llvm-6502/include/llvm/CodeGen/MachineInstr.h

420 lines
12 KiB
C
Raw Normal View History

// $Id$ -*-c++-*-
//***************************************************************************
// File:
// MachineInstr.h
//
// Purpose:
//
//
// Strategy:
//
// History:
// 7/2/01 - Vikram Adve - Created
//**************************************************************************/
#ifndef LLVM_CODEGEN_MACHINEINSTR_H
#define LLVM_CODEGEN_MACHINEINSTR_H
#include <iterator>
#include "llvm/CodeGen/InstrForest.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/NonCopyable.h"
#include "llvm/CodeGen/TargetMachine.h"
template<class _MI, class _V> class ValOpIterator;
//---------------------------------------------------------------------------
// class MachineOperand
//
// Purpose:
// Representation of each machine instruction operand.
// This class is designed so that you can allocate a vector of operands
// first and initialize each one later.
//
// E.g, for this VM instruction:
// ptr = alloca type, numElements
// we generate 2 machine instructions on the SPARC:
//
// mul Constant, Numelements -> Reg
// add %sp, Reg -> Ptr
//
// Each instruction has 3 operands, listed above. Of those:
// - Reg, NumElements, and Ptr are of operand type MO_Register.
// - Constant is of operand type MO_SignExtendedImmed on the SPARC.
//
// For the register operands, the virtual register type is as follows:
//
// - Reg will be of virtual register type MO_MInstrVirtualReg. The field
// MachineInstr* minstr will point to the instruction that computes reg.
//
// - %sp will be of virtual register type MO_MachineReg.
// The field regNum identifies the machine register.
//
// - NumElements will be of virtual register type MO_VirtualReg.
// The field Value* value identifies the value.
//
// - Ptr will also be of virtual register type MO_VirtualReg.
// Again, the field Value* value identifies the value.
//
//---------------------------------------------------------------------------
class MachineOperand {
public:
enum MachineOperandType {
MO_VirtualRegister, // virtual register for *value
MO_MachineRegister, // pre-assigned machine register `regNum'
MO_CCRegister,
MO_SignExtendedImmed,
MO_UnextendedImmed,
MO_PCRelativeDisp,
};
private:
MachineOperandType opType;
union {
Value* value; // BasicBlockVal for a label operand.
// ConstantVal for a non-address immediate.
// Virtual register for an SSA operand,
// including hidden operands required for
// the generated machine code.
unsigned int regNum; // register number for an explicit register
int64_t immedVal; // constant value for an explicit constant
};
public:
/*ctor*/ MachineOperand ();
/*ctor*/ MachineOperand (MachineOperandType operandType,
Value* _val);
/*copy ctor*/ MachineOperand (const MachineOperand&);
/*dtor*/ ~MachineOperand () {}
// Accessor methods. Caller is responsible for checking the
// operand type before invoking the corresponding accessor.
//
MachineOperandType getOperandType () const {
return opType;
}
Value* getVRegValue () const {
assert(opType == MO_VirtualRegister || opType == MO_CCRegister);
return value;
}
unsigned int getMachineRegNum() const {
assert(opType == MO_MachineRegister);
return regNum;
}
int64_t getImmedValue () const {
assert(opType >= MO_SignExtendedImmed || opType <= MO_PCRelativeDisp);
return immedVal;
}
public:
friend ostream& operator<<(ostream& os, const MachineOperand& mop);
private:
// These functions are provided so that a vector of operands can be
// statically allocated and individual ones can be initialized later.
// Give class MachineInstr gets access to these functions.
