llvm-6502/lib/CodeGen/ELFWriter.cpp

633 lines
22 KiB
C++
Raw Normal View History

//===-- ELFWriter.cpp - Target-independent ELF Writer code ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the target-independent ELF writer. This file writes out
// the ELF file in the following order:
//
// #1. ELF Header
// #2. '.text' section
// #3. '.data' section
// #4. '.bss' section (conceptual position in file)
// ...
// #X. '.shstrtab' section
// #Y. Section Table
//
// The entries in the section table are laid out as:
// #0. Null entry [required]
// #1. ".text" entry - the program code
// #2. ".data" entry - global variables with initializers. [ if needed ]
// #3. ".bss" entry - global variables without initializers. [ if needed ]
// ...
// #N. ".shstrtab" entry - String table for the section names.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "elfwriter"
#include "ELFWriter.h"
#include "ELFCodeEmitter.h"
#include "ELF.h"
#include "llvm/Constants.h"
#include "llvm/Module.h"
#include "llvm/PassManager.h"
#include "llvm/DerivedTypes.h"
#include "llvm/CodeGen/FileWriters.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Mangler.h"
#include "llvm/Support/Streams.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Debug.h"
#include <list>
using namespace llvm;
char ELFWriter::ID = 0;
/// AddELFWriter - Concrete function to add the ELF writer to the function pass
/// manager.
MachineCodeEmitter *llvm::AddELFWriter(PassManagerBase &PM,
raw_ostream &O,
TargetMachine &TM) {
ELFWriter *EW = new ELFWriter(O, TM);
PM.add(EW);
return &EW->getMachineCodeEmitter();
}
//===----------------------------------------------------------------------===//
// ELFWriter Implementation
//===----------------------------------------------------------------------===//
ELFWriter::ELFWriter(raw_ostream &o, TargetMachine &tm)
: MachineFunctionPass(&ID), O(o), TM(tm), ElfHdr() {
is64Bit = TM.getTargetData()->getPointerSizeInBits() == 64;
isLittleEndian = TM.getTargetData()->isLittleEndian();
ElfHdr = new ELFHeader(TM.getELFWriterInfo()->getEMachine(), 0,
is64Bit, isLittleEndian);
TAI = TM.getTargetAsmInfo();
// Create the machine code emitter object for this target.
MCE = new ELFCodeEmitter(*this);
NumSections = 0;
}
ELFWriter::~ELFWriter() {
delete MCE;
delete ElfHdr;
}
// doInitialization - Emit the file header and all of the global variables for
// the module to the ELF file.
bool ELFWriter::doInitialization(Module &M) {
Mang = new Mangler(M);
// Local alias to shortenify coming code.
std::vector<unsigned char> &FH = FileHeader;
OutputBuffer FHOut(FH, is64Bit, isLittleEndian);
// ELF Header
// ----------
// Fields e_shnum e_shstrndx are only known after all section have
// been emitted. They locations in the ouput buffer are recorded so
// to be patched up later.
//
// Note
// ----
// FHOut.outaddr method behaves differently for ELF32 and ELF64 writing
// 4 bytes in the former and 8 in the last for *_off and *_addr elf types
FHOut.outbyte(0x7f); // e_ident[EI_MAG0]
FHOut.outbyte('E'); // e_ident[EI_MAG1]
FHOut.outbyte('L'); // e_ident[EI_MAG2]
FHOut.outbyte('F'); // e_ident[EI_MAG3]
FHOut.outbyte(ElfHdr->getElfClass()); // e_ident[EI_CLASS]
FHOut.outbyte(ElfHdr->getByteOrder()); // e_ident[EI_DATA]
FHOut.outbyte(EV_CURRENT); // e_ident[EI_VERSION]
FH.resize(16); // e_ident[EI_NIDENT-EI_PAD]
FHOut.outhalf(ET_REL); // e_type
FHOut.outhalf(ElfHdr->getMachine()); // e_machine = target
FHOut.outword(EV_CURRENT); // e_version
FHOut.outaddr(0); // e_entry = 0, no entry point in .o file
FHOut.outaddr(0); // e_phoff = 0, no program header for .o
ELFHdr_e_shoff_Offset = FH.size();
FHOut.outaddr(0); // e_shoff = sec hdr table off in bytes
FHOut.outword(ElfHdr->getFlags()); // e_flags = whatever the target wants
FHOut.outhalf(ElfHdr->getSize()); // e_ehsize = ELF header size
FHOut.outhalf(0); // e_phentsize = prog header entry size
FHOut.outhalf(0); // e_phnum = # prog header entries = 0
// e_shentsize = Section header entry size
FHOut.outhalf(ELFSection::getSectionHdrSize(is64Bit));
// e_shnum = # of section header ents
ELFHdr_e_shnum_Offset = FH.size();
FHOut.outhalf(0);
// e_shstrndx = Section # of '.shstrtab'
ELFHdr_e_shstrndx_Offset = FH.size();
FHOut.outhalf(0);
// Add the null section, which is required to be first in the file.
getSection("", ELFSection::SHT_NULL, 0);
// Start up the symbol table. The first entry in the symtab is the null
// entry.
