llvm-6502/lib/Target/ARM/ARMISelDAGToDAG.cpp

887 lines
30 KiB
C++
Raw Normal View History

//===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines an instruction selector for the ARM target.
//
//===----------------------------------------------------------------------===//
#include "ARM.h"
#include "ARMTargetMachine.h"
#include "llvm/CallingConv.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Constants.h"
#include "llvm/Intrinsics.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Support/Debug.h"
#include <iostream>
#include <vector>
using namespace llvm;
namespace {
class ARMTargetLowering : public TargetLowering {
int VarArgsFrameIndex; // FrameIndex for start of varargs area.
public:
ARMTargetLowering(TargetMachine &TM);
virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
virtual const char *getTargetNodeName(unsigned Opcode) const;
};
}
ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
: TargetLowering(TM) {
addRegisterClass(MVT::i32, ARM::IntRegsRegisterClass);
addRegisterClass(MVT::f32, ARM::FPRegsRegisterClass);
addRegisterClass(MVT::f64, ARM::DFPRegsRegisterClass);
setLoadXAction(ISD::EXTLOAD, MVT::f32, Expand);
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::RET, MVT::Other, Custom);
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
setOperationAction(ISD::SELECT, MVT::i32, Expand);
setOperationAction(ISD::SETCC, MVT::i32, Expand);
setOperationAction(ISD::SETCC, MVT::f32, Expand);
setOperationAction(ISD::SETCC, MVT::f64, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
setOperationAction(ISD::BR_CC, MVT::i32, Custom);
setOperationAction(ISD::BR_CC, MVT::f32, Custom);
setOperationAction(ISD::BR_CC, MVT::f64, Custom);
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
setOperationAction(ISD::VASTART, MVT::Other, Custom);
setOperationAction(ISD::VAEND, MVT::Other, Expand);
setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
setSchedulingPreference(SchedulingForRegPressure);
computeRegisterProperties();
}
namespace llvm {
namespace ARMISD {
enum NodeType {
// Start the numbering where the builting ops and target ops leave off.
FIRST_NUMBER = ISD::BUILTIN_OP_END+ARM::INSTRUCTION_LIST_END,
/// CALL - A direct function call.
CALL,
/// Return with a flag operand.
RET_FLAG,
CMP,
SELECT,
BR,
FSITOS,
FTOSIS,
FSITOD,
FTOSID,
FUITOS,
FTOUIS,
FUITOD,
FTOUID,
FMRRD,
FMDRR,
FMSTAT
};
}
}
/// DAGFPCCToARMCC - Convert a DAG fp condition code to an ARM CC
// Unordered = !N & !Z & C & V = V
// Ordered = N | Z | !C | !V = N | Z | !V
static ARMCC::CondCodes DAGFPCCToARMCC(ISD::CondCode CC) {
switch (CC) {
default:
assert(0 && "Unknown fp condition code!");
// SETOEQ = (N | Z | !V) & Z = Z = EQ
case ISD::SETEQ:
case ISD::SETOEQ: return ARMCC::EQ;
// SETOGT = (N | Z | !V) & !N & !Z = !V &!N &!Z = (N = V) & !Z = GT
case ISD::SETGT:
case ISD::SETOGT: return ARMCC::GT;
// SETOGE = (N | Z | !V) & !N = (Z | !V) & !N = !V & !N = GE
case ISD::SETGE:
case ISD::SETOGE: return ARMCC::GE;
// SETOLT = (N | Z | !V) & N = N = MI
case ISD::SETLT:
case ISD::SETOLT: return ARMCC::MI;
// SETOLE = (N | Z | !V) & (N | Z) = N | Z = !C | Z = LS
case ISD::SETLE:
case ISD::SETOLE: return ARMCC::LS;
// SETONE = (N | Z | !V) & !Z = (N | !V) & Z = !V & Z = Z = NE
case ISD::SETNE:
case ISD::SETONE: return ARMCC::NE;
// SETO = N | Z | !V = Z | !V = !V = VC
case ISD::SETO: return ARMCC::VC;
// SETUO = V = VS
case ISD::SETUO: return ARMCC::VS;
// SETUEQ = V | Z = ??
// SETUGT = V | (!Z & !N) = !Z & !N = !Z & C = HI
case ISD::SETUGT: return ARMCC::HI;
// SETUGE = V | !N = !N = PL
case ISD::SETUGE: return ARMCC::PL;
// SETULT = V | N = ??
