llvm-6502/lib/AsmParser/llvmAsmParser.y

1116 lines
36 KiB
Plaintext
Raw Normal View History

//===-- llvmAsmParser.y - Parser for llvm assembly files ---------*- C++ -*--=//
//
// This file implements the bison parser for LLVM assembly languages files.
//
//===------------------------------------------------------------------------=//
//
// TODO: Parse comments and add them to an internal node... so that they may
// be saved in the bytecode format as well as everything else. Very important
// for a general IR format.
//
%{
#include "ParserInternals.h"
#include "llvm/BasicBlock.h"
#include "llvm/Method.h"
#include "llvm/SymbolTable.h"
#include "llvm/Module.h"
#include "llvm/Type.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Assembly/Parser.h"
#include "llvm/ConstantPool.h"
#include "llvm/iTerminators.h"
#include "llvm/iMemory.h"
#include <list>
#include <utility> // Get definition of pair class
#include <algorithm> // Get definition of find_if
#include <stdio.h> // This embarasment is due to our flex lexer...
int yyerror(const char *ErrorMsg); // Forward declarations to prevent "implicit
int yylex(); // declaration" of xxx warnings.
int yyparse();
static Module *ParserResult;
string CurFilename;
// This contains info used when building the body of a method. It is destroyed
// when the method is completed.
//
typedef vector<Value *> ValueList; // Numbered defs
static void ResolveDefinitions(vector<ValueList> &LateResolvers);
static struct PerModuleInfo {
Module *CurrentModule;
vector<ValueList> Values; // Module level numbered definitions
vector<ValueList> LateResolveValues;
void ModuleDone() {
// If we could not resolve some blocks at parsing time (forward branches)
// resolve the branches now...
ResolveDefinitions(LateResolveValues);
Values.clear(); // Clear out method local definitions
CurrentModule = 0;
}
} CurModule;
static struct PerMethodInfo {
Method *CurrentMethod; // Pointer to current method being created
vector<ValueList> Values; // Keep track of numbered definitions
vector<ValueList> LateResolveValues;
bool isDeclare; // Is this method a forward declararation?
inline PerMethodInfo() {
CurrentMethod = 0;
isDeclare = false;
}
inline ~PerMethodInfo() {}
inline void MethodStart(Method *M) {
CurrentMethod = M;
}
void MethodDone() {
// If we could not resolve some blocks at parsing time (forward branches)
// resolve the branches now...
ResolveDefinitions(LateResolveValues);
Values.clear(); // Clear out method local definitions
CurrentMethod = 0;
isDeclare = false;
}
} CurMeth; // Info for the current method...
//===----------------------------------------------------------------------===//
// Code to handle definitions of all the types
//===----------------------------------------------------------------------===//
static void InsertValue(Value *D, vector<ValueList> &ValueTab = CurMeth.Values) {
if (!D->hasName()) { // Is this a numbered definition?
unsigned type = D->getType()->getUniqueID();
if (ValueTab.size() <= type)
ValueTab.resize(type+1, ValueList());
//printf("Values[%d][%d] = %d\n", type, ValueTab[type].size(), D);
ValueTab[type].push_back(D);
}
}
static Value *getVal(const Type *Type, ValID &D,
bool DoNotImprovise = false) {
switch (D.Type) {
case 0: { // Is it a numbered definition?
unsigned type = Type->getUniqueID();
unsigned Num = (unsigned)D.Num;
// Module constants occupy the lowest numbered slots...
if (type < CurModule.Values.size()) {
if (Num < CurModule.Values[type].size())
return CurModule.Values[type][Num];
Num -= CurModule.Values[type].size();
}
// Make sure that our type is within bounds
if (CurMeth.Values.size() <= type)
break;
// Check that the number is within bounds...
if (CurMeth.Values[type].size() <= Num)
break;
return CurMeth.Values[type][Num];
}
case 1: { // Is it a named definition?
string Name(D.Name);
SymbolTable *SymTab = 0;
if (CurMeth.CurrentMethod)
SymTab = CurMeth.CurrentMethod->getSymbolTable();
Value *N = SymTab ? SymTab->lookup(Type, Name) : 0;
if (N == 0) {
SymTab = CurModule.CurrentModule->getSymbolTable();
if (SymTab)
N = SymTab->lookup(Type, Name);
if (N == 0) break;
}
D.destroy(); // Free old strdup'd memory...
return N;
}
case 2: // Is it a constant pool reference??
case 3: // Is it an unsigned const pool reference?
case 4: // Is it a string const pool reference?
case 5:{ // Is it a floating point const pool reference?
