llvm-6502/include/llvm/ADT/ValueMap.h

374 lines
12 KiB
C
Raw Normal View History

//===- llvm/ADT/ValueMap.h - Safe map from Values to data -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ValueMap class. ValueMap maps Value* or any subclass
// to an arbitrary other type. It provides the DenseMap interface but updates
// itself to remain safe when keys are RAUWed or deleted. By default, when a
// key is RAUWed from V1 to V2, the old mapping V1->target is removed, and a new
// mapping V2->target is added. If V2 already existed, its old target is
// overwritten. When a key is deleted, its mapping is removed.
//
// You can override a ValueMap's Config parameter to control exactly what
// happens on RAUW and destruction and to get called back on each event. It's
// legal to call back into the ValueMap from a Config's callbacks. Config
// parameters should inherit from ValueMapConfig<KeyT> to get default
// implementations of all the methods ValueMap uses. See ValueMapConfig for
// documentation of the functions you can override.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_VALUEMAP_H
#define LLVM_ADT_VALUEMAP_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Support/type_traits.h"
#include "llvm/System/Mutex.h"
#include <iterator>
namespace llvm {
template<typename KeyT, typename ValueT, typename Config, typename ValueInfoT>
class ValueMapCallbackVH;
template<typename DenseMapT, typename KeyT>
class ValueMapIterator;
template<typename DenseMapT, typename KeyT>
class ValueMapConstIterator;
/// This class defines the default behavior for configurable aspects of
/// ValueMap<>. User Configs should inherit from this class to be as compatible
/// as possible with future versions of ValueMap.
template<typename KeyT>
struct ValueMapConfig {
/// If FollowRAUW is true, the ValueMap will update mappings on RAUW. If it's
/// false, the ValueMap will leave the original mapping in place.
enum { FollowRAUW = true };
// All methods will be called with a first argument of type ExtraData. The
// default implementations in this class take a templated first argument so
// that users' subclasses can use any type they want without having to
// override all the defaults.
struct ExtraData {};
template<typename ExtraDataT>
static void onRAUW(const ExtraDataT & /*Data*/, KeyT /*Old*/, KeyT /*New*/) {}
template<typename ExtraDataT>
static void onDelete(const ExtraDataT &/*Data*/, KeyT /*Old*/) {}
/// Returns a mutex that should be acquired around any changes to the map.
/// This is only acquired from the CallbackVH (and held around calls to onRAUW
/// and onDelete) and not inside other ValueMap methods. NULL means that no
/// mutex is necessary.
template<typename ExtraDataT>
static sys::Mutex *getMutex(const ExtraDataT &/*Data*/) { return NULL; }
};
/// See the file comment.
template<typename KeyT, typename ValueT, typename Config = ValueMapConfig<KeyT>,
typename ValueInfoT = DenseMapInfo<ValueT> >
class ValueMap {
friend class ValueMapCallbackVH<KeyT, ValueT, Config, ValueInfoT>;
typedef ValueMapCallbackVH<KeyT, ValueT, Config, ValueInfoT> ValueMapCVH;
typedef DenseMap<ValueMapCVH, ValueT, DenseMapInfo<ValueMapCVH>,
ValueInfoT> MapT;
typedef typename Config::ExtraData ExtraData;
MapT Map;
ExtraData Data;
ValueMap(const ValueMap&); // DO NOT IMPLEMENT
public:
typedef KeyT key_type;
typedef ValueT mapped_type;
typedef std::pair<KeyT, ValueT> value_type;
explicit ValueMap(unsigned NumInitBuckets = 64)
: Map(NumInitBuckets), Data() {}
explicit ValueMap(const ExtraData &Data, unsigned NumInitBuckets = 64)
: Map(NumInitBuckets), Data(Data) {}
~ValueMap() {}
typedef ValueMapIterator<MapT, KeyT> iterator;
typedef ValueMapConstIterator<MapT, KeyT> const_iterator;
inline iterator begin() { return iterator(Map.begin()); }
inline iterator end() { return iterator(Map.end()); }
inline const_iterator begin() const { return const_iterator(Map.begin()); }
inline const_iterator end() const { return const_iterator(Map.end()); }
bool empty() const { return Map.empty(); }
unsigned size() const { return Map.size(); }
/// Grow the map so that it has at least Size buckets. Does not shrink
void resize(size_t Size) { Map.resize(Size); }
void clear() { Map.clear(); }
/// count - Return true if the specified key is in the map.
bool count(const KeyT &Val) const {
return Map.count(Wrap(Val));
}
iterator find(const KeyT &Val) {
return iterator(Map.find(Wrap(Val)));
}
const_iterator find(const KeyT &Val) const {
return const_iterator(Map.find(Wrap(Val)));
}
/// lookup - Return the entry for the specified key, or a default
/// constructed value if no such entry exists.
