llvm-6502/lib/Target/SparcV9/SparcV9TargetMachine.cpp

268 lines
10 KiB
C++
Raw Normal View History

//===-- Sparc.cpp - General implementation file for the Sparc Target ------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the code for the Sparc Target that does not fit in any of
// the other files in this directory.
//
//===----------------------------------------------------------------------===//
#include "SparcInternals.h"
#include "MappingInfo.h"
#include "llvm/Function.h"
#include "llvm/PassManager.h"
#include "llvm/Assembly/PrintModulePass.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionInfo.h"
#include "llvm/CodeGen/InstrSelection.h"
#include "llvm/CodeGen/InstrScheduling.h"
#include "llvm/CodeGen/MachineCodeForInstruction.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Target/TargetMachineImpls.h"
#include "Support/CommandLine.h"
static const unsigned ImplicitRegUseList[] = { 0 }; /* not used yet */
// Build the MachineInstruction Description Array...
const TargetInstrDescriptor SparcMachineInstrDesc[] = {
#define I(ENUM, OPCODESTRING, NUMOPERANDS, RESULTPOS, MAXIMM, IMMSE, \
NUMDELAYSLOTS, LATENCY, SCHEDCLASS, INSTFLAGS) \
{ OPCODESTRING, NUMOPERANDS, RESULTPOS, MAXIMM, IMMSE, \
NUMDELAYSLOTS, LATENCY, SCHEDCLASS, INSTFLAGS, 0, \
ImplicitRegUseList, ImplicitRegUseList },
#include "SparcInstr.def"
};
//---------------------------------------------------------------------------
// Command line options to control choice of code generation passes.
//---------------------------------------------------------------------------
static cl::opt<bool> DisableSched("disable-sched",
cl::desc("Disable local scheduling pass"));
static cl::opt<bool> DisablePeephole("disable-peephole",
cl::desc("Disable peephole optimization pass"));
static cl::opt<bool> EmitMappingInfo("enable-maps",
cl::desc("Emit LLVM-to-MachineCode mapping info to assembly"));
static cl::opt<bool> DisableStrip("disable-strip",
cl::desc("Do not strip the LLVM bytecode included in executable"));
static cl::opt<bool> DumpInput("dump-input",
cl::desc("Print bytecode before native code generation"),
cl::Hidden);
//----------------------------------------------------------------------------
// allocateSparcTargetMachine - Allocate and return a subclass of TargetMachine
// that implements the Sparc backend. (the llvm/CodeGen/Sparc.h interface)
//----------------------------------------------------------------------------
TargetMachine *allocateSparcTargetMachine(const Module &M) {
return new UltraSparc();
}
//---------------------------------------------------------------------------
// class UltraSparcFrameInfo
//
// Interface to stack frame layout info for the UltraSPARC.
// Starting offsets for each area of the stack frame are aligned at
// a multiple of getStackFrameSizeAlignment().
//---------------------------------------------------------------------------
int
UltraSparcFrameInfo::getFirstAutomaticVarOffset(MachineFunction& ,
bool& pos) const
{
pos = false; // static stack area grows downwards
return StaticAreaOffsetFromFP;
}
int
UltraSparcFrameInfo::getRegSpillAreaOffset(MachineFunction& mcInfo,
bool& pos) const
{
// ensure no more auto vars are added
mcInfo.getInfo()->freezeAutomaticVarsArea();
pos = false; // static stack area grows downwards
unsigned autoVarsSize = mcInfo.getInfo()->getAutomaticVarsSize();
return StaticAreaOffsetFromFP - autoVarsSize;
}
int
UltraSparcFrameInfo::getTmpAreaOffset(MachineFunction& mcInfo,
bool& pos) const
{
MachineFunctionInfo *MFI = mcInfo.getInfo();
MFI->freezeAutomaticVarsArea(); // ensure no more auto vars are added
MFI->freezeSpillsArea(); // ensure no more spill slots are added
pos = false; // static stack area grows downwards
unsigned autoVarsSize = MFI->getAutomaticVarsSize();
unsigned spillAreaSize = MFI->getRegSpillsSize();
int offset = autoVarsSize + spillAreaSize;
return StaticAreaOffsetFromFP - offset;
}
int
UltraSparcFrameInfo::getDynamicAreaOffset(MachineFunction& mcInfo,
bool& pos) const
{
// Dynamic stack area grows downwards starting at top of opt-args area.
// The opt-args, required-args, and register-save areas are empty except
// during calls and traps, so they are shifted downwards on each
// dynamic-size alloca.
pos = false;
unsigned optArgsSize = mcInfo.getInfo()->getMaxOptionalArgsSize();
if (int extra = optArgsSize % getStackFrameSizeAlignment())
optArgsSize += (getStackFrameSizeAlignment() - extra);
int offset = optArgsSize + FirstOptionalOutgoingArgOffsetFromSP;
assert((offset - OFFSET) % getStackFrameSizeAlignment() == 0);
return offset;
}
//---------------------------------------------------------------------------
// class UltraSparcMachine
//
// Purpose:
// Primary interface to machine description for the UltraSPARC.