ConstPoolVal *CPV = 0;
// Check to make sure that "Type" is an integral type, and that our
// value will fit into the specified type...
switch (D.Type) {
case 2:
if (Type == Type::BoolTy) { // Special handling for boolean data
CPV = new ConstPoolBool(D.ConstPool64 != 0);
} else {
if (!ConstPoolSInt::isValueValidForType(Type, D.ConstPool64))
ThrowException("Symbolic constant pool value '" +
itostr(D.ConstPool64) + "' is invalid for type '" +
Type->getName() + "'!");
CPV = new ConstPoolSInt(Type, D.ConstPool64);
}
break;
case 3:
if (!ConstPoolUInt::isValueValidForType(Type, D.UConstPool64)) {
if (!ConstPoolSInt::isValueValidForType(Type, D.ConstPool64)) {
ThrowException("Integral constant pool reference is invalid!");
} else { // This is really a signed reference. Transmogrify.
CPV = new ConstPoolSInt(Type, D.ConstPool64);
}
} else {
CPV = new ConstPoolUInt(Type, D.UConstPool64);
}
break;
case 4:
cerr << "FIXME: TODO: String constants [sbyte] not implemented yet!\n";
abort();
//CPV = new ConstPoolString(D.Name);
D.destroy(); // Free the string memory
break;
case 5:
if (!ConstPoolFP::isValueValidForType(Type, D.ConstPoolFP))
ThrowException("FP constant invalid for type!!");
else
CPV = new ConstPoolFP(Type, D.ConstPoolFP);
break;
}
assert(CPV && "How did we escape creating a constant??");
// Scan through the constant table and see if we already have loaded this
// constant.
//
ConstantPool &CP = CurMeth.CurrentMethod ?
CurMeth.CurrentMethod->getConstantPool() :
CurModule.CurrentModule->getConstantPool();
ConstPoolVal *C = CP.find(CPV); // Already have this constant?
if (C) {
delete CPV; // Didn't need this after all, oh well.
return C; // Yup, we already have one, recycle it!
}
CP.insert(CPV);
// Success, everything is kosher. Lets go!
return CPV;
} // End of case 2,3,4
} // End of switch
// If we reached here, we referenced either a symbol that we don't know about
// or an id number that hasn't been read yet. We may be referencing something
// forward, so just create an entry to be resolved later and get to it...
//
if (DoNotImprovise) return 0; // Do we just want a null to be returned?
// TODO: Attempt to coallecse nodes that are the same with previous ones.
Value *d = 0;
switch (Type->getPrimitiveID()) {
case Type::LabelTyID: d = new BBPlaceHolder(Type, D); break;
case Type::MethodTyID:
d = new MethPlaceHolder(Type, D);
InsertValue(d, CurModule.LateResolveValues);
return d;
//case Type::ClassTyID: d = new ClassPlaceHolder(Type, D); break;
default: d = new DefPlaceHolder(Type, D); break;
}
assert(d != 0 && "How did we not make something?");
InsertValue(d, CurMeth.LateResolveValues);
return d;
}
//===----------------------------------------------------------------------===//
// Code to handle forward references in instructions
//===----------------------------------------------------------------------===//
//
// This code handles the late binding needed with statements that reference
// values not defined yet... for example, a forward branch, or the PHI node for
// a loop body.
//
// This keeps a table (CurMeth.LateResolveValues) of all such forward references
// and back patchs after we are done.
//
// ResolveDefinitions - If we could not resolve some defs at parsing
// time (forward branches, phi functions for loops, etc...) resolve the
// defs now...
