llvm-6502/lib/Target/Sparc/SparcV8ISelSimple.cpp

409 lines
15 KiB
C++
Raw Normal View History

//===-- InstSelectSimple.cpp - A simple instruction selector for SparcV8 --===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a simple peephole instruction selector for the V8 target
//
//===----------------------------------------------------------------------===//
#include "SparcV8.h"
#include "SparcV8InstrInfo.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicLowering.h"
#include "llvm/Pass.h"
#include "llvm/Constants.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/CFG.h"
using namespace llvm;
namespace {
struct V8ISel : public FunctionPass, public InstVisitor<V8ISel> {
TargetMachine &TM;
MachineFunction *F; // The function we are compiling into
MachineBasicBlock *BB; // The current MBB we are compiling
std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
// MBBMap - Mapping between LLVM BB -> Machine BB
std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
V8ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
/// runOnFunction - Top level implementation of instruction selection for
/// the entire function.
///
bool runOnFunction(Function &Fn);
virtual const char *getPassName() const {
return "SparcV8 Simple Instruction Selection";
}
/// visitBasicBlock - This method is called when we are visiting a new basic
/// block. This simply creates a new MachineBasicBlock to emit code into
/// and adds it to the current MachineFunction. Subsequent visit* for
/// instructions will be invoked for all instructions in the basic block.
///
void visitBasicBlock(BasicBlock &LLVM_BB) {
BB = MBBMap[&LLVM_BB];
}
void visitBinaryOperator(Instruction &I);
void visitShiftInstruction(Instruction &I) { visitBinaryOperator(I); }
void visitCallInst(CallInst &I);
void visitReturnInst(ReturnInst &RI);
void visitInstruction(Instruction &I) {
std::cerr << "Unhandled instruction: " << I;
abort();
}
/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
/// function, lowering any calls to unknown intrinsic functions into the
/// equivalent LLVM code.
void LowerUnknownIntrinsicFunctionCalls(Function &F);
void visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI);
/// copyConstantToRegister - Output the instructions required to put the
/// specified constant into the specified register.
///
void copyConstantToRegister(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
Constant *C, unsigned R);
/// makeAnotherReg - This method returns the next register number we haven't
/// yet used.
///
/// Long values are handled somewhat specially. They are always allocated
/// as pairs of 32 bit integer values. The register number returned is the
/// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
/// of the long value.
///
unsigned makeAnotherReg(const Type *Ty) {
assert(dynamic_cast<const SparcV8RegisterInfo*>(TM.getRegisterInfo()) &&
"Current target doesn't have SparcV8 reg info??");
const SparcV8RegisterInfo *MRI =
static_cast<const SparcV8RegisterInfo*>(TM.getRegisterInfo());
if (Ty == Type::LongTy || Ty == Type::ULongTy) {
const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
// Create the lower part
F->getSSARegMap()->createVirtualRegister(RC);
// Create the upper part.
return F->getSSARegMap()->createVirtualRegister(RC)-1;
}
// Add the mapping of regnumber => reg class to MachineFunction
const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
return F->getSSARegMap()->createVirtualRegister(RC);
}
unsigned getReg(Value &V) { return getReg (&V); } // allow refs.
unsigned getReg(Value *V) {
// Just append to the end of the current bb.
MachineBasicBlock::iterator It = BB->end();
return getReg(V, BB, It);
}
unsigned getReg(Value *V, MachineBasicBlock *MBB,
MachineBasicBlock::iterator IPt) {
unsigned &Reg = RegMap[V];
if (Reg == 0) {
Reg = makeAnotherReg(V->getType());
RegMap[V] = Reg;
}
// If this operand is a constant, emit the code to copy the constant into
// the register here...
//
if (Constant *C = dyn_cast<Constant>(V)) {
copyConstantToRegister(MBB, IPt, C, Reg);
RegMap.erase(V); // Assign a new name to this constant if ref'd again
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
// Move the address of the global into the register
unsigned TmpReg = makeAnotherReg(V->getType());
BuildMI (*MBB, IPt, V8::SETHIi, 1, TmpReg).addGlobalAddress (GV);
BuildMI (*MBB, IPt, V8::ORri, 2, Reg).addReg (TmpReg)
.addGlobalAddress (GV);
RegMap.erase(V); // Assign a new name to this address if ref'd again
}
return Reg;
}
};
}
FunctionPass *llvm::createSparcV8SimpleInstructionSelector(TargetMachine &TM) {
return new V8ISel(TM);
}
enum TypeClass {
cByte, cShort, cInt, cLong, cFloat, cDouble
};
static TypeClass getClass (const Type *T) {
switch (T->getPrimitiveID ()) {
case Type::UByteTyID: case Type::SByteTyID: return cByte;
case Type::UShortTyID: case Type::ShortTyID: return cShort;
case Type::UIntTyID: case Type::IntTyID: return cInt;
case Type::ULongTyID: case Type::LongTyID: return cLong;
case Type::FloatTyID: return cFloat;
case Type::DoubleTyID: return cDouble;
default:
assert (0 && "Type of unknown class passed to getClass?");
return cByte;
}
}
/// copyConstantToRegister - Output the instructions required to put the
/// specified constant into the specified register.