// Primarily just initializes machine-dependent parameters in
// class TargetMachine, and creates machine-dependent subclasses
// for classes such as TargetInstrInfo.
//
//---------------------------------------------------------------------------
UltraSparc::UltraSparc()
: TargetMachine("UltraSparc-Native", false),
schedInfo(*this),
regInfo(*this),
frameInfo(*this),
cacheInfo(*this) {
}
// addPassesToEmitAssembly - This method controls the entire code generation
// process for the ultra sparc.
//
bool UltraSparc::addPassesToEmitAssembly(PassManager &PM, std::ostream &Out)
{
// The following 3 passes used to be inserted specially by llc.
// Replace malloc and free instructions with library calls.
PM.add(createLowerAllocationsPass());
// Strip all of the symbols from the bytecode so that it will be smaller...
if (!DisableStrip)
PM.add(createSymbolStrippingPass());
// FIXME: implement the switch instruction in the instruction selector.
PM.add(createLowerSwitchPass());
// FIXME: implement the invoke/unwind instructions!
PM.add(createLowerInvokePass());
// decompose multi-dimensional array references into single-dim refs
PM.add(createDecomposeMultiDimRefsPass());
// Construct and initialize the MachineFunction object for this fn.
PM.add(createMachineCodeConstructionPass(*this));
//Insert empty stackslots in the stack frame of each function
//so %fp+offset-8 and %fp+offset-16 are empty slots now!
PM.add(createStackSlotsPass(*this));
// Specialize LLVM code for this target machine
PM.add(createPreSelectionPass(*this));
// Run basic dataflow optimizations on LLVM code
PM.add(createReassociatePass());
PM.add(createLICMPass());
PM.add(createGCSEPass());
// If LLVM dumping after transformations is requested, add it to the pipeline
if (DumpInput)
PM.add(new PrintFunctionPass("Input code to instr. selection:\n",
&std::cerr));
PM.add(createInstructionSelectionPass(*this));
if (!DisableSched)
PM.add(createInstructionSchedulingWithSSAPass(*this));
PM.add(getRegisterAllocator(*this));
PM.add(getPrologEpilogInsertionPass());
if (!DisablePeephole)
PM.add(createPeepholeOptsPass(*this));
if (EmitMappingInfo)
PM.add(getMappingInfoAsmPrinterPass(Out));
// Output assembly language to the .s file. Assembly emission is split into
// two parts: Function output and Global value output. This is because
// function output is pipelined with all of the rest of code generation stuff,
// allowing machine code representations for functions to be free'd after the
// function has been emitted.
//
PM.add(getFunctionAsmPrinterPass(Out));
PM.add(createMachineCodeDestructionPass()); // Free stuff no longer needed
// Emit Module level assembly after all of the functions have been processed.
PM.add(getModuleAsmPrinterPass(Out));
// Emit bytecode to the assembly file into its special section next
if (EmitMappingInfo)
PM.add(getBytecodeAsmPrinterPass(Out));
return false;
}
// addPassesToJITCompile - This method controls the JIT method of code
// generation for the UltraSparc.
//
bool UltraSparc::addPassesToJITCompile(FunctionPassManager &PM) {
const TargetData &TD = getTargetData();
PM.add(new TargetData("lli", TD.isLittleEndian(), TD.getPointerSize(),
TD.getPointerAlignment(), TD.getDoubleAlignment()));
// Replace malloc and free instructions with library calls.
// Do this after tracing until lli implements these lib calls.
// For now, it will emulate malloc and free internally.
PM.add(createLowerAllocationsPass());
// FIXME: implement the switch instruction in the instruction selector.
PM.add(createLowerSwitchPass());
// FIXME: implement the invoke/unwind instructions!
PM.add(createLowerInvokePass());
// decompose multi-dimensional array references into single-dim refs
PM.add(createDecomposeMultiDimRefsPass());
// Construct and initialize the MachineFunction object for this fn.
PM.add(createMachineCodeConstructionPass(*this));
// Specialize LLVM code for this target machine and then
// run basic dataflow optimizations on LLVM code.
PM.add(createPreSelectionPass(*this));
// Run basic dataflow optimizations on LLVM code
PM.add(createReassociatePass());
PM.add(createLICMPass());
PM.add(createGCSEPass());
PM.add(createInstructionSelectionPass(*this));
PM.add(getRegisterAllocator(*this));
PM.add(getPrologEpilogInsertionPass());
if (!DisablePeephole)
PM.add(createPeepholeOptsPass(*this));
return false; // success!
}