//
static void ResolveDefinitions(vector<ValueList> &LateResolvers) {
// Loop over LateResolveDefs fixing up stuff that couldn't be resolved
for (unsigned ty = 0; ty < LateResolvers.size(); ty++) {
while (!LateResolvers[ty].empty()) {
Value *V = LateResolvers[ty].back();
LateResolvers[ty].pop_back();
ValID &DID = getValIDFromPlaceHolder(V);
Value *TheRealValue = getVal(Type::getUniqueIDType(ty), DID, true);
if (TheRealValue == 0 && DID.Type == 1)
ThrowException("Reference to an invalid definition: '" +DID.getName() +
"' of type '" + V->getType()->getName() + "'");
else if (TheRealValue == 0)
ThrowException("Reference to an invalid definition: #" +itostr(DID.Num)+
" of type '" + V->getType()->getName() + "'");
V->replaceAllUsesWith(TheRealValue);
assert(V->use_empty());
delete V;
}
}
LateResolvers.clear();
}
// addConstValToConstantPool - This code is used to insert a constant into the
// current constant pool. This is designed to make maximal (but not more than
// possible) reuse (merging) of constants in the constant pool. This means that
// multiple references to %4, for example will all get merged.
//
static ConstPoolVal *addConstValToConstantPool(ConstPoolVal *C) {
vector<ValueList> &ValTab = CurMeth.CurrentMethod ?
CurMeth.Values : CurModule.Values;
ConstantPool &CP = CurMeth.CurrentMethod ?
CurMeth.CurrentMethod->getConstantPool() :
CurModule.CurrentModule->getConstantPool();
if (ConstPoolVal *CPV = CP.find(C)) {
// Constant already in constant pool. Try to merge the two constants
if (CPV->hasName() && !C->hasName()) {
// Merge the two values, we inherit the existing CPV's name.
// InsertValue requires that the value have no name to insert correctly
// (because we want to fill the slot this constant would have filled)
//
string Name = CPV->getName();
CPV->setName("");
InsertValue(CPV, ValTab);
CPV->setName(Name);
delete C;
return CPV;
} else if (!CPV->hasName() && C->hasName()) {
// If we have a name on this value and there isn't one in the const
// pool val already, propogate it.
//
CPV->setName(C->getName());
delete C; // Sorry, you're toast
return CPV;
} else if (CPV->hasName() && C->hasName()) {
// Both values have distinct names. We cannot merge them.
CP.insert(C);
InsertValue(C, ValTab);
return C;
} else if (!CPV->hasName() && !C->hasName()) {
// Neither value has a name, trivially merge them.
InsertValue(CPV, ValTab);
delete C;
return CPV;
}
assert(0 && "Not reached!");
return 0;
} else { // No duplication of value.
CP.insert(C);
InsertValue(C, ValTab);
return C;
}
}
struct EqualsType {
const Type *T;
inline EqualsType(const Type *t) { T = t; }
inline bool operator()(const ConstPoolVal *CPV) const {
return static_cast<const ConstPoolType*>(CPV)->getValue() == T;
}
};
// checkNewType - We have to be careful to add all types referenced by the
// program to the constant pool of the method or module. Because of this, we
// often want to check to make sure that types used are in the constant pool,
// and add them if they aren't. That's what this function does.
//
static const Type *checkNewType(const Type *Ty) {
ConstantPool &CP = CurMeth.CurrentMethod ?
CurMeth.CurrentMethod->getConstantPool() :
CurModule.CurrentModule->getConstantPool();
// TODO: This should use ConstantPool::ensureTypeAvailable
// Get the type type plane...
ConstantPool::PlaneType &P = CP.getPlane(Type::TypeTy);
ConstantPool::PlaneType::const_iterator PI = find_if(P.begin(), P.end(),
EqualsType(Ty));
if (PI == P.end()) {
vector<ValueList> &ValTab = CurMeth.CurrentMethod ?
CurMeth.Values : CurModule.Values;
ConstPoolVal *CPT = new ConstPoolType(Ty);
CP.insert(CPT);
InsertValue(CPT, ValTab);
}
return Ty;
}
//===----------------------------------------------------------------------===//
// RunVMAsmParser - Define an interface to this parser
//===----------------------------------------------------------------------===//
//
Module *RunVMAsmParser(const string &Filename, FILE *F) {
llvmAsmin = F;
CurFilename = Filename;
llvmAsmlineno = 1; // Reset the current line number...