//
void Initialize (MachineOperandType operandType,
Value* _val);
void InitializeConst (MachineOperandType operandType,
int64_t intValue);
void InitializeReg (unsigned int regNum);
friend class MachineInstr;
};
inline
MachineOperand::MachineOperand()
: opType(MO_VirtualRegister),
value(NULL),
regNum(0),
immedVal(0)
{}
inline
MachineOperand::MachineOperand(MachineOperandType operandType,
Value* _val)
: opType(operandType),
value(_val),
regNum(0),
immedVal(0)
{}
inline
MachineOperand::MachineOperand(const MachineOperand& mo)
: opType(mo.opType)
{
switch(opType) {
case MO_VirtualRegister:
case MO_CCRegister: value = mo.value; break;
case MO_MachineRegister: regNum = mo.regNum; break;
case MO_SignExtendedImmed:
case MO_UnextendedImmed:
case MO_PCRelativeDisp: immedVal = mo.immedVal; break;
default: assert(0);
}
}
inline void
MachineOperand::Initialize(MachineOperandType operandType,
Value* _val)
{
opType = operandType;
value = _val;
}
inline void
MachineOperand::InitializeConst(MachineOperandType operandType,
int64_t intValue)
{
opType = operandType;
value = NULL;
immedVal = intValue;
}
inline void
MachineOperand::InitializeReg(unsigned int _regNum)
{
opType = MO_MachineRegister;
value = NULL;
regNum = _regNum;
}
//---------------------------------------------------------------------------
// class MachineInstr
//
// Purpose:
// Representation of each machine instruction.
//
// MachineOpCode must be an enum, defined separately for each target.
// E.g., It is defined in SparcInstructionSelection.h for the SPARC.
//
// opCodeMask is used to record variants of an instruction.
// E.g., each branch instruction on SPARC has 2 flags (i.e., 4 variants):
// ANNUL: if 1: Annul delay slot instruction.
// PREDICT-NOT-TAKEN: if 1: predict branch not taken.
// Instead of creating 4 different opcodes for BNZ, we create a single
// opcode and set bits in opCodeMask for each of these flags.
//---------------------------------------------------------------------------
class MachineInstr : public NonCopyable {
private:
MachineOpCode opCode;
OpCodeMask opCodeMask; // extra bits for variants of an opcode
vector<MachineOperand> operands;
public:
typedef ValOpIterator<const MachineInstr, const Value> val_op_const_iterator;
typedef ValOpIterator< MachineInstr, Value> val_op_iterator;
public:
/*ctor*/ MachineInstr (MachineOpCode _opCode,
OpCodeMask _opCodeMask = 0x0);
inline ~MachineInstr () {}
const MachineOpCode getOpCode () const;
unsigned int getNumOperands () const;
const MachineOperand& getOperand (unsigned int i) const;
MachineOperand& getOperand (unsigned int i);
void dump (unsigned int indent = 0);
public:
friend ostream& operator<<(ostream& os, const MachineInstr& minstr);
friend val_op_const_iterator;
friend val_op_iterator;
public:
// Access to set the operands when building the machine instruction
void SetMachineOperand(unsigned int i,
MachineOperand::MachineOperandType operandType,
Value* _val);
void SetMachineOperand(unsigned int i,
MachineOperand::MachineOperandType operandType,
int64_t intValue);
void SetMachineOperand(unsigned int i,
unsigned int regNum);
};
inline const MachineOpCode
MachineInstr::getOpCode() const
{
return opCode;
}
inline unsigned int
MachineInstr::getNumOperands() const
{
return operands.size();
}
inline MachineOperand&
MachineInstr::getOperand(unsigned int i)
{
return operands[i];
}
inline const MachineOperand&
MachineInstr::getOperand(unsigned int i) const
{
return operands[i];
}
template<class _MI, class _V>
class ValOpIterator : public std::forward_iterator<_V, ptrdiff_t> {
private:
unsigned int i;
int resultPos;
_MI*& minstr;
inline void skipToNextVal() {
while (i < minstr->getNumOperands()
&& minstr->getOperand(i).getOperandType() != MachineOperand::MO_VirtualRegister
&& minstr->getOperand(i).getOperandType() != MachineOperand::MO_CCRegister)
++i;
}
public:
typedef ValOpIterator<_MI, _V> _Self;
inline ValOpIterator(_MI* _minstr) : i(0), minstr(_minstr) {
resultPos = TargetInstrDescriptors[minstr->opCode].resultPos;
skipToNextVal();
};
inline _V* operator*() const { return minstr->getOperand(i).getVRegValue();}
inline _V* operator->() const { return operator*(); }
inline bool isDef () const { return (((int) i) == resultPos); }
inline bool done () const { return (i == minstr->getNumOperands()); }
inline _Self& operator++() { i++; skipToNextVal(); return *this; }
inline _Self operator++(int) { _Self tmp = *this; ++*this; return tmp; }
};
//---------------------------------------------------------------------------
// class MachineInstructionsForVMInstr
//
// Purpose:
// Representation of the sequence of machine instructions created
// for a single VM instruction. Additionally records any temporary
// "values" used as intermediate values in this sequence.