///
void V8ISel::copyConstantToRegister(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
Constant *C, unsigned R) {
if (ConstantInt *CI = dyn_cast<ConstantInt> (C)) {
unsigned Class = getClass(C->getType());
uint64_t Val = CI->getRawValue ();
switch (Class) {
case cByte:
BuildMI (*MBB, IP, V8::ORri, 2, R).addReg (V8::G0).addImm((uint8_t)Val);
return;
case cShort: {
unsigned TmpReg = makeAnotherReg (C->getType ());
BuildMI (*MBB, IP, V8::SETHIi, 1, TmpReg)
.addImm (((uint16_t) Val) >> 10);
BuildMI (*MBB, IP, V8::ORri, 2, R).addReg (TmpReg)
.addImm (((uint16_t) Val) & 0x03ff);
return;
}
case cInt: {
unsigned TmpReg = makeAnotherReg (C->getType ());
BuildMI (*MBB, IP, V8::SETHIi, 1, TmpReg).addImm(((uint32_t)Val) >> 10);
BuildMI (*MBB, IP, V8::ORri, 2, R).addReg (TmpReg)
.addImm (((uint32_t) Val) & 0x03ff);
return;
}
case cLong: {
unsigned TmpReg = makeAnotherReg (Type::UIntTy);
uint32_t topHalf = (uint32_t) (Val >> 32);
uint32_t bottomHalf = (uint32_t)Val;
BuildMI (*MBB, IP, V8::SETHIi, 1, TmpReg).addImm (topHalf >> 10);
BuildMI (*MBB, IP, V8::ORri, 2, R).addReg (TmpReg)
.addImm (topHalf & 0x03ff);
BuildMI (*MBB, IP, V8::SETHIi, 1, TmpReg).addImm (bottomHalf >> 10);
BuildMI (*MBB, IP, V8::ORri, 2, R).addReg (TmpReg)
.addImm (bottomHalf & 0x03ff);
return;
}
default:
std::cerr << "Offending constant: " << *C << "\n";
assert (0 && "Can't copy this kind of constant into register yet");
return;
}
}
std::cerr << "Offending constant: " << *C << "\n";
assert (0 && "Can't copy this kind of constant into register yet");
}
bool V8ISel::runOnFunction(Function &Fn) {
// First pass over the function, lower any unknown intrinsic functions
// with the IntrinsicLowering class.
LowerUnknownIntrinsicFunctionCalls(Fn);
F = &MachineFunction::construct(&Fn, TM);
// Create all of the machine basic blocks for the function...
for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
BB = &F->front();
// Set up a frame object for the return address. This is used by the
// llvm.returnaddress & llvm.frameaddress intrinisics.
//ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
// Copy incoming arguments off of the stack and out of fixed registers.
//LoadArgumentsToVirtualRegs(Fn);
// Instruction select everything except PHI nodes
visit(Fn);
// Select the PHI nodes
//SelectPHINodes();
RegMap.clear();
MBBMap.clear();
F = 0;
// We always build a machine code representation for the function
return true;
}
void V8ISel::visitCallInst(CallInst &I) {
assert (I.getNumOperands () == 1 && "Can't handle call args yet");
unsigned DestReg = getReg (I);
BuildMI (BB, V8::CALL, 1).addPCDisp (I.getOperand (0));
if (I.getType ()->getPrimitiveID () == Type::VoidTyID)
return;
// Deal w/ return value
switch (getClass (I.getType ())) {
case cByte:
case cShort:
case cInt:
// Schlep it over into the destination register
BuildMI (BB, V8::ORrr, 2, DestReg).addReg(V8::G0).addReg(V8::O0);
break;
default:
visitInstruction (I);
return;
}
}
void V8ISel::visitReturnInst(ReturnInst &I) {
if (I.getNumOperands () == 1) {
unsigned RetValReg = getReg (I.getOperand (0));
switch (getClass (I.getOperand (0)->getType ())) {
case cByte:
case cShort:
case cInt:
// Schlep it over into i0 (where it will become o0 after restore).
BuildMI (BB, V8::ORrr, 2, V8::I0).addReg(V8::G0).addReg(RetValReg);
break;
default:
visitInstruction (I);
return;
}
} else if (I.getNumOperands () != 1) {
visitInstruction (I);
}
// Just emit a 'retl' instruction to return.