CurModule.CurrentModule = new Module(); // Allocate a new module to read
yyparse(); // Parse the file.
Module *Result = ParserResult;
llvmAsmin = stdin; // F is about to go away, don't use it anymore...
ParserResult = 0;
return Result;
}
%}
%union {
Module *ModuleVal;
Method *MethodVal;
MethodArgument *MethArgVal;
BasicBlock *BasicBlockVal;
TerminatorInst *TermInstVal;
Instruction *InstVal;
ConstPoolVal *ConstVal;
const Type *TypeVal;
list<MethodArgument*> *MethodArgList;
list<Value*> *ValueList;
list<const Type*> *TypeList;
list<pair<Value*, BasicBlock*> > *PHIList; // Represent the RHS of PHI node
list<pair<ConstPoolVal*, BasicBlock*> > *JumpTable;
vector<ConstPoolVal*> *ConstVector;
int64_t SInt64Val;
uint64_t UInt64Val;
int SIntVal;
unsigned UIntVal;
double FPVal;
char *StrVal; // This memory is allocated by strdup!
ValID ValIDVal; // May contain memory allocated by strdup
Instruction::UnaryOps UnaryOpVal;
Instruction::BinaryOps BinaryOpVal;
Instruction::TermOps TermOpVal;
Instruction::MemoryOps MemOpVal;
Instruction::OtherOps OtherOpVal;
}
%type <ModuleVal> Module MethodList
%type <MethodVal> Method MethodProto MethodHeader BasicBlockList
%type <BasicBlockVal> BasicBlock InstructionList
%type <TermInstVal> BBTerminatorInst
%type <InstVal> Inst InstVal MemoryInst
%type <ConstVal> ConstVal
%type <ConstVector> ConstVector UByteList
%type <MethodArgList> ArgList ArgListH
%type <MethArgVal> ArgVal
%type <PHIList> PHIList
%type <ValueList> ValueRefList ValueRefListE // For call param lists
%type <TypeList> TypeList ArgTypeList
%type <JumpTable> JumpTable
%type <ValIDVal> ValueRef ConstValueRef // Reference to a definition or BB
// Tokens and types for handling constant integer values
//
// ESINT64VAL - A negative number within long long range
%token <SInt64Val> ESINT64VAL
// EUINT64VAL - A positive number within uns. long long range
%token <UInt64Val> EUINT64VAL
%type <SInt64Val> EINT64VAL
%token <SIntVal> SINTVAL // Signed 32 bit ints...
%token <UIntVal> UINTVAL // Unsigned 32 bit ints...
%type <SIntVal> INTVAL
%token <FPVal> FPVAL // Float or Double constant
// Built in types...
%type <TypeVal> Types TypesV SIntType UIntType IntType FPType
%token <TypeVal> VOID BOOL SBYTE UBYTE SHORT USHORT INT UINT LONG ULONG
%token <TypeVal> FLOAT DOUBLE STRING TYPE LABEL
%token <StrVal> VAR_ID LABELSTR STRINGCONSTANT
%type <StrVal> OptVAR_ID OptAssign
%token IMPLEMENTATION TRUE FALSE BEGINTOK END DECLARE TO DOTDOTDOT
// Basic Block Terminating Operators
%token <TermOpVal> RET BR SWITCH
// Unary Operators
%type <UnaryOpVal> UnaryOps // all the unary operators
%token <UnaryOpVal> NOT
// Binary Operators
%type <BinaryOpVal> BinaryOps // all the binary operators
%token <BinaryOpVal> ADD SUB MUL DIV REM
%token <BinaryOpVal> SETLE SETGE SETLT SETGT SETEQ SETNE // Binary Comarators
// Memory Instructions
%token <MemoryOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR
// Other Operators
%type <OtherOpVal> ShiftOps
%token <OtherOpVal> PHI CALL CAST SHL SHR
%start Module
%%
// Handle constant integer size restriction and conversion...
//
INTVAL : SINTVAL
INTVAL : UINTVAL {
if ($1 > (uint32_t)INT32_MAX) // Outside of my range!