// SETULE = V | Z | N = ??
// SETUNE = V | !Z = !Z = NE
case ISD::SETUNE: return ARMCC::NE;
}
}
/// DAGIntCCToARMCC - Convert a DAG integer condition code to an ARM CC
static ARMCC::CondCodes DAGIntCCToARMCC(ISD::CondCode CC) {
switch (CC) {
default:
assert(0 && "Unknown integer condition code!");
case ISD::SETEQ: return ARMCC::EQ;
case ISD::SETNE: return ARMCC::NE;
case ISD::SETLT: return ARMCC::LT;
case ISD::SETLE: return ARMCC::LE;
case ISD::SETGT: return ARMCC::GT;
case ISD::SETGE: return ARMCC::GE;
case ISD::SETULT: return ARMCC::CC;
case ISD::SETULE: return ARMCC::LS;
case ISD::SETUGT: return ARMCC::HI;
case ISD::SETUGE: return ARMCC::CS;
}
}
const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch (Opcode) {
default: return 0;
case ARMISD::CALL: return "ARMISD::CALL";
case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG";
case ARMISD::SELECT: return "ARMISD::SELECT";
case ARMISD::CMP: return "ARMISD::CMP";
case ARMISD::BR: return "ARMISD::BR";
case ARMISD::FSITOS: return "ARMISD::FSITOS";
case ARMISD::FTOSIS: return "ARMISD::FTOSIS";
case ARMISD::FSITOD: return "ARMISD::FSITOD";
case ARMISD::FTOSID: return "ARMISD::FTOSID";
case ARMISD::FUITOS: return "ARMISD::FUITOS";
case ARMISD::FTOUIS: return "ARMISD::FTOUIS";
case ARMISD::FUITOD: return "ARMISD::FUITOD";
case ARMISD::FTOUID: return "ARMISD::FTOUID";
case ARMISD::FMRRD: return "ARMISD::FMRRD";
case ARMISD::FMDRR: return "ARMISD::FMDRR";
case ARMISD::FMSTAT: return "ARMISD::FMSTAT";
}
}
class ArgumentLayout {
std::vector<bool> is_reg;
std::vector<unsigned> pos;
std::vector<MVT::ValueType> types;
public:
ArgumentLayout(const std::vector<MVT::ValueType> &Types) {
types = Types;
unsigned RegNum = 0;
unsigned StackOffset = 0;
for(std::vector<MVT::ValueType>::const_iterator I = Types.begin();
I != Types.end();
++I) {
MVT::ValueType VT = *I;
assert(VT == MVT::i32 || VT == MVT::f32 || VT == MVT::f64);
unsigned size = MVT::getSizeInBits(VT)/32;
RegNum = ((RegNum + size - 1) / size) * size;
if (RegNum < 4) {
pos.push_back(RegNum);
is_reg.push_back(true);
RegNum += size;
} else {
unsigned bytes = size * 32/8;
StackOffset = ((StackOffset + bytes - 1) / bytes) * bytes;
pos.push_back(StackOffset);
is_reg.push_back(false);
StackOffset += bytes;
}
}
}
unsigned getRegisterNum(unsigned argNum) {
assert(isRegister(argNum));
return pos[argNum];
}
unsigned getOffset(unsigned argNum) {
assert(isOffset(argNum));
return pos[argNum];
}
unsigned isRegister(unsigned argNum) {
assert(argNum < is_reg.size());
return is_reg[argNum];
}
unsigned isOffset(unsigned argNum) {
return !isRegister(argNum);
}
MVT::ValueType getType(unsigned argNum) {
assert(argNum < types.size());
return types[argNum];
}
unsigned getStackSize(void) {
int last = is_reg.size() - 1;
if (last < 0)
return 0;
if (isRegister(last))
return 0;
return getOffset(last) + MVT::getSizeInBits(getType(last))/8;
}
int lastRegArg(void) {
int size = is_reg.size();
int last = 0;
while(last < size && isRegister(last))
last++;
last--;
return last;
}
int lastRegNum(void) {
int l = lastRegArg();
if (l < 0)
return -1;
unsigned r = getRegisterNum(l);
MVT::ValueType t = getType(l);
assert(t == MVT::i32 || t == MVT::f32 || t == MVT::f64);
if (t == MVT::f64)
return r + 1;
return r;
}
};
// This transforms a ISD::CALL node into a
// callseq_star <- ARMISD:CALL <- callseq_end