ValueT lookup(const KeyT &Val) const {
return Map.lookup(Wrap(Val));
}
// Inserts key,value pair into the map if the key isn't already in the map.
// If the key is already in the map, it returns false and doesn't update the
// value.
std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
std::pair<typename MapT::iterator, bool> map_result=
Map.insert(std::make_pair(Wrap(KV.first), KV.second));
return std::make_pair(iterator(map_result.first), map_result.second);
}
/// insert - Range insertion of pairs.
template<typename InputIt>
void insert(InputIt I, InputIt E) {
for (; I != E; ++I)
insert(*I);
}
bool erase(const KeyT &Val) {
return Map.erase(Wrap(Val));
}
bool erase(iterator I) {
return Map.erase(I.base());
}
value_type& FindAndConstruct(const KeyT &Key) {
return Map.FindAndConstruct(Wrap(Key));
}
ValueT &operator[](const KeyT &Key) {
return Map[Wrap(Key)];
}
ValueMap& operator=(const ValueMap& Other) {
Map = Other.Map;
Data = Other.Data;
return *this;
}
/// isPointerIntoBucketsArray - Return true if the specified pointer points
/// somewhere into the ValueMap's array of buckets (i.e. either to a key or
/// value in the ValueMap).
bool isPointerIntoBucketsArray(const void *Ptr) const {
return Map.isPointerIntoBucketsArray(Ptr);
}
/// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
/// array. In conjunction with the previous method, this can be used to
/// determine whether an insertion caused the ValueMap to reallocate.
const void *getPointerIntoBucketsArray() const {
return Map.getPointerIntoBucketsArray();
}
private:
// Takes a key being looked up in the map and wraps it into a
// ValueMapCallbackVH, the actual key type of the map. We use a helper
// function because ValueMapCVH is constructed with a second parameter.
ValueMapCVH Wrap(KeyT key) const {
// The only way the resulting CallbackVH could try to modify *this (making
// the const_cast incorrect) is if it gets inserted into the map. But then
// this function must have been called from a non-const method, making the
// const_cast ok.
return ValueMapCVH(key, const_cast<ValueMap*>(this));
}
};
// This CallbackVH updates its ValueMap when the contained Value changes,
// according to the user's preferences expressed through the Config object.
template<typename KeyT, typename ValueT, typename Config, typename ValueInfoT>
class ValueMapCallbackVH : public CallbackVH {
friend class ValueMap<KeyT, ValueT, Config, ValueInfoT>;
friend struct DenseMapInfo<ValueMapCallbackVH>;
typedef ValueMap<KeyT, ValueT, Config, ValueInfoT> ValueMapT;
typedef typename llvm::remove_pointer<KeyT>::type KeySansPointerT;
ValueMapT *Map;
ValueMapCallbackVH(KeyT Key, ValueMapT *Map)
: CallbackVH(const_cast<Value*>(static_cast<const Value*>(Key))),
Map(Map) {}
public:
KeyT Unwrap() const { return cast_or_null<KeySansPointerT>(getValPtr()); }
virtual void deleted() {
// Make a copy that won't get changed even when *this is destroyed.
ValueMapCallbackVH Copy(*this);
sys::Mutex *M = Config::getMutex(Copy.Map->Data);
if (M)
M->acquire();
Config::onDelete(Copy.Map->Data, Copy.Unwrap()); // May destroy *this.
Copy.Map->Map.erase(Copy); // Definitely destroys *this.
if (M)
M->release();
}
virtual void allUsesReplacedWith(Value *new_key) {
assert(isa<KeySansPointerT>(new_key) &&
"Invalid RAUW on key of ValueMap<>");
// Make a copy that won't get changed even when *this is destroyed.
