llvm-6502/utils/TableGen/DAGISelEmitter.h

548 lines
20 KiB
C
Raw Normal View History

//===- DAGISelEmitter.h - Generate an instruction selector ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend emits a DAG instruction selector.
//
//===----------------------------------------------------------------------===//
#ifndef DAGISEL_EMITTER_H
#define DAGISEL_EMITTER_H
#include "TableGenBackend.h"
#include "CodeGenTarget.h"
#include "CodeGenIntrinsics.h"
#include <set>
namespace llvm {
class Record;
struct Init;
class ListInit;
class DagInit;
class SDNodeInfo;
class TreePattern;
class TreePatternNode;
class DAGISelEmitter;
class ComplexPattern;
/// MVT::DAGISelGenValueType - These are some extended forms of MVT::ValueType
/// that we use as lattice values during type inferrence.
namespace MVT {
enum DAGISelGenValueType {
isFP = MVT::LAST_VALUETYPE,
isInt,
isUnknown
};
}
/// SDTypeConstraint - This is a discriminated union of constraints,
/// corresponding to the SDTypeConstraint tablegen class in Target.td.
struct SDTypeConstraint {
SDTypeConstraint(Record *R);
unsigned OperandNo; // The operand # this constraint applies to.
enum {
SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisSameAs,
SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisIntVectorOfSameSize
} ConstraintType;
union { // The discriminated union.
struct {
MVT::ValueType VT;
} SDTCisVT_Info;
struct {
unsigned OtherOperandNum;
} SDTCisSameAs_Info;
struct {
unsigned OtherOperandNum;
} SDTCisVTSmallerThanOp_Info;
struct {
unsigned BigOperandNum;
} SDTCisOpSmallerThanOp_Info;
struct {
unsigned OtherOperandNum;
} SDTCisIntVectorOfSameSize_Info;
} x;
/// ApplyTypeConstraint - Given a node in a pattern, apply this type
/// constraint to the nodes operands. This returns true if it makes a
/// change, false otherwise. If a type contradiction is found, throw an
/// exception.
bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo,
TreePattern &TP) const;
/// getOperandNum - Return the node corresponding to operand #OpNo in tree
/// N, which has NumResults results.
TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
unsigned NumResults) const;
};
/// SDNodeInfo - One of these records is created for each SDNode instance in
/// the target .td file. This represents the various dag nodes we will be
/// processing.
class SDNodeInfo {
Record *Def;
std::string EnumName;
std::string SDClassName;
unsigned Properties;
unsigned NumResults;
int NumOperands;
std::vector<SDTypeConstraint> TypeConstraints;
public:
SDNodeInfo(Record *R); // Parse the specified record.
unsigned getNumResults() const { return NumResults; }
int getNumOperands() const { return NumOperands; }
Record *getRecord() const { return Def; }
const std::string &getEnumName() const { return EnumName; }
const std::string &getSDClassName() const { return SDClassName; }
const std::vector<SDTypeConstraint> &getTypeConstraints() const {
return TypeConstraints;
}
/// hasProperty - Return true if this node has the specified property.
///
bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }
/// ApplyTypeConstraints - Given a node in a pattern, apply the type
/// constraints for this node to the operands of the node. This returns
/// true if it makes a change, false otherwise. If a type contradiction is
/// found, throw an exception.
bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const {
bool MadeChange = false;
for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i)
MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP);
return MadeChange;
}
};
/// FIXME: TreePatternNode's can be shared in some cases (due to dag-shaped
/// patterns), and as such should be ref counted. We currently just leak all
/// TreePatternNode objects!
class TreePatternNode {
/// The inferred type for this node, or MVT::isUnknown if it hasn't
/// been determined yet.
std::vector<unsigned char> Types;
/// Operator - The Record for the operator if this is an interior node (not
/// a leaf).
Record *Operator;
/// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf.
///
Init *Val;
/// Name - The name given to this node with the :$foo notation.
///
std::string Name;
/// PredicateFn - The predicate function to execute on this node to check
/// for a match. If this string is empty, no predicate is involved.
std::string PredicateFn;
/// TransformFn - The transformation function to execute on this node before
/// it can be substituted into the resulting instruction on a pattern match.