SymbolTable.push_back(ELFSym(0));
return false;
}
void ELFWriter::EmitGlobal(GlobalVariable *GV) {
// XXX: put local symbols *before* global ones!
const Section *S = TAI->SectionForGlobal(GV);
DOUT << "Section " << S->getName() << " for global " << GV->getName() << "\n";
// If this is an external global, emit it now. TODO: Note that it would be
// better to ignore the symbol here and only add it to the symbol table if
// referenced.
if (!GV->hasInitializer()) {
ELFSym ExternalSym(GV);
ExternalSym.SetBind(ELFSym::STB_GLOBAL);
ExternalSym.SetType(ELFSym::STT_NOTYPE);
ExternalSym.SectionIdx = ELFSection::SHN_UNDEF;
SymbolTable.push_back(ExternalSym);
return;
}
const TargetData *TD = TM.getTargetData();
unsigned Align = TD->getPreferredAlignment(GV);
Constant *CV = GV->getInitializer();
unsigned Size = TD->getTypeAllocSize(CV->getType());
// If this global has a zero initializer, go to .bss or common section.
if (CV->isNullValue() || isa<UndefValue>(CV)) {
// If this global is part of the common block, add it now. Variables are
// part of the common block if they are zero initialized and allowed to be
// merged with other symbols.
if (GV->hasLinkOnceLinkage() || GV->hasWeakLinkage() ||
GV->hasCommonLinkage()) {
ELFSym CommonSym(GV);
// Value for common symbols is the alignment required.
CommonSym.Value = Align;
CommonSym.Size = Size;
CommonSym.SetBind(ELFSym::STB_GLOBAL);
CommonSym.SetType(ELFSym::STT_OBJECT);
CommonSym.SectionIdx = ELFSection::SHN_COMMON;
SymbolTable.push_back(CommonSym);
getSection(S->getName(), ELFSection::SHT_NOBITS,
ELFSection::SHF_WRITE | ELFSection::SHF_ALLOC, 1);
return;
}
// Otherwise, this symbol is part of the .bss section. Emit it now.
// Handle alignment. Ensure section is aligned at least as much as required
// by this symbol.
ELFSection &BSSSection = getBSSSection();
BSSSection.Align = std::max(BSSSection.Align, Align);
// Within the section, emit enough virtual padding to get us to an alignment
// boundary.
if (Align)
BSSSection.Size = (BSSSection.Size + Align - 1) & ~(Align-1);
ELFSym BSSSym(GV);
BSSSym.Value = BSSSection.Size;
BSSSym.Size = Size;
BSSSym.SetType(ELFSym::STT_OBJECT);
switch (GV->getLinkage()) {
default: // weak/linkonce/common handled above
assert(0 && "Unexpected linkage type!");
case GlobalValue::AppendingLinkage: // FIXME: This should be improved!
case GlobalValue::ExternalLinkage:
BSSSym.SetBind(ELFSym::STB_GLOBAL);
break;
case GlobalValue::InternalLinkage:
BSSSym.SetBind(ELFSym::STB_LOCAL);
break;
}
// Set the idx of the .bss section
BSSSym.SectionIdx = BSSSection.SectionIdx;
if (!GV->hasPrivateLinkage())
SymbolTable.push_back(BSSSym);
// Reserve space in the .bss section for this symbol.