// chain
static SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG) {
SDOperand Chain = Op.getOperand(0);
unsigned CallConv = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
assert(CallConv == CallingConv::C && "unknown calling convention");
bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
SDOperand Callee = Op.getOperand(4);
unsigned NumOps = (Op.getNumOperands() - 5) / 2;
SDOperand StackPtr = DAG.getRegister(ARM::R13, MVT::i32);
static const unsigned regs[] = {
ARM::R0, ARM::R1, ARM::R2, ARM::R3
};
std::vector<MVT::ValueType> Types;
for (unsigned i = 0; i < NumOps; ++i) {
MVT::ValueType VT = Op.getOperand(5+2*i).getValueType();
Types.push_back(VT);
}
ArgumentLayout Layout(Types);
unsigned NumBytes = Layout.getStackSize();
Chain = DAG.getCALLSEQ_START(Chain,
DAG.getConstant(NumBytes, MVT::i32));
//Build a sequence of stores
std::vector<SDOperand> MemOpChains;
for (unsigned i = Layout.lastRegArg() + 1; i < NumOps; ++i) {
SDOperand Arg = Op.getOperand(5+2*i);
unsigned ArgOffset = Layout.getOffset(i);
SDOperand PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
}
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
&MemOpChains[0], MemOpChains.size());
// If the callee is a GlobalAddress node (quite common, every direct call is)
// turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
// Likewise ExternalSymbol -> TargetExternalSymbol.
assert(Callee.getValueType() == MVT::i32);
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), MVT::i32);
else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
// If this is a direct call, pass the chain and the callee.
assert (Callee.Val);
std::vector<SDOperand> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Build a sequence of copy-to-reg nodes chained together with token chain
// and flag operands which copy the outgoing args into the appropriate regs.
SDOperand InFlag;
for (int i = 0, e = Layout.lastRegArg(); i <= e; ++i) {
SDOperand Arg = Op.getOperand(5+2*i);
unsigned RegNum = Layout.getRegisterNum(i);
unsigned Reg1 = regs[RegNum];
MVT::ValueType VT = Layout.getType(i);
assert(VT == Arg.getValueType());
assert(VT == MVT::i32 || VT == MVT::f32 || VT == MVT::f64);
// Add argument register to the end of the list so that it is known live
// into the call.
Ops.push_back(DAG.getRegister(Reg1, MVT::i32));
if (VT == MVT::f64) {
unsigned Reg2 = regs[RegNum + 1];
SDOperand SDReg1 = DAG.getRegister(Reg1, MVT::i32);
SDOperand SDReg2 = DAG.getRegister(Reg2, MVT::i32);
Ops.push_back(DAG.getRegister(Reg2, MVT::i32));
SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Flag);
SDOperand Ops[] = {Chain, SDReg1, SDReg2, Arg, InFlag};
Chain = DAG.getNode(ARMISD::FMRRD, VTs, Ops, InFlag.Val ? 5 : 4);
} else {
if (VT == MVT::f32)
Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Arg);
Chain = DAG.getCopyToReg(Chain, Reg1, Arg, InFlag);
}
InFlag = Chain.getValue(1);
}
std::vector<MVT::ValueType> NodeTys;
NodeTys.push_back(MVT::Other); // Returns a chain
NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
unsigned CallOpc = ARMISD::CALL;
if (InFlag.Val)
Ops.push_back(InFlag);
Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
InFlag = Chain.getValue(1);
std::vector<SDOperand> ResultVals;
NodeTys.clear();
// If the call has results, copy the values out of the ret val registers.