ThrowException("Value too large for type!");
$$ = (int32_t)$1;
}
EINT64VAL : ESINT64VAL // These have same type and can't cause problems...
EINT64VAL : EUINT64VAL {
if ($1 > (uint64_t)INT64_MAX) // Outside of my range!
ThrowException("Value too large for type!");
$$ = (int64_t)$1;
}
// Types includes all predefined types... except void, because you can't do
// anything with it except for certain specific things...
//
// User defined types are added later...
//
Types : BOOL | SBYTE | UBYTE | SHORT | USHORT | INT | UINT
Types : LONG | ULONG | FLOAT | DOUBLE | STRING | TYPE | LABEL
// TypesV includes all of 'Types', but it also includes the void type.
TypesV : Types | VOID
// Operations that are notably excluded from this list include:
// RET, BR, & SWITCH because they end basic blocks and are treated specially.
//
UnaryOps : NOT
BinaryOps : ADD | SUB | MUL | DIV | REM
BinaryOps : SETLE | SETGE | SETLT | SETGT | SETEQ | SETNE
ShiftOps : SHL | SHR
// These are some types that allow classification if we only want a particular
// thing... for example, only a signed, unsigned, or integral type.
SIntType : LONG | INT | SHORT | SBYTE
UIntType : ULONG | UINT | USHORT | UBYTE
IntType : SIntType | UIntType
FPType : FLOAT | DOUBLE
// OptAssign - Value producing statements have an optional assignment component
OptAssign : VAR_ID '=' {
$$ = $1;
}
| /*empty*/ {
$$ = 0;
}
// ConstVal - The various declarations that go into the constant pool. This
// includes all forward declarations of types, constants, and functions.
//
ConstVal : SIntType EINT64VAL { // integral constants
if (!ConstPoolSInt::isValueValidForType($1, $2))
ThrowException("Constant value doesn't fit in type!");
$$ = new ConstPoolSInt($1, $2);
}
| UIntType EUINT64VAL { // integral constants
if (!ConstPoolUInt::isValueValidForType($1, $2))
ThrowException("Constant value doesn't fit in type!");
$$ = new ConstPoolUInt($1, $2);
}
| BOOL TRUE { // Boolean constants
$$ = new ConstPoolBool(true);
}
| BOOL FALSE { // Boolean constants
$$ = new ConstPoolBool(false);
}
| FPType FPVAL { // Float & Double constants
$$ = new ConstPoolFP($1, $2);
}
| STRING STRINGCONSTANT { // String constants
cerr << "FIXME: TODO: String constants [sbyte] not implemented yet!\n";
abort();
//$$ = new ConstPoolString($2);
free($2);
}
| TYPE Types { // Type constants
$$ = new ConstPoolType($2);
}
| '[' Types ']' '[' ConstVector ']' { // Nonempty array constant
// Verify all elements are correct type!
const ArrayType *AT = ArrayType::getArrayType($2);
for (unsigned i = 0; i < $5->size(); i++) {
if ($2 != (*$5)[i]->getType())
ThrowException("Element #" + utostr(i) + " is not of type '" +
$2->getName() + "' as required!\nIt is of type '" +
(*$5)[i]->getType()->getName() + "'.");
}
$$ = new ConstPoolArray(AT, *$5);
delete $5;
}
| '[' Types ']' '[' ']' { // Empty array constant
vector<ConstPoolVal*> Empty;
$$ = new ConstPoolArray(ArrayType::getArrayType($2), Empty);
}
| '[' EUINT64VAL 'x' Types ']' '[' ConstVector ']' {
// Verify all elements are correct type!