BSSSection.Size += Size;
return;
}
/// Emit the Global symbol to the right ELF section
ELFSym GblSym(GV);
GblSym.Size = Size;
GblSym.SetType(ELFSym::STT_OBJECT);
GblSym.SetBind(ELFSym::STB_GLOBAL);
unsigned Flags = S->getFlags();
unsigned SectType = ELFSection::SHT_PROGBITS;
unsigned SHdrFlags = ELFSection::SHF_ALLOC;
if (Flags & SectionFlags::Code)
SHdrFlags |= ELFSection::SHF_EXECINSTR;
if (Flags & SectionFlags::Writeable)
SHdrFlags |= ELFSection::SHF_WRITE;
if (Flags & SectionFlags::Mergeable)
SHdrFlags |= ELFSection::SHF_MERGE;
if (Flags & SectionFlags::TLS)
SHdrFlags |= ELFSection::SHF_TLS;
if (Flags & SectionFlags::Strings)
SHdrFlags |= ELFSection::SHF_STRINGS;
// Remove tab from section name prefix
std::string SectionName(S->getName());
size_t Pos = SectionName.find("\t");
if (Pos != std::string::npos)
SectionName.erase(Pos, 1);
// The section alignment should be bound to the element with
// the largest alignment
ELFSection &ElfS = getSection(SectionName, SectType, SHdrFlags);
GblSym.SectionIdx = ElfS.SectionIdx;
if (Align > ElfS.Align)
ElfS.Align = Align;
DataBuffer &GblCstBuf = ElfS.SectionData;
OutputBuffer GblCstTab(GblCstBuf, is64Bit, isLittleEndian);
// S.Value should contain the symbol index inside the section,
// and all symbols should start on their required alignment boundary
GblSym.Value = (GblCstBuf.size() + (Align-1)) & (-Align);
GblCstBuf.insert(GblCstBuf.end(), GblSym.Value-GblCstBuf.size(), 0);
// Emit the constant symbol to its section
EmitGlobalConstant(CV, GblCstTab);
SymbolTable.push_back(GblSym);
}
void ELFWriter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
OutputBuffer &GblCstTab) {
// Print the fields in successive locations. Pad to align if needed!
const TargetData *TD = TM.getTargetData();
unsigned Size = TD->getTypeAllocSize(CVS->getType());
const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
uint64_t sizeSoFar = 0;
for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
const Constant* field = CVS->getOperand(i);
// Check if padding is needed and insert one or more 0s.
uint64_t fieldSize = TD->getTypeAllocSize(field->getType());
uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
- cvsLayout->getElementOffset(i)) - fieldSize;
sizeSoFar += fieldSize + padSize;
// Now print the actual field value.
EmitGlobalConstant(field, GblCstTab);
// Insert padding - this may include padding to increase the size of the
// current field up to the ABI size (if the struct is not packed) as well
// as padding to ensure that the next field starts at the right offset.
for (unsigned p=0; p < padSize; p++)
GblCstTab.outbyte(0);
}
assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
"Layout of constant struct may be incorrect!");
}
void ELFWriter::EmitGlobalConstant(const Constant *CV, OutputBuffer &GblCstTab) {
const TargetData *TD = TM.getTargetData();
unsigned Size = TD->getTypeAllocSize(CV->getType());
if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
if (CVA->isString()) {
std::string GblStr = CVA->getAsString();
GblCstTab.outstring(GblStr, GblStr.length());
} else { // Not a string. Print the values in successive locations
for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
EmitGlobalConstant(CVA->getOperand(i), GblCstTab);
}
return;
} else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
EmitGlobalConstantStruct(CVS, GblCstTab);
return;
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
if (CFP->getType() == Type::DoubleTy)
GblCstTab.outxword(Val);
else if (CFP->getType() == Type::FloatTy)
GblCstTab.outword(Val);
else if (CFP->getType() == Type::X86_FP80Ty) {
assert(0 && "X86_FP80Ty global emission not implemented");
} else if (CFP->getType() == Type::PPC_FP128Ty)
assert(0 && "PPC_FP128Ty global emission not implemented");
return;
} else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
if (Size == 4)
GblCstTab.outword(CI->getZExtValue());
else if (Size == 8)
GblCstTab.outxword(CI->getZExtValue());
else
assert(0 && "LargeInt global emission not implemented");
return;
} else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
const VectorType *PTy = CP->getType();
for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
EmitGlobalConstant(CP->getOperand(I), GblCstTab);
return;
}
assert(0 && "unknown global constant");
}
bool ELFWriter::runOnMachineFunction(MachineFunction &MF) {
// Nothing to do here, this is all done through the MCE object above.
return false;
}
/// doFinalization - Now that the module has been completely processed, emit
/// the ELF file to 'O'.
bool ELFWriter::doFinalization(Module &M) {
/// FIXME: This should be removed when moving to BinaryObjects. Since the
/// current ELFCodeEmiter uses CurrBuff, ... it doesn't update S.SectionData
/// vector size for .text sections, so this is a quick dirty fix
ELFSection &TS = getTextSection();
if (TS.Size)
for (unsigned e=0; e<TS.Size; ++e)
TS.SectionData.push_back(TS.SectionData[e]);
// Get .data and .bss section, they should always be present in the binary
getDataSection();
getBSSSection();
// build data, bss and "common" sections.