ValueMapCallbackVH Copy(*this);
sys::Mutex *M = Config::getMutex(Copy.Map->Data);
if (M)
M->acquire();
KeyT typed_new_key = cast<KeySansPointerT>(new_key);
// Can destroy *this:
Config::onRAUW(Copy.Map->Data, Copy.Unwrap(), typed_new_key);
if (Config::FollowRAUW) {
typename ValueMapT::MapT::iterator I = Copy.Map->Map.find(Copy);
// I could == Copy.Map->Map.end() if the onRAUW callback already
// removed the old mapping.
if (I != Copy.Map->Map.end()) {
ValueT Target(I->second);
Copy.Map->Map.erase(I); // Definitely destroys *this.
Copy.Map->insert(std::make_pair(typed_new_key, Target));
}
}
if (M)
M->release();
}
};
template<typename KeyT, typename ValueT, typename Config, typename ValueInfoT>
struct DenseMapInfo<ValueMapCallbackVH<KeyT, ValueT, Config, ValueInfoT> > {
typedef ValueMapCallbackVH<KeyT, ValueT, Config, ValueInfoT> VH;
typedef DenseMapInfo<KeyT> PointerInfo;
static inline VH getEmptyKey() {
return VH(PointerInfo::getEmptyKey(), NULL);
}
static inline VH getTombstoneKey() {
return VH(PointerInfo::getTombstoneKey(), NULL);
}
static unsigned getHashValue(const VH &Val) {
return PointerInfo::getHashValue(Val.Unwrap());
}
static bool isEqual(const VH &LHS, const VH &RHS) {
return LHS == RHS;
}
};
template<typename DenseMapT, typename KeyT>
class ValueMapIterator :
public std::iterator<std::forward_iterator_tag,
std::pair<KeyT, typename DenseMapT::mapped_type>,
ptrdiff_t> {
typedef typename DenseMapT::iterator BaseT;
typedef typename DenseMapT::mapped_type ValueT;
BaseT I;
public:
ValueMapIterator() : I() {}
ValueMapIterator(BaseT I) : I(I) {}
BaseT base() const { return I; }
struct ValueTypeProxy {
const KeyT first;
ValueT& second;
ValueTypeProxy *operator->() { return this; }
operator std::pair<KeyT, ValueT>() const {
return std::make_pair(first, second);
}
};
ValueTypeProxy operator*() const {
ValueTypeProxy Result = {I->first.Unwrap(), I->second};
return Result;
}
ValueTypeProxy operator->() const {
return operator*();
}
bool operator==(const ValueMapIterator &RHS) const {
return I == RHS.I;
}
bool operator!=(const ValueMapIterator &RHS) const {
return I != RHS.I;
}
inline ValueMapIterator& operator++() { // Preincrement
++I;
return *this;
}
ValueMapIterator operator++(int) { // Postincrement
ValueMapIterator tmp = *this; ++*this; return tmp;
}
};
template<typename DenseMapT, typename KeyT>
class ValueMapConstIterator :
public std::iterator<std::forward_iterator_tag,
std::pair<KeyT, typename DenseMapT::mapped_type>,
ptrdiff_t> {
typedef typename DenseMapT::const_iterator BaseT;
typedef typename DenseMapT::mapped_type ValueT;
BaseT I;
public:
ValueMapConstIterator() : I() {}
ValueMapConstIterator(BaseT I) : I(I) {}
ValueMapConstIterator(ValueMapIterator<DenseMapT, KeyT> Other)
: I(Other.base()) {}
BaseT base() const { return I; }
struct ValueTypeProxy {
const KeyT first;
const ValueT& second;
ValueTypeProxy *operator->() { return this; }
operator std::pair<KeyT, ValueT>() const {
return std::make_pair(first, second);
}
};
ValueTypeProxy operator*() const {
ValueTypeProxy Result = {I->first.Unwrap(), I->second};
return Result;
}
ValueTypeProxy operator->() const {
return operator*();
}
bool operator==(const ValueMapConstIterator &RHS) const {
return I == RHS.I;
}
bool operator!=(const ValueMapConstIterator &RHS) const {
return I != RHS.I;
}
inline ValueMapConstIterator& operator++() { // Preincrement
++I;
return *this;
}
ValueMapConstIterator operator++(int) { // Postincrement
ValueMapConstIterator tmp = *this; ++*this; return tmp;
}
};
} // end namespace llvm
#endif