Record *TransformFn;
std::vector<TreePatternNode*> Children;
public:
TreePatternNode(Record *Op, const std::vector<TreePatternNode*> &Ch)
: Types(), Operator(Op), Val(0), TransformFn(0),
Children(Ch) { Types.push_back(MVT::isUnknown); }
TreePatternNode(Init *val) // leaf ctor
: Types(), Operator(0), Val(val), TransformFn(0) {
Types.push_back(MVT::isUnknown);
}
~TreePatternNode();
const std::string &getName() const { return Name; }
void setName(const std::string &N) { Name = N; }
bool isLeaf() const { return Val != 0; }
bool hasTypeSet() const {
return (Types[0] < MVT::LAST_VALUETYPE) || (Types[0] == MVT::iPTR);
}
bool isTypeCompletelyUnknown() const {
return Types[0] == MVT::isUnknown;
}
bool isTypeDynamicallyResolved() const {
return Types[0] == MVT::iPTR;
}
MVT::ValueType getTypeNum(unsigned Num) const {
assert(hasTypeSet() && "Doesn't have a type yet!");
assert(Types.size() > Num && "Type num out of range!");
return (MVT::ValueType)Types[Num];
}
unsigned char getExtTypeNum(unsigned Num) const {
assert(Types.size() > Num && "Extended type num out of range!");
return Types[Num];
}
const std::vector<unsigned char> &getExtTypes() const { return Types; }
void setTypes(const std::vector<unsigned char> &T) { Types = T; }
void removeTypes() { Types = std::vector<unsigned char>(1,MVT::isUnknown); }
Init *getLeafValue() const { assert(isLeaf()); return Val; }
Record *getOperator() const { assert(!isLeaf()); return Operator; }
unsigned getNumChildren() const { return Children.size(); }
TreePatternNode *getChild(unsigned N) const { return Children[N]; }
void setChild(unsigned i, TreePatternNode *N) {
Children[i] = N;
}
const std::string &getPredicateFn() const { return PredicateFn; }
void setPredicateFn(const std::string &Fn) { PredicateFn = Fn; }
Record *getTransformFn() const { return TransformFn; }
void setTransformFn(Record *Fn) { TransformFn = Fn; }
void print(std::ostream &OS) const;
void dump() const;
public: // Higher level manipulation routines.
/// clone - Return a new copy of this tree.
///
TreePatternNode *clone() const;
/// isIsomorphicTo - Return true if this node is recursively isomorphic to
/// the specified node. For this comparison, all of the state of the node
/// is considered, except for the assigned name. Nodes with differing names
/// that are otherwise identical are considered isomorphic.
bool isIsomorphicTo(const TreePatternNode *N) const;
/// SubstituteFormalArguments - Replace the formal arguments in this tree
/// with actual values specified by ArgMap.
void SubstituteFormalArguments(std::map<std::string,
TreePatternNode*> &ArgMap);
/// InlinePatternFragments - If this pattern refers to any pattern
/// fragments, inline them into place, giving us a pattern without any
/// PatFrag references.
TreePatternNode *InlinePatternFragments(TreePattern &TP);
/// ApplyTypeConstraints - Apply all of the type constraints relevent to
/// this node and its children in the tree. This returns true if it makes a
/// change, false otherwise. If a type contradiction is found, throw an
/// exception.
bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters);
/// UpdateNodeType - Set the node type of N to VT if VT contains
/// information. If N already contains a conflicting type, then throw an
/// exception. This returns true if any information was updated.
///
bool UpdateNodeType(const std::vector<unsigned char> &ExtVTs,
TreePattern &TP);
bool UpdateNodeType(unsigned char ExtVT, TreePattern &TP) {
std::vector<unsigned char> ExtVTs(1, ExtVT);
return UpdateNodeType(ExtVTs, TP);
}
/// ContainsUnresolvedType - Return true if this tree contains any
/// unresolved types.
bool ContainsUnresolvedType() const {
if (!hasTypeSet() && !isTypeDynamicallyResolved()) return true;
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
if (getChild(i)->ContainsUnresolvedType()) return true;
return false;
}
/// canPatternMatch - If it is impossible for this pattern to match on this
/// target, fill in Reason and return false. Otherwise, return true.
bool canPatternMatch(std::string &Reason, DAGISelEmitter &ISE);
};
/// TreePattern - Represent a pattern, used for instructions, pattern
/// fragments, etc.
///
class TreePattern {
/// Trees - The list of pattern trees which corresponds to this pattern.
/// Note that PatFrag's only have a single tree.
///
std::vector<TreePatternNode*> Trees;
/// TheRecord - The actual TableGen record corresponding to this pattern.
///
Record *TheRecord;
/// Args - This is a list of all of the arguments to this pattern (for
/// PatFrag patterns), which are the 'node' markers in this pattern.
std::vector<std::string> Args;
/// ISE - the DAG isel emitter coordinating this madness.
///
DAGISelEmitter &ISE;
/// isInputPattern - True if this is an input pattern, something to match.