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I)
EmitGlobal(I);
// Emit non-executable stack note
if (TAI->getNonexecutableStackDirective())
getSection(".note.GNU-stack", ELFSection::SHT_PROGBITS, 0, 1);
// Emit the symbol table now, if non-empty.
EmitSymbolTable();
// Emit the relocation sections.
EmitRelocations();
// Emit the string table for the sections in the ELF file.
EmitSectionTableStringTable();
// Emit the sections to the .o file, and emit the section table for the file.
OutputSectionsAndSectionTable();
// We are done with the abstract symbols.
SectionList.clear();
NumSections = 0;
// Release the name mangler object.
delete Mang; Mang = 0;
return false;
}
/// EmitRelocations - Emit relocations
void ELFWriter::EmitRelocations() {
}
/// EmitSymbol - Write symbol 'Sym' to the symbol table 'SymTabOut'
void ELFWriter::EmitSymbol(OutputBuffer &SymTabOut, ELFSym &Sym) {
if (is64Bit) {
SymTabOut.outword(Sym.NameIdx);
SymTabOut.outbyte(Sym.Info);
SymTabOut.outbyte(Sym.Other);
SymTabOut.outhalf(Sym.SectionIdx);
SymTabOut.outaddr64(Sym.Value);
SymTabOut.outxword(Sym.Size);
} else {
SymTabOut.outword(Sym.NameIdx);
SymTabOut.outaddr32(Sym.Value);
SymTabOut.outword(Sym.Size);
SymTabOut.outbyte(Sym.Info);
SymTabOut.outbyte(Sym.Other);
SymTabOut.outhalf(Sym.SectionIdx);
}
}
/// EmitSectionHeader - Write section 'Section' header in 'TableOut'
/// Section Header Table
void ELFWriter::EmitSectionHeader(OutputBuffer &TableOut, const ELFSection &S) {
TableOut.outword(S.NameIdx);
TableOut.outword(S.Type);
if (is64Bit) {
TableOut.outxword(S.Flags);
TableOut.outaddr(S.Addr);
TableOut.outaddr(S.Offset);
TableOut.outxword(S.Size);
TableOut.outword(S.Link);
TableOut.outword(S.Info);
TableOut.outxword(S.Align);
TableOut.outxword(S.EntSize);
} else {
TableOut.outword(S.Flags);
TableOut.outaddr(S.Addr);
TableOut.outaddr(S.Offset);
TableOut.outword(S.Size);
TableOut.outword(S.Link);
TableOut.outword(S.Info);
TableOut.outword(S.Align);
TableOut.outword(S.EntSize);
}
}
/// EmitSymbolTable - If the current symbol table is non-empty, emit the string
/// table for it and then the symbol table itself.
void ELFWriter::EmitSymbolTable() {
if (SymbolTable.size() == 1) return; // Only the null entry.
// FIXME: compact all local symbols to the start of the symtab.
unsigned FirstNonLocalSymbol = 1;
ELFSection &StrTab = getStringTableSection();
DataBuffer &StrTabBuf = StrTab.SectionData;
OutputBuffer StrTabOut(StrTabBuf, is64Bit, isLittleEndian);
// Set the zero'th symbol to a null byte, as required.
StrTabOut.outbyte(0);
unsigned Index = 1;
for (unsigned i = 1, e = SymbolTable.size(); i != e; ++i) {
// Use the name mangler to uniquify the LLVM symbol.
std::string Name = Mang->getValueName(SymbolTable[i].GV);
if (Name.empty()) {
SymbolTable[i].NameIdx = 0;
} else {
SymbolTable[i].NameIdx = Index;
// Add the name to the output buffer, including the null terminator.
StrTabBuf.insert(StrTabBuf.end(), Name.begin(), Name.end());
// Add a null terminator.
StrTabBuf.push_back(0);
// Keep track of the number of bytes emitted to this section.
Index += Name.size()+1;
}
}
assert(Index == StrTabBuf.size());
StrTab.Size = Index;
// Now that we have emitted the string table and know the offset into the
// string table of each symbol, emit the symbol table itself.
ELFSection &SymTab = getSymbolTableSection();
SymTab.Align = is64Bit ? 8 : 4;
SymTab.Link = StrTab.SectionIdx; // Section Index of .strtab.
SymTab.Info = FirstNonLocalSymbol; // First non-STB_LOCAL symbol.
// Size of each symtab entry.