MVT::ValueType VT = Op.Val->getValueType(0);
if (VT != MVT::Other) {
assert(VT == MVT::i32 || VT == MVT::f32 || VT == MVT::f64);
SDOperand Value1 = DAG.getCopyFromReg(Chain, ARM::R0, MVT::i32, InFlag);
Chain = Value1.getValue(1);
InFlag = Value1.getValue(2);
NodeTys.push_back(VT);
if (VT == MVT::i32) {
ResultVals.push_back(Value1);
if (Op.Val->getValueType(1) == MVT::i32) {
SDOperand Value2 = DAG.getCopyFromReg(Chain, ARM::R1, MVT::i32, InFlag);
Chain = Value2.getValue(1);
ResultVals.push_back(Value2);
NodeTys.push_back(VT);
}
}
if (VT == MVT::f32) {
SDOperand Value = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, Value1);
ResultVals.push_back(Value);
}
if (VT == MVT::f64) {
SDOperand Value2 = DAG.getCopyFromReg(Chain, ARM::R1, MVT::i32, InFlag);
Chain = Value2.getValue(1);
SDOperand Value = DAG.getNode(ARMISD::FMDRR, MVT::f64, Value1, Value2);
ResultVals.push_back(Value);
}
}
Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
DAG.getConstant(NumBytes, MVT::i32));
NodeTys.push_back(MVT::Other);
if (ResultVals.empty())
return Chain;
ResultVals.push_back(Chain);
SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys, &ResultVals[0],
ResultVals.size());
return Res.getValue(Op.ResNo);
}
static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG) {
SDOperand Copy;
SDOperand Chain = Op.getOperand(0);
SDOperand R0 = DAG.getRegister(ARM::R0, MVT::i32);
SDOperand R1 = DAG.getRegister(ARM::R1, MVT::i32);
switch(Op.getNumOperands()) {
default:
assert(0 && "Do not know how to return this many arguments!");
abort();
case 1: {
SDOperand LR = DAG.getRegister(ARM::R14, MVT::i32);
return DAG.getNode(ARMISD::RET_FLAG, MVT::Other, Chain);
}
case 3: {
SDOperand Val = Op.getOperand(1);
assert(Val.getValueType() == MVT::i32 ||
Val.getValueType() == MVT::f32 ||
Val.getValueType() == MVT::f64);
if (Val.getValueType() == MVT::f64) {
SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Flag);
SDOperand Ops[] = {Chain, R0, R1, Val};
Copy = DAG.getNode(ARMISD::FMRRD, VTs, Ops, 4);
} else {
if (Val.getValueType() == MVT::f32)
Val = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Val);
Copy = DAG.getCopyToReg(Chain, R0, Val, SDOperand());
}
if (DAG.getMachineFunction().liveout_empty()) {
DAG.getMachineFunction().addLiveOut(ARM::R0);
if (Val.getValueType() == MVT::f64)
DAG.getMachineFunction().addLiveOut(ARM::R1);
}
break;
}
case 5:
Copy = DAG.getCopyToReg(Chain, ARM::R1, Op.getOperand(3), SDOperand());
Copy = DAG.getCopyToReg(Copy, ARM::R0, Op.getOperand(1), Copy.getValue(1));
// If we haven't noted the R0+R1 are live out, do so now.
if (DAG.getMachineFunction().liveout_empty()) {
DAG.getMachineFunction().addLiveOut(ARM::R0);
DAG.getMachineFunction().addLiveOut(ARM::R1);
}
break;
}
//We must use RET_FLAG instead of BRIND because BRIND doesn't have a flag
return DAG.getNode(ARMISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1));
}
static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
MVT::ValueType PtrVT = Op.getValueType();
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
Constant *C = CP->getConstVal();
SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
return CPI;
}
static SDOperand LowerGlobalAddress(SDOperand Op,
SelectionDAG &DAG) {
GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
int alignment = 2;
SDOperand CPAddr = DAG.getConstantPool(GV, MVT::i32, alignment);
return DAG.getLoad(MVT::i32, DAG.getEntryNode(), CPAddr, NULL, 0);
}
static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
unsigned VarArgsFrameIndex) {
// vastart just stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV->getValue(),
SV->getOffset());
}
static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG,
int &VarArgsFrameIndex) {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
SSARegMap *RegMap = MF.getSSARegMap();
unsigned NumArgs = Op.Val->getNumValues()-1;
SDOperand Root = Op.getOperand(0);
bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
static const unsigned REGS[] = {
ARM::R0, ARM::R1, ARM::R2, ARM::R3
};
std::vector<MVT::ValueType> Types(Op.Val->value_begin(), Op.Val->value_end() - 1);
ArgumentLayout Layout(Types);
std::vector<SDOperand> ArgValues;
for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo) {
MVT::ValueType VT = Types[ArgNo];
SDOperand Value;
if (Layout.isRegister(ArgNo)) {
assert(VT == MVT::i32 || VT == MVT::f32 || VT == MVT::f64);
unsigned RegNum = Layout.getRegisterNum(ArgNo);
unsigned Reg1 = REGS[RegNum];
unsigned VReg1 = RegMap->createVirtualRegister(&ARM::IntRegsRegClass);
SDOperand Value1 = DAG.getCopyFromReg(Root, VReg1, MVT::i32);
MF.addLiveIn(Reg1, VReg1);
if (VT == MVT::f64) {
unsigned Reg2 = REGS[RegNum + 1];
unsigned VReg2 = RegMap->createVirtualRegister(&ARM::IntRegsRegClass);
SDOperand Value2 = DAG.getCopyFromReg(Root, VReg2, MVT::i32);
MF.addLiveIn(Reg2, VReg2);
Value = DAG.getNode(ARMISD::FMDRR, MVT::f64, Value1, Value2);
} else {
Value = Value1;
if (VT == MVT::f32)
Value = DAG.getNode(ISD::BIT_CONVERT, VT, Value);
}
} else {
// If the argument is actually used, emit a load from the right stack
// slot.