/// False if this is an output pattern, something to emit.
bool isInputPattern;
public:
/// TreePattern constructor - Parse the specified DagInits into the
/// current record.
TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
DAGISelEmitter &ise);
TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
DAGISelEmitter &ise);
TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
DAGISelEmitter &ise);
/// getTrees - Return the tree patterns which corresponds to this pattern.
///
const std::vector<TreePatternNode*> &getTrees() const { return Trees; }
unsigned getNumTrees() const { return Trees.size(); }
TreePatternNode *getTree(unsigned i) const { return Trees[i]; }
TreePatternNode *getOnlyTree() const {
assert(Trees.size() == 1 && "Doesn't have exactly one pattern!");
return Trees[0];
}
/// getRecord - Return the actual TableGen record corresponding to this
/// pattern.
///
Record *getRecord() const { return TheRecord; }
unsigned getNumArgs() const { return Args.size(); }
const std::string &getArgName(unsigned i) const {
assert(i < Args.size() && "Argument reference out of range!");
return Args[i];
}
std::vector<std::string> &getArgList() { return Args; }
DAGISelEmitter &getDAGISelEmitter() const { return ISE; }
/// InlinePatternFragments - If this pattern refers to any pattern
/// fragments, inline them into place, giving us a pattern without any
/// PatFrag references.
void InlinePatternFragments() {
for (unsigned i = 0, e = Trees.size(); i != e; ++i)
Trees[i] = Trees[i]->InlinePatternFragments(*this);
}
/// InferAllTypes - Infer/propagate as many types throughout the expression
/// patterns as possible. Return true if all types are infered, false
/// otherwise. Throw an exception if a type contradiction is found.
bool InferAllTypes();
/// error - Throw an exception, prefixing it with information about this
/// pattern.
void error(const std::string &Msg) const;
void print(std::ostream &OS) const;
void dump() const;
private:
TreePatternNode *ParseTreePattern(DagInit *DI);
};
/// DAGDefaultOperand - One of these is created for each PredicateOperand
/// or OptionalDefOperand that has a set ExecuteAlways / DefaultOps field.
struct DAGDefaultOperand {
std::vector<TreePatternNode*> DefaultOps;
};
class DAGInstruction {
TreePattern *Pattern;
std::vector<Record*> Results;
std::vector<Record*> Operands;
std::vector<Record*> ImpResults;
std::vector<Record*> ImpOperands;
TreePatternNode *ResultPattern;
public:
DAGInstruction(TreePattern *TP,
const std::vector<Record*> &results,
const std::vector<Record*> &operands,
const std::vector<Record*> &impresults,
const std::vector<Record*> &impoperands)
: Pattern(TP), Results(results), Operands(operands),
ImpResults(impresults), ImpOperands(impoperands),
ResultPattern(0) {}
TreePattern *getPattern() const { return Pattern; }
unsigned getNumResults() const { return Results.size(); }
unsigned getNumOperands() const { return Operands.size(); }
unsigned getNumImpResults() const { return ImpResults.size(); }
unsigned getNumImpOperands() const { return ImpOperands.size(); }
const std::vector<Record*>& getImpResults() const { return ImpResults; }
void setResultPattern(TreePatternNode *R) { ResultPattern = R; }
Record *getResult(unsigned RN) const {
assert(RN < Results.size());
return Results[RN];
}
Record *getOperand(unsigned ON) const {
assert(ON < Operands.size());
return Operands[ON];
}
Record *getImpResult(unsigned RN) const {
assert(RN < ImpResults.size());
return ImpResults[RN];
}
Record *getImpOperand(unsigned ON) const {
assert(ON < ImpOperands.size());
return ImpOperands[ON];
}
TreePatternNode *getResultPattern() const { return ResultPattern; }
};
/// PatternToMatch - Used by DAGISelEmitter to keep tab of patterns processed
/// to produce isel.
struct PatternToMatch {
PatternToMatch(ListInit *preds,
TreePatternNode *src, TreePatternNode *dst,
const std::vector<Record*> &dstregs,
unsigned complexity):
Predicates(preds), SrcPattern(src), DstPattern(dst), Dstregs(dstregs),
AddedComplexity(complexity) {};
ListInit *Predicates; // Top level predicate conditions to match.
TreePatternNode *SrcPattern; // Source pattern to match.
TreePatternNode *DstPattern; // Resulting pattern.
std::vector<Record*> Dstregs; // Physical register defs being matched.
unsigned AddedComplexity; // Add to matching pattern complexity.