const ArrayType *AT = ArrayType::getArrayType($4, (int)$2);
if ($2 != $7->size())
ThrowException("Type mismatch: constant sized array initialized with " +
utostr($7->size()) + " arguments, but has size of " +
itostr((int)$2) + "!");
for (unsigned i = 0; i < $7->size(); i++) {
if ($4 != (*$7)[i]->getType())
ThrowException("Element #" + utostr(i) + " is not of type '" +
$4->getName() + "' as required!\nIt is of type '" +
(*$7)[i]->getType()->getName() + "'.");
}
$$ = new ConstPoolArray(AT, *$7);
delete $7;
}
| '[' EUINT64VAL 'x' Types ']' '[' ']' {
if ($2 != 0)
ThrowException("Type mismatch: constant sized array initialized with 0"
" arguments, but has size of " + itostr((int)$2) + "!");
vector<ConstPoolVal*> Empty;
$$ = new ConstPoolArray(ArrayType::getArrayType($4, 0), Empty);
}
| '{' TypeList '}' '{' ConstVector '}' {
StructType::ElementTypes Types($2->begin(), $2->end());
delete $2;
const StructType *St = StructType::getStructType(Types);
$$ = new ConstPoolStruct(St, *$5);
delete $5;
}
| '{' '}' '{' '}' {
const StructType *St =
StructType::getStructType(StructType::ElementTypes());
vector<ConstPoolVal*> Empty;
$$ = new ConstPoolStruct(St, Empty);
}
/*
| Types '*' ConstVal {
assert(0);
$$ = 0;
}
*/
// ConstVector - A list of comma seperated constants.
ConstVector : ConstVector ',' ConstVal {
($$ = $1)->push_back(addConstValToConstantPool($3));
}
| ConstVal {
$$ = new vector<ConstPoolVal*>();
$$->push_back(addConstValToConstantPool($1));
}
//ExternMethodDecl : EXTERNAL TypesV '(' TypeList ')' {
// }
//ExternVarDecl :
// ConstPool - Constants with optional names assigned to them.
ConstPool : ConstPool OptAssign ConstVal {
if ($2) {
$3->setName($2);
free($2);
}
addConstValToConstantPool($3);
}
/*
| ConstPool OptAssign GlobalDecl { // Global declarations appear in CP
if ($2) {
$3->setName($2);
free($2);
}
//CurModule.CurrentModule->
}
*/
| /* empty: end of list */ {
}
//===----------------------------------------------------------------------===//
// Rules to match Modules
//===----------------------------------------------------------------------===//
// Module rule: Capture the result of parsing the whole file into a result
// variable...
//
Module : MethodList {
$$ = ParserResult = $1;
CurModule.ModuleDone();
}
// MethodList - A list of methods, preceeded by a constant pool.
//
MethodList : MethodList Method {
$$ = $1;
if (!$2->getParent())
$1->getMethodList().push_back($2);
CurMeth.MethodDone();
}
| MethodList MethodProto {
$$ = $1;
if (!$2->getParent())
$1->getMethodList().push_back($2);
CurMeth.MethodDone();
}
| ConstPool IMPLEMENTATION {
$$ = CurModule.CurrentModule;
}
//===----------------------------------------------------------------------===//
// Rules to match Method Headers
//===----------------------------------------------------------------------===//
OptVAR_ID : VAR_ID | /*empty*/ { $$ = 0; }
ArgVal : Types OptVAR_ID {
$$ = new MethodArgument($1);
if ($2) { // Was the argument named?
$$->setName($2);
free($2); // The string was strdup'd, so free it now.
}
}
ArgListH : ArgVal ',' ArgListH {
$$ = $3;
$3->push_front($1);
}
| ArgVal {
$$ = new list<MethodArgument*>();
$$->push_front($1);
}
| DOTDOTDOT {
$$ = new list<MethodArgument*>();
$$->push_back(new MethodArgument(Type::VoidTy));
}
ArgList : ArgListH {
$$ = $1;
}
| /* empty */ {
$$ = 0;
}
MethodHeaderH : TypesV STRINGCONSTANT '(' ArgList ')' {
MethodType::ParamTypes ParamTypeList;
if ($4)
for (list<MethodArgument*>::iterator I = $4->begin(); I != $4->end(); ++I)
ParamTypeList.push_back((*I)->getType());
const MethodType *MT = MethodType::getMethodType($1, ParamTypeList);
Method *M = 0;
if (SymbolTable *ST = CurModule.CurrentModule->getSymbolTable()) {
if (Value *V = ST->lookup(MT, $2)) { // Method already in symtab?