if (!Op.Val->hasNUsesOfValue(0, ArgNo)) {
unsigned Offset = Layout.getOffset(ArgNo);
unsigned Size = MVT::getSizeInBits(VT)/8;
int FI = MFI->CreateFixedObject(Size, Offset);
SDOperand FIN = DAG.getFrameIndex(FI, VT);
Value = DAG.getLoad(VT, Root, FIN, NULL, 0);
} else {
Value = DAG.getNode(ISD::UNDEF, VT);
}
}
ArgValues.push_back(Value);
}
unsigned NextRegNum = Layout.lastRegNum() + 1;
if (isVarArg) {
//If this function is vararg we must store the remaing
//registers so that they can be acessed with va_start
VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(MVT::i32)/8,
-16 + NextRegNum * 4);
SmallVector<SDOperand, 4> MemOps;
for (unsigned RegNo = NextRegNum; RegNo < 4; ++RegNo) {
int RegOffset = - (4 - RegNo) * 4;
int FI = MFI->CreateFixedObject(MVT::getSizeInBits(MVT::i32)/8,
RegOffset);
SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
unsigned VReg = RegMap->createVirtualRegister(&ARM::IntRegsRegClass);
MF.addLiveIn(REGS[RegNo], VReg);
SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i32);
SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
MemOps.push_back(Store);
}
Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
}
ArgValues.push_back(Root);
// Return the new list of results.
std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
Op.Val->value_end());
return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
}
static SDOperand GetCMP(ISD::CondCode CC, SDOperand LHS, SDOperand RHS,
SelectionDAG &DAG) {
MVT::ValueType vt = LHS.getValueType();
assert(vt == MVT::i32 || vt == MVT::f32 || vt == MVT::f64);
SDOperand Cmp = DAG.getNode(ARMISD::CMP, MVT::Flag, LHS, RHS);
if (vt != MVT::i32)
Cmp = DAG.getNode(ARMISD::FMSTAT, MVT::Flag, Cmp);
return Cmp;
}
static SDOperand GetARMCC(ISD::CondCode CC, MVT::ValueType vt,
SelectionDAG &DAG) {
assert(vt == MVT::i32 || vt == MVT::f32 || vt == MVT::f64);
if (vt == MVT::i32)
return DAG.getConstant(DAGIntCCToARMCC(CC), MVT::i32);
else
return DAG.getConstant(DAGFPCCToARMCC(CC), MVT::i32);
}
static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
SDOperand LHS = Op.getOperand(0);
SDOperand RHS = Op.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
SDOperand TrueVal = Op.getOperand(2);
SDOperand FalseVal = Op.getOperand(3);
SDOperand Cmp = GetCMP(CC, LHS, RHS, DAG);
SDOperand ARMCC = GetARMCC(CC, LHS.getValueType(), DAG);
return DAG.getNode(ARMISD::SELECT, MVT::i32, TrueVal, FalseVal, ARMCC, Cmp);
}
static SDOperand LowerBR_CC(SDOperand Op, SelectionDAG &DAG) {
SDOperand Chain = Op.getOperand(0);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
SDOperand LHS = Op.getOperand(2);
SDOperand RHS = Op.getOperand(3);
SDOperand Dest = Op.getOperand(4);
SDOperand Cmp = GetCMP(CC, LHS, RHS, DAG);
SDOperand ARMCC = GetARMCC(CC, LHS.getValueType(), DAG);
return DAG.getNode(ARMISD::BR, MVT::Other, Chain, Dest, ARMCC, Cmp);
}
static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
SDOperand IntVal = Op.getOperand(0);
assert(IntVal.getValueType() == MVT::i32);
MVT::ValueType vt = Op.getValueType();
assert(vt == MVT::f32 ||
vt == MVT::f64);
SDOperand Tmp = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, IntVal);
