llvm-6502/lib/CodeGen/RegAllocSimple.cpp

278 lines
9.2 KiB
C++
Raw Normal View History

//===-- RegAllocSimple.cpp - A simple generic register allocator --- ------===//
//
// This file implements a simple register allocator. *Very* simple.
//
//===----------------------------------------------------------------------===//
#include "llvm/Function.h"
#include "llvm/iTerminators.h"
#include "llvm/Type.h"
#include "llvm/Constants.h"
#include "llvm/Pass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Target/MachineInstrInfo.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/MachineRegInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/InstVisitor.h"
#include "Support/Statistic.h"
#include <map>
namespace {
struct RegAllocSimple : public FunctionPass {
TargetMachine &TM;
MachineBasicBlock *CurrMBB;
MachineFunction *MF;
unsigned maxOffset;
const MRegisterInfo *RegInfo;
unsigned NumBytesAllocated, ByteAlignment;
// Maps SSA Regs => offsets on the stack where these values are stored
// FIXME: change name to VirtReg2OffsetMap
std::map<unsigned, unsigned> RegMap;
// Maps SSA Regs => physical regs
std::map<unsigned, unsigned> SSA2PhysRegMap;
// Maps physical register to their register classes
std::map<unsigned, const TargetRegisterClass*> PhysReg2RegClassMap;
// Maps RegClass => which index we can take a register from. Since this is a
// simple register allocator, when we need a register of a certain class, we
// just take the next available one.
std::map<unsigned, unsigned> RegsUsed;
std::map<const TargetRegisterClass*, unsigned> RegClassIdx;
RegAllocSimple(TargetMachine &tm) : TM(tm), CurrMBB(0), maxOffset(0),
RegInfo(tm.getRegisterInfo()),
NumBytesAllocated(0), ByteAlignment(4)
{
// build reverse mapping for physReg -> register class
RegInfo->buildReg2RegClassMap(PhysReg2RegClassMap);
RegsUsed[RegInfo->getFramePointer()] = 1;
RegsUsed[RegInfo->getStackPointer()] = 1;
}
bool isAvailableReg(unsigned Reg) {
// assert(Reg < MRegisterInfo::FirstVirtualReg && "...");
return RegsUsed.find(Reg) == RegsUsed.end();
}
///
unsigned allocateStackSpaceFor(unsigned VirtReg,
const TargetRegisterClass *regClass);
/// Given size (in bytes), returns a register that is currently unused
/// Side effect: marks that register as being used until manually cleared
unsigned getFreeReg(unsigned virtualReg);
/// Returns all `borrowed' registers back to the free pool
void clearAllRegs() {
RegClassIdx.clear();
}
void cleanupAfterFunction() {
RegMap.clear();
SSA2PhysRegMap.clear();
NumBytesAllocated = 0;
}
/// Moves value from memory into that register
MachineBasicBlock::iterator
moveUseToReg (MachineBasicBlock::iterator I, unsigned VirtReg,
unsigned &PhysReg);
/// Saves reg value on the stack (maps virtual register to stack value)
MachineBasicBlock::iterator
saveVirtRegToStack (MachineBasicBlock::iterator I, unsigned VirtReg,
unsigned PhysReg);
MachineBasicBlock::iterator
savePhysRegToStack (MachineBasicBlock::iterator I, unsigned PhysReg);
/// runOnFunction - Top level implementation of instruction selection for
/// the entire function.