M = V->castMethodAsserting();
// Yes it is. If this is the case, either we need to be a forward decl,
// or it needs to be.
if (!CurMeth.isDeclare && !M->isExternal())
ThrowException("Redefinition of method '" + string($2) + "'!");
}
}
if (M == 0) { // Not already defined?
M = new Method(MT, $2);
InsertValue(M, CurModule.Values);
}
free($2); // Free strdup'd memory!
CurMeth.MethodStart(M);
// Add all of the arguments we parsed to the method...
if ($4 && !CurMeth.isDeclare) { // Is null if empty...
Method::ArgumentListType &ArgList = M->getArgumentList();
for (list<MethodArgument*>::iterator I = $4->begin(); I != $4->end(); ++I) {
InsertValue(*I);
ArgList.push_back(*I);
}
delete $4; // We're now done with the argument list
}
}
MethodHeader : MethodHeaderH ConstPool BEGINTOK {
$$ = CurMeth.CurrentMethod;
}
Method : BasicBlockList END {
$$ = $1;
}
MethodProto : DECLARE { CurMeth.isDeclare = true; } MethodHeaderH {
$$ = CurMeth.CurrentMethod;
}
//===----------------------------------------------------------------------===//
// Rules to match Basic Blocks
//===----------------------------------------------------------------------===//
ConstValueRef : ESINT64VAL { // A reference to a direct constant
$$ = ValID::create($1);
}
| EUINT64VAL {
$$ = ValID::create($1);
}
| FPVAL { // Perhaps it's an FP constant?
$$ = ValID::create($1);
}
| TRUE {
$$ = ValID::create((int64_t)1);
}
| FALSE {
$$ = ValID::create((int64_t)0);
}
| STRINGCONSTANT { // Quoted strings work too... especially for methods
$$ = ValID::create_conststr($1);
}
// ValueRef - A reference to a definition...
ValueRef : INTVAL { // Is it an integer reference...?
$$ = ValID::create($1);
}
| VAR_ID { // Is it a named reference...?
$$ = ValID::create($1);
}
| ConstValueRef {
$$ = $1;
}
// The user may refer to a user defined type by its typeplane... check for this
// now...
//
Types : ValueRef {
Value *D = getVal(Type::TypeTy, $1, true);
if (D == 0) ThrowException("Invalid user defined type: " + $1.getName());
// User defined type not in const pool!
ConstPoolType *CPT = (ConstPoolType*)D->castConstantAsserting();
$$ = CPT->getValue();
}
| TypesV '(' ArgTypeList ')' { // Method derived type?
MethodType::ParamTypes Params($3->begin(), $3->end());
delete $3;
$$ = checkNewType(MethodType::getMethodType($1, Params));
}
| TypesV '(' ')' { // Method derived type?
MethodType::ParamTypes Params; // Empty list
$$ = checkNewType(MethodType::getMethodType($1, Params));
}
| '[' Types ']' {
$$ = checkNewType(ArrayType::getArrayType($2));
}
| '[' EUINT64VAL 'x' Types ']' {
$$ = checkNewType(ArrayType::getArrayType($4, (int)$2));
}
| '{' TypeList '}' {
StructType::ElementTypes Elements($2->begin(), $2->end());
delete $2;
$$ = checkNewType(StructType::getStructType(Elements));
}
| '{' '}' {
$$ = checkNewType(StructType::getStructType(StructType::ElementTypes()));
}
| Types '*' {
$$ = checkNewType(PointerType::getPointerType($1));
}
TypeList : Types {
$$ = new list<const Type*>();
$$->push_back($1);
}
| TypeList ',' Types {
($$=$1)->push_back($3);
}
ArgTypeList : TypeList
| TypeList ',' DOTDOTDOT {
($$=$1)->push_back(Type::VoidTy);
}
BasicBlockList : BasicBlockList BasicBlock {
$1->getBasicBlocks().push_back($2);
$$ = $1;
}
| MethodHeader BasicBlock { // Do not allow methods with 0 basic blocks
$$ = $1; // in them...
$1->getBasicBlocks().push_back($2);
}
// Basic blocks are terminated by branching instructions:
// br, br/cc, switch, ret
//
BasicBlock : InstructionList BBTerminatorInst {
$1->getInstList().push_back($2);
InsertValue($1);
$$ = $1;
}
| LABELSTR InstructionList BBTerminatorInst {
$2->getInstList().push_back($3);
$2->setName($1);
free($1); // Free the strdup'd memory...