ARMISD::NodeType op = vt == MVT::f32 ? ARMISD::FSITOS : ARMISD::FSITOD;
return DAG.getNode(op, vt, Tmp);
}
static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
assert(Op.getValueType() == MVT::i32);
SDOperand FloatVal = Op.getOperand(0);
MVT::ValueType vt = FloatVal.getValueType();
assert(vt == MVT::f32 || vt == MVT::f64);
ARMISD::NodeType op = vt == MVT::f32 ? ARMISD::FTOSIS : ARMISD::FTOSID;
SDOperand Tmp = DAG.getNode(op, MVT::f32, FloatVal);
return DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Tmp);
}
static SDOperand LowerUINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
SDOperand IntVal = Op.getOperand(0);
assert(IntVal.getValueType() == MVT::i32);
MVT::ValueType vt = Op.getValueType();
assert(vt == MVT::f32 ||
vt == MVT::f64);
SDOperand Tmp = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, IntVal);
ARMISD::NodeType op = vt == MVT::f32 ? ARMISD::FUITOS : ARMISD::FUITOD;
return DAG.getNode(op, vt, Tmp);
}
static SDOperand LowerFP_TO_UINT(SDOperand Op, SelectionDAG &DAG) {
assert(Op.getValueType() == MVT::i32);
SDOperand FloatVal = Op.getOperand(0);
MVT::ValueType vt = FloatVal.getValueType();
assert(vt == MVT::f32 || vt == MVT::f64);
ARMISD::NodeType op = vt == MVT::f32 ? ARMISD::FTOUIS : ARMISD::FTOUID;
SDOperand Tmp = DAG.getNode(op, MVT::f32, FloatVal);
return DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Tmp);
}
SDOperand ARMTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
switch (Op.getOpcode()) {
default:
assert(0 && "Should not custom lower this!");
abort();
case ISD::ConstantPool:
return LowerConstantPool(Op, DAG);
case ISD::GlobalAddress:
return LowerGlobalAddress(Op, DAG);
case ISD::FP_TO_SINT:
return LowerFP_TO_SINT(Op, DAG);
case ISD::SINT_TO_FP:
return LowerSINT_TO_FP(Op, DAG);
case ISD::FP_TO_UINT:
return LowerFP_TO_UINT(Op, DAG);
case ISD::UINT_TO_FP:
return LowerUINT_TO_FP(Op, DAG);
case ISD::FORMAL_ARGUMENTS:
return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex);
case ISD::CALL:
return LowerCALL(Op, DAG);
case ISD::RET:
return LowerRET(Op, DAG);
case ISD::SELECT_CC:
return LowerSELECT_CC(Op, DAG);
case ISD::BR_CC:
return LowerBR_CC(Op, DAG);
case ISD::VASTART:
return LowerVASTART(Op, DAG, VarArgsFrameIndex);
}
}
//===----------------------------------------------------------------------===//
// Instruction Selector Implementation
//===----------------------------------------------------------------------===//
//===--------------------------------------------------------------------===//
/// ARMDAGToDAGISel - ARM specific code to select ARM machine
/// instructions for SelectionDAG operations.
///
namespace {
class ARMDAGToDAGISel : public SelectionDAGISel {
ARMTargetLowering Lowering;
public:
ARMDAGToDAGISel(TargetMachine &TM)
: SelectionDAGISel(Lowering), Lowering(TM) {
}
SDNode *Select(SDOperand Op);
virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
bool SelectAddrRegImm(SDOperand N, SDOperand &Offset, SDOperand &Base);
bool SelectAddrMode1(SDOperand N, SDOperand &Arg, SDOperand &Shift,
SDOperand &ShiftType);
// Include the pieces autogenerated from the target description.