// Note that such values should be treated as pure SSA values with
// no interpretation of their operands (i.e., as a TmpInstruction object
// which actually represents such a value).
//
//---------------------------------------------------------------------------
class MachineCodeForVMInstr: public vector<MachineInstr*>
{
private:
vector<Value*> tempVec;
public:
/*ctor*/ MachineCodeForVMInstr () {}
/*ctor*/ ~MachineCodeForVMInstr ();
const vector<Value*>&
getTempValues () const { return tempVec; }
void addTempValue (Value* val)
{ tempVec.push_back(val); }
// dropAllReferences() - This function drops all references within
// temporary (hidden) instructions created in implementing the original
// VM intruction. This ensures there are no remaining "uses" within
// these hidden instructions, before the values of a method are freed.
//
// Make this inline because it has to be called from class Instruction
// and inlining it avoids a serious circurality in link order.
inline void dropAllReferences() {
for (unsigned i=0, N=tempVec.size(); i < N; i++)
if (tempVec[i]->getValueType() == Value::InstructionVal)
((Instruction*) tempVec[i])->dropAllReferences();
}
};
inline
MachineCodeForVMInstr::~MachineCodeForVMInstr()
{
// Free the Value objects created to hold intermediate values
for (unsigned i=0, N=tempVec.size(); i < N; i++)
delete tempVec[i];
// Free the MachineInstr objects allocated, if any.
for (unsigned i=0, N=this->size(); i < N; i++)
delete (*this)[i];
}
//---------------------------------------------------------------------------
// Target-independent utility routines for creating machine instructions
//---------------------------------------------------------------------------
//------------------------------------------------------------------------
// Function Set2OperandsFromInstr
// Function Set3OperandsFromInstr
//
// For the common case of 2- and 3-operand arithmetic/logical instructions,
// set the m/c instr. operands directly from the VM instruction's operands.
// Check whether the first or second operand is 0 and can use a dedicated
// "0" register.
// Check whether the second operand should use an immediate field or register.
// (First and third operands are never immediates for such instructions.)
//
// Arguments:
// canDiscardResult: Specifies that the result operand can be discarded
// by using the dedicated "0"
//
// op1position, op2position and resultPosition: Specify in which position
// in the machine instruction the 3 operands (arg1, arg2
// and result) should go.
//
// RETURN VALUE: unsigned int flags, where
// flags & 0x01 => operand 1 is constant and needs a register
// flags & 0x02 => operand 2 is constant and needs a register
//------------------------------------------------------------------------
void Set2OperandsFromInstr (MachineInstr* minstr,
InstructionNode* vmInstrNode,
const TargetMachine& targetMachine,
bool canDiscardResult = false,
int op1Position = 0,
int resultPosition = 1);
void Set3OperandsFromInstr (MachineInstr* minstr,
InstructionNode* vmInstrNode,
const TargetMachine& targetMachine,
bool canDiscardResult = false,
int op1Position = 0,
int op2Position = 1,
int resultPosition = 2);
MachineOperand::MachineOperandType
ChooseRegOrImmed(Value* val,
MachineOpCode opCode,
const TargetMachine& targetMachine,
bool canUseImmed,
unsigned int& getMachineRegNum,
int64_t& getImmedValue);
ostream& operator<<(ostream& os, const MachineInstr& minstr);
ostream& operator<<(ostream& os, const MachineOperand& mop);
//**************************************************************************/
#endif