ListInit *getPredicates() const { return Predicates; }
TreePatternNode *getSrcPattern() const { return SrcPattern; }
TreePatternNode *getDstPattern() const { return DstPattern; }
const std::vector<Record*> &getDstRegs() const { return Dstregs; }
unsigned getAddedComplexity() const { return AddedComplexity; }
};
/// DAGISelEmitter - The top-level class which coordinates construction
/// and emission of the instruction selector.
///
class DAGISelEmitter : public TableGenBackend {
private:
RecordKeeper &Records;
CodeGenTarget Target;
std::vector<CodeGenIntrinsic> Intrinsics;
std::map<Record*, SDNodeInfo> SDNodes;
std::map<Record*, std::pair<Record*, std::string> > SDNodeXForms;
std::map<Record*, ComplexPattern> ComplexPatterns;
std::map<Record*, TreePattern*> PatternFragments;
std::map<Record*, DAGDefaultOperand> DefaultOperands;
std::map<Record*, DAGInstruction> Instructions;
// Specific SDNode definitions:
Record *intrinsic_void_sdnode;
Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode;
/// PatternsToMatch - All of the things we are matching on the DAG. The first
/// value is the pattern to match, the second pattern is the result to
/// emit.
std::vector<PatternToMatch> PatternsToMatch;
public:
DAGISelEmitter(RecordKeeper &R) : Records(R) {}
// run - Output the isel, returning true on failure.
void run(std::ostream &OS);
const CodeGenTarget &getTargetInfo() const { return Target; }
Record *getSDNodeNamed(const std::string &Name) const;
const SDNodeInfo &getSDNodeInfo(Record *R) const {
assert(SDNodes.count(R) && "Unknown node!");
return SDNodes.find(R)->second;
}
const std::pair<Record*, std::string> &getSDNodeTransform(Record *R) const {
assert(SDNodeXForms.count(R) && "Invalid transform!");
return SDNodeXForms.find(R)->second;
}
const ComplexPattern &getComplexPattern(Record *R) const {
assert(ComplexPatterns.count(R) && "Unknown addressing mode!");
return ComplexPatterns.find(R)->second;
}
const CodeGenIntrinsic &getIntrinsic(Record *R) const {
for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
if (Intrinsics[i].TheDef == R) return Intrinsics[i];
assert(0 && "Unknown intrinsic!");
abort();
}
const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const {
assert(IID-1 < Intrinsics.size() && "Bad intrinsic ID!");
return Intrinsics[IID-1];
}
unsigned getIntrinsicID(Record *R) const {
for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
if (Intrinsics[i].TheDef == R) return i;
assert(0 && "Unknown intrinsic!");
abort();
}
const DAGDefaultOperand &getDefaultOperand(Record *R) {
assert(DefaultOperands.count(R) &&"Isn't an analyzed default operand!");
return DefaultOperands.find(R)->second;
}
TreePattern *getPatternFragment(Record *R) const {
assert(PatternFragments.count(R) && "Invalid pattern fragment request!");
return PatternFragments.find(R)->second;
}
const DAGInstruction &getInstruction(Record *R) const {
assert(Instructions.count(R) && "Unknown instruction!");
return Instructions.find(R)->second;
}
Record *get_intrinsic_void_sdnode() const {
return intrinsic_void_sdnode;
}
Record *get_intrinsic_w_chain_sdnode() const {
return intrinsic_w_chain_sdnode;
}
Record *get_intrinsic_wo_chain_sdnode() const {
return intrinsic_wo_chain_sdnode;
}
private:
void ParseNodeInfo();
void ParseNodeTransforms(std::ostream &OS);
void ParseComplexPatterns();
void ParsePatternFragments(std::ostream &OS);
void ParseDefaultOperands();
void ParseInstructions();
void ParsePatterns();
void GenerateVariants();
void FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
std::map<std::string,
TreePatternNode*> &InstInputs,
std::map<std::string,
TreePatternNode*> &InstResults,
std::vector<Record*> &InstImpInputs,
std::vector<Record*> &InstImpResults);
void GenerateCodeForPattern(PatternToMatch &Pattern,
std::vector<std::pair<unsigned, std::string> > &GeneratedCode,
std::set<std::string> &GeneratedDecl,
std::vector<std::string> &TargetOpcodes,
std::vector<std::string> &TargetVTs);
void EmitPatterns(std::vector<std::pair<PatternToMatch*,
std::vector<std::pair<unsigned, std::string> > > > &Patterns,
unsigned Indent, std::ostream &OS);
void EmitInstructionSelector(std::ostream &OS);
};
} // End llvm namespace
#endif