#include "ARMGenDAGISel.inc"
};
void ARMDAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
DEBUG(BB->dump());
DAG.setRoot(SelectRoot(DAG.getRoot()));
DAG.RemoveDeadNodes();
ScheduleAndEmitDAG(DAG);
}
static bool isInt12Immediate(SDNode *N, short &Imm) {
if (N->getOpcode() != ISD::Constant)
return false;
int32_t t = cast<ConstantSDNode>(N)->getValue();
int max = 1<<12;
int min = -max;
if (t > min && t < max) {
Imm = t;
return true;
}
else
return false;
}
static bool isInt12Immediate(SDOperand Op, short &Imm) {
return isInt12Immediate(Op.Val, Imm);
}
static uint32_t rotateL(uint32_t x) {
uint32_t bit31 = (x & (1 << 31)) >> 31;
uint32_t t = x << 1;
return t | bit31;
}
static bool isUInt8Immediate(uint32_t x) {
return x < (1 << 8);
}
static bool isRotInt8Immediate(uint32_t x) {
int r;
for (r = 0; r < 16; r++) {
if (isUInt8Immediate(x))
return true;
x = rotateL(rotateL(x));
}
return false;
}
bool ARMDAGToDAGISel::SelectAddrMode1(SDOperand N,
SDOperand &Arg,
SDOperand &Shift,
SDOperand &ShiftType) {
switch(N.getOpcode()) {
case ISD::Constant: {
uint32_t val = cast<ConstantSDNode>(N)->getValue();
if(!isRotInt8Immediate(val)) {
const Type *t = MVT::getTypeForValueType(MVT::i32);
Constant *C = ConstantUInt::get(t, val);
int alignment = 2;
SDOperand Addr = CurDAG->getTargetConstantPool(C, MVT::i32, alignment);
SDOperand Z = CurDAG->getTargetConstant(0, MVT::i32);
SDNode *n = CurDAG->getTargetNode(ARM::ldr, MVT::i32, Z, Addr);
Arg = SDOperand(n, 0);
} else
Arg = CurDAG->getTargetConstant(val, MVT::i32);
Shift = CurDAG->getTargetConstant(0, MVT::i32);
ShiftType = CurDAG->getTargetConstant(ARMShift::LSL, MVT::i32);
return true;
}
case ISD::SRA:
Arg = N.getOperand(0);
Shift = N.getOperand(1);
ShiftType = CurDAG->getTargetConstant(ARMShift::ASR, MVT::i32);
return true;
case ISD::SRL:
Arg = N.getOperand(0);
Shift = N.getOperand(1);
ShiftType = CurDAG->getTargetConstant(ARMShift::LSR, MVT::i32);
return true;
case ISD::SHL:
Arg = N.getOperand(0);
Shift = N.getOperand(1);
ShiftType = CurDAG->getTargetConstant(ARMShift::LSL, MVT::i32);
return true;
}
Arg = N;
Shift = CurDAG->getTargetConstant(0, MVT::i32);
ShiftType = CurDAG->getTargetConstant(ARMShift::LSL, MVT::i32);
return true;
}
//register plus/minus 12 bit offset
bool ARMDAGToDAGISel::SelectAddrRegImm(SDOperand N, SDOperand &Offset,
SDOperand &Base) {
if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(N)) {
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
Offset = CurDAG->getTargetConstant(0, MVT::i32);
return true;
}
if (N.getOpcode() == ISD::ADD) {
short imm = 0;
if (isInt12Immediate(N.getOperand(1), imm)) {
Offset = CurDAG->getTargetConstant(imm, MVT::i32);
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
Base = CurDAG->getTargetFrameIndex(FI->getIndex(), N.getValueType());
} else {
Base = N.getOperand(0);
}
return true; // [r+i]
}
}
Offset = CurDAG->getTargetConstant(0, MVT::i32);
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
Base = CurDAG->getTargetFrameIndex(FI->getIndex(), N.getValueType());
}
else
Base = N;
return true; //any address fits in a register
}
SDNode *ARMDAGToDAGISel::Select(SDOperand Op) {
SDNode *N = Op.Val;
switch (N->getOpcode()) {
default:
return SelectCode(Op);
break;
}
return NULL;
}
} // end anonymous namespace
/// createARMISelDag - This pass converts a legalized DAG into a
/// ARM-specific DAG, ready for instruction scheduling.
///
FunctionPass *llvm::createARMISelDag(TargetMachine &TM) {
return new ARMDAGToDAGISel(TM);
}