SymTab.EntSize = ELFSym::getEntrySize(is64Bit);
DataBuffer &SymTabBuf = SymTab.SectionData;
OutputBuffer SymTabOut(SymTabBuf, is64Bit, isLittleEndian);
for (unsigned i = 0, e = SymbolTable.size(); i != e; ++i)
EmitSymbol(SymTabOut, SymbolTable[i]);
SymTab.Size = SymTabBuf.size();
}
/// EmitSectionTableStringTable - This method adds and emits a section for the
/// ELF Section Table string table: the string table that holds all of the
/// section names.
void ELFWriter::EmitSectionTableStringTable() {
// First step: add the section for the string table to the list of sections:
ELFSection &SHStrTab = getSection(".shstrtab", ELFSection::SHT_STRTAB, 0);
// Now that we know which section number is the .shstrtab section, update the
// e_shstrndx entry in the ELF header.
OutputBuffer FHOut(FileHeader, is64Bit, isLittleEndian);
FHOut.fixhalf(SHStrTab.SectionIdx, ELFHdr_e_shstrndx_Offset);
// Set the NameIdx of each section in the string table and emit the bytes for
// the string table.
unsigned Index = 0;
DataBuffer &Buf = SHStrTab.SectionData;
for (std::list<ELFSection>::iterator I = SectionList.begin(),
E = SectionList.end(); I != E; ++I) {
// Set the index into the table. Note if we have lots of entries with
// common suffixes, we could memoize them here if we cared.
I->NameIdx = Index;
// Add the name to the output buffer, including the null terminator.
Buf.insert(Buf.end(), I->Name.begin(), I->Name.end());
// Add a null terminator.
Buf.push_back(0);
// Keep track of the number of bytes emitted to this section.
Index += I->Name.size()+1;
}
// Set the size of .shstrtab now that we know what it is.
assert(Index == Buf.size());
SHStrTab.Size = Index;
}
/// OutputSectionsAndSectionTable - Now that we have constructed the file header
/// and all of the sections, emit these to the ostream destination and emit the
/// SectionTable.
void ELFWriter::OutputSectionsAndSectionTable() {
// Pass #1: Compute the file offset for each section.
size_t FileOff = FileHeader.size(); // File header first.
// Adjust alignment of all section if needed.
for (std::list<ELFSection>::iterator I = SectionList.begin(),
E = SectionList.end(); I != E; ++I) {
// Section idx 0 has 0 offset
if (!I->SectionIdx)
continue;
if (!I->SectionData.size()) {
I->Offset = FileOff;
continue;
}
// Update Section size
if (!I->Size)
I->Size = I->SectionData.size();
// Align FileOff to whatever the alignment restrictions of the section are.
if (I->Align)
FileOff = (FileOff+I->Align-1) & ~(I->Align-1);
I->Offset = FileOff;
FileOff += I->Size;
}
// Align Section Header.
unsigned TableAlign = is64Bit ? 8 : 4;
FileOff = (FileOff+TableAlign-1) & ~(TableAlign-1);
// Now that we know where all of the sections will be emitted, set the e_shnum
// entry in the ELF header.
OutputBuffer FHOut(FileHeader, is64Bit, isLittleEndian);
FHOut.fixhalf(NumSections, ELFHdr_e_shnum_Offset);
// Now that we know the offset in the file of the section table, update the
// e_shoff address in the ELF header.
FHOut.fixaddr(FileOff, ELFHdr_e_shoff_Offset);
// Now that we know all of the data in the file header, emit it and all of the
// sections!
O.write((char*)&FileHeader[0], FileHeader.size());
FileOff = FileHeader.size();
DataBuffer().swap(FileHeader);
DataBuffer Table;
OutputBuffer TableOut(Table, is64Bit, isLittleEndian);
// Emit all of the section data and build the section table itself.
while (!SectionList.empty()) {
const ELFSection &S = *SectionList.begin();
DOUT << "SectionIdx: " << S.SectionIdx << ", Name: " << S.Name
<< ", Size: " << S.Size << ", Offset: " << S.Offset
<< ", SectionData Size: " << S.SectionData.size() << "\n";
// Align FileOff to whatever the alignment restrictions of the section are.
if (S.Align) {
for (size_t NewFileOff = (FileOff+S.Align-1) & ~(S.Align-1);
FileOff != NewFileOff; ++FileOff)
O << (char)0xAB;
}
if (S.SectionData.size()) {
O.write((char*)&S.SectionData[0], S.Size);
FileOff += S.Size;
}
EmitSectionHeader(TableOut, S);
SectionList.pop_front();
}
// Align output for the section table.
for (size_t NewFileOff = (FileOff+TableAlign-1) & ~(TableAlign-1);
FileOff != NewFileOff; ++FileOff)
O << (char)0xAB;
// Emit the section table itself.
O.write((char*)&Table[0], Table.size());
}