///
bool runOnMachineFunction(MachineFunction &Fn);
bool runOnFunction(Function &Fn) {
return runOnMachineFunction(MachineFunction::get(&Fn));
}
};
}
unsigned RegAllocSimple::allocateStackSpaceFor(unsigned VirtReg,
const TargetRegisterClass *regClass)
{
if (RegMap.find(VirtReg) == RegMap.end()) {
unsigned size = regClass->getDataSize();
unsigned over = NumBytesAllocated - (NumBytesAllocated % ByteAlignment);
if (size >= ByteAlignment - over) {
// need to pad by (ByteAlignment - over)
NumBytesAllocated += ByteAlignment - over;
}
RegMap[VirtReg] = NumBytesAllocated;
NumBytesAllocated += size;
}
return RegMap[VirtReg];
}
unsigned RegAllocSimple::getFreeReg(unsigned virtualReg) {
const TargetRegisterClass* regClass = MF->getRegClass(virtualReg);
unsigned physReg;
assert(regClass);
if (RegClassIdx.find(regClass) != RegClassIdx.end()) {
unsigned regIdx = RegClassIdx[regClass]++;
assert(regIdx < regClass->getNumRegs() && "Not enough registers!");
physReg = regClass->getRegister(regIdx);
} else {
physReg = regClass->getRegister(0);
// assert(physReg < regClass->getNumRegs() && "No registers in class!");
RegClassIdx[regClass] = 1;
}
if (isAvailableReg(physReg))
return physReg;
else {
return getFreeReg(virtualReg);
}
}
MachineBasicBlock::iterator
RegAllocSimple::moveUseToReg (MachineBasicBlock::iterator I,
unsigned VirtReg, unsigned &PhysReg)
{
const TargetRegisterClass* regClass = MF->getRegClass(VirtReg);
assert(regClass);
unsigned stackOffset = allocateStackSpaceFor(VirtReg, regClass);
PhysReg = getFreeReg(VirtReg);
// FIXME: increment the frame pointer
// Add move instruction(s)
return RegInfo->loadRegOffset2Reg(CurrMBB, I, PhysReg,
RegInfo->getFramePointer(),
-stackOffset, regClass->getDataSize());
}
MachineBasicBlock::iterator
RegAllocSimple::saveVirtRegToStack (MachineBasicBlock::iterator I,
unsigned VirtReg, unsigned PhysReg)
{
const TargetRegisterClass* regClass = MF->getRegClass(VirtReg);
assert(regClass);
unsigned stackOffset = allocateStackSpaceFor(VirtReg, regClass);
// Add move instruction(s)
return RegInfo->storeReg2RegOffset(CurrMBB, I, PhysReg,
RegInfo->getFramePointer(),
-stackOffset, regClass->getDataSize());
}
MachineBasicBlock::iterator
RegAllocSimple::savePhysRegToStack (MachineBasicBlock::iterator I,
unsigned PhysReg)
{
const TargetRegisterClass* regClass = MF->getRegClass(PhysReg);
assert(regClass);
unsigned offset = allocateStackSpaceFor(PhysReg, regClass);
// Add move instruction(s)
return RegInfo->storeReg2RegOffset(CurrMBB, I, PhysReg,
RegInfo->getFramePointer(),
offset, regClass->getDataSize());
}
bool RegAllocSimple::runOnMachineFunction(MachineFunction &Fn) {
cleanupAfterFunction();
unsigned virtualReg, physReg;
DEBUG(std::cerr << "Machine Function " << "\n");
MF = &Fn;
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
MBB != MBBe; ++MBB)
{
CurrMBB = &(*MBB);
//loop over each basic block
for (MachineBasicBlock::iterator I = MBB->begin(); I != MBB->end(); ++I)
{
MachineInstr *MI = *I;
DEBUG(std::cerr << "instr: ";
MI->print(std::cerr, TM));
// FIXME: add a preliminary pass that will invalidate any registers that
// are used by the instruction (including implicit uses)
// Loop over each instruction:
// uses, move from memory into registers
for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
MachineOperand &op = MI->getOperand(i);
if (op.getType() == MachineOperand::MO_SignExtendedImmed ||
op.getType() == MachineOperand::MO_UnextendedImmed)
{
DEBUG(std::cerr << "const\n");
} else if (op.isVirtualRegister()) {
virtualReg = (unsigned) op.getAllocatedRegNum();
// save register to stack if it's a def
DEBUG(std::cerr << "op: " << op << "\n");
DEBUG(std::cerr << "\t inst[" << i << "]: ";
MI->print(std::cerr, TM));
if (op.opIsDef()) {
physReg = getFreeReg(virtualReg);
MachineBasicBlock::iterator J = I;
J = saveVirtRegToStack(++J, virtualReg, physReg);
I = --J;
} else {
I = moveUseToReg(I, virtualReg, physReg);
}
MI->SetMachineOperandReg(i, physReg);
DEBUG(std::cerr << "virt: " << virtualReg <<
", phys: " << op.getAllocatedRegNum() << "\n");
}
}
clearAllRegs();
}
}
// add prologue we should preserve callee-save registers...
MachineFunction::iterator Fi = Fn.begin();
MachineBasicBlock *MBB = Fi;
MachineBasicBlock::iterator MBBi = MBB->begin();
RegInfo->emitPrologue(MBB, MBBi, NumBytesAllocated);
// add epilogue to restore the callee-save registers
// loop over the basic block
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
MBB != MBBe; ++MBB)
{
// check if last instruction is a RET
MachineBasicBlock::iterator I = (*MBB).end();
MachineInstr *MI = *(--I);
const MachineInstrInfo &MII = TM.getInstrInfo();
if (MII.isReturn(MI->getOpcode())) {
// this block has a return instruction, add epilogue
RegInfo->emitEpilogue(MBB, I, NumBytesAllocated);
}
}
return false; // We never modify the LLVM itself.
}
Pass *createSimpleX86RegisterAllocator(TargetMachine &TM) {
return new RegAllocSimple(TM);
}