicBlockPass's
// into a single unit.
//
template<> struct PassManagerTraits<BasicBlock> : public BasicBlockPass {
// PassClass - The type of passes tracked by this PassManager
typedef BasicBlockPass PassClass;
// SubPassClass - The types of classes that should be collated together
// This is impossible to match, so BasicBlock instantiations of PassManagerT
// do not collate.
//
typedef PassManagerT<Module> SubPassClass;
// BatcherClass - The type to use for collation of subtypes... This class is
// never instantiated for the PassManager<BasicBlock>, but it must be an
// instance of PassClass to typecheck.
//
typedef PassClass BatcherClass;
// ParentClass - The type of the parent PassManager...
typedef PassManagerT<Function> ParentClass;
// PMType - The type of the passmanager that subclasses this class
typedef PassManagerT<BasicBlock> PMType;
// runPass - Specify how the pass should be run on the UnitType
static bool runPass(PassClass *P, BasicBlock *M) {
// todo, init and finalize
return P->runOnBasicBlock(*M);
}
// Dummy implementation of PassStarted/PassEnded
static void PassStarted(Pass *P) {}
static void PassEnded(Pass *P) {}
// getPMName() - Return the name of the unit the PassManager operates on for
// debugging.
const char *getPMName() const { return "BasicBlock"; }
virtual const char *getPassName() const { return "BasicBlock Pass Manager"; }
// Implement the BasicBlockPass interface...
virtual bool doInitialization(Module &M);
virtual bool doInitialization(Function &F);
virtual bool runOnBasicBlock(BasicBlock &BB);
virtual bool doFinalization(Function &F);
virtual bool doFinalization(Module &M);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
}
};
//===----------------------------------------------------------------------===//
// PassManagerTraits<Function> Specialization
//
// This pass manager is used to group together all of the FunctionPass's
// into a single unit.
//
template<> struct PassManagerTraits<Function> : public FunctionPass {
// PassClass - The type of passes tracked by this PassManager
typedef FunctionPass PassClass;
// SubPassClass - The types of classes that should be collated together
typedef BasicBlockPass SubPassClass;
// BatcherClass - The type to use for collation of subtypes...
typedef PassManagerT<BasicBlock> BatcherClass;
// ParentClass - The type of the parent PassManager...
typedef PassManagerT<Module> ParentClass;
// PMType - The type of the passmanager that subclasses this class
typedef PassManagerT<Function> PMType;
// runPass - Specify how the pass should be run on the UnitType
static bool runPass(PassClass *P, Function *F) {
return P->runOnFunction(*F);
}
// Dummy implementation of PassStarted/PassEnded
static void PassStarted(Pass *P) {}
static void PassEnded(Pass *P) {}
// getPMName() - Return the name of the unit the PassManager operates on for
// debugging.
const char *getPMName() const { return "Function"; }
virtual const char *getPassName() const { return "Function Pass Manager"; }
// Implement the FunctionPass interface...
virtual bool doInitialization(Module &M);
virtual bool runOnFunction(Function &F);
virtual bool doFinalization(Module &M);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
}
};
//===----------------------------------------------------------------------===//
// PassManagerTraits<Module> Specialization
//
// This is the top level PassManager implementation that holds generic passes.
//
template<> struct PassManagerTraits<Module> : public Pass {
// PassClass - The type of passes tracked by this PassManager
typedef Pass PassClass;
// SubPassClass - The types of classes that should be collated together
typedef FunctionPass SubPassClass;
// BatcherClass - The type to use for collation of subtypes...
typedef PassManagerT<Function> BatcherClass;
// ParentClass - The type of the parent PassManager...
typedef AnalysisResolver ParentClass;
// runPass - Specify how the pass should be run on the UnitType
static bool runPass(PassClass *P, Module *M) { return P->run(*M); }
// getPMName() - Return the name of the unit the PassManager operates on for
// debugging.
const char *getPMName() const { return "Module"; }
virtual const char *getPassName() const { return "Module Pass Manager"; }
// TimingInformation - This data member maintains timing information for each
// of the passes that is executed.
//
TimingInfo *TimeInfo;
// PassStarted/Ended - This callback is notified any time a pass is started
// or stops. This is used to collect timing information about the different
// passes being executed.
//
void PassStarted(Pass *P) {
if (TimeInfo) TimeInfo->passStarted(P);
}
void PassEnded(Pass *P) {
if (TimeInfo) TimeInfo->passEnded(P);
}
// run - Implement the PassManager interface...
bool run(Module &M) {
TimeInfo = TimingInfo::create();
bool Result = ((PassManagerT<Module>*)this)->runOnUnit(&M);
if (TimeInfo) {
delete TimeInfo;
TimeInfo = 0;
}
return Result;
}
// PassManagerTraits constructor - Create a timing info object if the user
// specified timing info should be collected on the command line.
//
PassManagerTraits() : TimeInfo(0) {}
};
//===----------------------------------------------------------------------===//
// PassManagerTraits Method Implementations
//
// PassManagerTraits<BasicBlock> Implementations
//
inline bool PassManagerTraits<BasicBlock>::doInitialization(Module &M) {
bool Changed = false;
for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i)
((PMType*)this)->Passes[i]->doInitialization(M);
return Changed;
}
inline bool PassManagerTraits<BasicBlock>::doInitialization(Function &F) {
bool Changed = false;
for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i)
((PMType*)this)->Passes[i]->doInitialization(F);
return Changed;
}
inline bool PassManagerTraits<BasicBlock>::runOnBasicBlock(BasicBlock &BB) {
return ((PMType*)this)->runOnUnit(&BB);
}
inline bool PassManagerTraits<BasicBlock>::doFinalization(Function &F) {
bool Changed = false;
for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i)
((PMType*)this)->Passes[i]->doFinalization(F);
return Changed;
}
inline bool PassManagerTraits<BasicBlock>::doFinalization(Module &M) {
bool Changed = false;
for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i)
((PMType*)this)->Passes[i]->doFinalization(M);
return Changed;
}
// PassManagerTraits<Function> Implementations
//
inline bool PassManagerTraits<Function>::doInitialization(Module &M) {
bool Changed = false;
for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i)
((PMType*)this)->Passes[i]->doInitialization(M);
return Changed;
}
inline bool PassManagerTraits<Function>::runOnFunction(Function &F) {
return ((PMType*)this)->runOnUnit(&F);
}
inline bool PassManagerTraits<Function>::doFinalization(Module &M) {
bool Changed = false;
for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i)
((PMType*)this)->Passes[i]->doFinalization(M);
return Changed;
}
#endif