BuildMI(BB, V8::RETL, 0);
return;
}
void V8ISel::visitBinaryOperator (Instruction &I) {
unsigned DestReg = getReg (I);
unsigned Op0Reg = getReg (I.getOperand (0));
unsigned Op1Reg = getReg (I.getOperand (1));
unsigned ResultReg = makeAnotherReg (I.getType ());
unsigned OpCase = ~0;
// FIXME: support long, ulong, fp.
switch (I.getOpcode ()) {
case Instruction::Add: OpCase = 0; break;
case Instruction::Sub: OpCase = 1; break;
case Instruction::Mul: OpCase = 2; break;
case Instruction::And: OpCase = 3; break;
case Instruction::Or: OpCase = 4; break;
case Instruction::Xor: OpCase = 5; break;
case Instruction::Shl: OpCase = 6; break;
case Instruction::Shr: OpCase = 7+I.getType()->isSigned(); break;
case Instruction::Div:
case Instruction::Rem: {
unsigned Dest = ResultReg;
if (I.getOpcode() == Instruction::Rem)
Dest = makeAnotherReg(I.getType());
// FIXME: this is probably only right for 32 bit operands.
if (I.getType ()->isSigned()) {
unsigned Tmp = makeAnotherReg (I.getType ());
// Sign extend into the Y register
BuildMI (BB, V8::SRAri, 2, Tmp).addReg (Op0Reg).addZImm (31);
BuildMI (BB, V8::WRrr, 2, V8::Y).addReg (Tmp).addReg (V8::G0);
BuildMI (BB, V8::SDIVrr, 2, Dest).addReg (Op0Reg).addReg (Op1Reg);
} else {
// Zero extend into the Y register, ie, just set it to zero
BuildMI (BB, V8::WRrr, 2, V8::Y).addReg (V8::G0).addReg (V8::G0);
BuildMI (BB, V8::UDIVrr, 2, Dest).addReg (Op0Reg).addReg (Op1Reg);
}
if (I.getOpcode() == Instruction::Rem) {
unsigned Tmp = makeAnotherReg (I.getType ());
BuildMI (BB, V8::SMULrr, 2, Tmp).addReg(Dest).addReg(Op1Reg);
BuildMI (BB, V8::SUBrr, 2, ResultReg).addReg(Op0Reg).addReg(Tmp);
}
break;
}
default:
visitInstruction (I);
return;
}
if (OpCase != ~0U) {
static const unsigned Opcodes[] = {
V8::ADDrr, V8::SUBrr, V8::SMULrr, V8::ANDrr, V8::ORrr, V8::XORrr,
V8::SLLrr, V8::SRLrr, V8::SRArr
};
BuildMI (BB, Opcodes[OpCase], 2, ResultReg).addReg (Op0Reg).addReg (Op1Reg);
}
switch (getClass (I.getType ())) {
case cByte:
if (I.getType ()->isSigned ()) { // add byte
BuildMI (BB, V8::ANDri, 2, DestReg).addReg (ResultReg).addZImm (0xff);
} else { // add ubyte
unsigned TmpReg = makeAnotherReg (I.getType ());
BuildMI (BB, V8::SLLri, 2, TmpReg).addReg (ResultReg).addZImm (24);
BuildMI (BB, V8::SRAri, 2, DestReg).addReg (TmpReg).addZImm (24);
}
break;
case cShort:
if (I.getType ()->isSigned ()) { // add short
unsigned TmpReg = makeAnotherReg (I.getType ());
BuildMI (BB, V8::SLLri, 2, TmpReg).addReg (ResultReg).addZImm (16);
BuildMI (BB, V8::SRAri, 2, DestReg).addReg (TmpReg).addZImm (16);
} else { // add ushort
unsigned TmpReg = makeAnotherReg (I.getType ());
BuildMI (BB, V8::SLLri, 2, TmpReg).addReg (ResultReg).addZImm (16);
BuildMI (BB, V8::SRLri, 2, DestReg).addReg (TmpReg).addZImm (16);
}
break;
case cInt:
BuildMI (BB, V8::ORrr, 2, DestReg).addReg (V8::G0).addReg (ResultReg);
break;
default:
visitInstruction (I);
return;
}
}
/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
/// function, lowering any calls to unknown intrinsic functions into the
/// equivalent LLVM code.
void V8ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
if (CallInst *CI = dyn_cast<CallInst>(I++))
if (Function *F = CI->getCalledFunction())
switch (F->getIntrinsicID()) {
case Intrinsic::not_intrinsic: break;
default:
// All other intrinsic calls we must lower.
Instruction *Before = CI->getPrev();
TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
if (Before) { // Move iterator to instruction after call
I = Before; ++I;
} else {
I = BB->begin();
}
}
}
void V8ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
unsigned TmpReg1, TmpReg2;
switch (ID) {
default: assert(0 && "Intrinsic not supported!");
}
}