InsertValue($2);
$$ = $2;
}
InstructionList : InstructionList Inst {
$1->getInstList().push_back($2);
$$ = $1;
}
| /* empty */ {
$$ = new BasicBlock();
}
BBTerminatorInst : RET Types ValueRef { // Return with a result...
$$ = new ReturnInst(getVal($2, $3));
}
| RET VOID { // Return with no result...
$$ = new ReturnInst();
}
| BR LABEL ValueRef { // Unconditional Branch...
$$ = new BranchInst((BasicBlock*)getVal(Type::LabelTy, $3));
} // Conditional Branch...
| BR BOOL ValueRef ',' LABEL ValueRef ',' LABEL ValueRef {
$$ = new BranchInst((BasicBlock*)getVal(Type::LabelTy, $6),
(BasicBlock*)getVal(Type::LabelTy, $9),
getVal(Type::BoolTy, $3));
}
| SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' {
SwitchInst *S = new SwitchInst(getVal($2, $3),
(BasicBlock*)getVal(Type::LabelTy, $6));
$$ = S;
list<pair<ConstPoolVal*, BasicBlock*> >::iterator I = $8->begin(),
end = $8->end();
for (; I != end; ++I)
S->dest_push_back(I->first, I->second);
}
JumpTable : JumpTable IntType ConstValueRef ',' LABEL ValueRef {
$$ = $1;
ConstPoolVal *V = (ConstPoolVal*)getVal($2, $3, true);
if (V == 0)
ThrowException("May only switch on a constant pool value!");
$$->push_back(make_pair(V, (BasicBlock*)getVal($5, $6)));
}
| IntType ConstValueRef ',' LABEL ValueRef {
$$ = new list<pair<ConstPoolVal*, BasicBlock*> >();
ConstPoolVal *V = (ConstPoolVal*)getVal($1, $2, true);
if (V == 0)
ThrowException("May only switch on a constant pool value!");
$$->push_back(make_pair(V, (BasicBlock*)getVal($4, $5)));
}
Inst : OptAssign InstVal {
if ($1) // Is this definition named??
$2->setName($1); // if so, assign the name...
InsertValue($2);
$$ = $2;
}
PHIList : Types '[' ValueRef ',' ValueRef ']' { // Used for PHI nodes
$$ = new list<pair<Value*, BasicBlock*> >();
$$->push_back(make_pair(getVal($1, $3),
(BasicBlock*)getVal(Type::LabelTy, $5)));
}
| PHIList ',' '[' ValueRef ',' ValueRef ']' {
$$ = $1;
$1->push_back(make_pair(getVal($1->front().first->getType(), $4),
(BasicBlock*)getVal(Type::LabelTy, $6)));
}
ValueRefList : Types ValueRef { // Used for call statements...
$$ = new list<Value*>();
$$->push_back(getVal($1, $2));
}
| ValueRefList ',' Types ValueRef {
$$ = $1;
$1->push_back(getVal($3, $4));
}
// ValueRefListE - Just like ValueRefList, except that it may also be empty!
ValueRefListE : ValueRefList | /*empty*/ { $$ = 0; }
InstVal : BinaryOps Types ValueRef ',' ValueRef {
$$ = BinaryOperator::create($1, getVal($2, $3), getVal($2, $5));
if ($$ == 0)
ThrowException("binary operator returned null!");
}
| UnaryOps Types ValueRef {
$$ = UnaryOperator::create($1, getVal($2, $3));
if ($$ == 0)
ThrowException("unary operator returned null!");
}
| ShiftOps Types ValueRef ',' Types ValueRef {
if ($5 != Type::UByteTy) ThrowException("Shift amount must be ubyte!");
$$ = new ShiftInst($1, getVal($2, $3), getVal($5, $6));
}
| CAST Types ValueRef TO Types {
$$ = new CastInst(getVal($2, $3), $5);
}
| PHI PHIList {
const Type *Ty = $2->front().first->getType();
$$ = new PHINode(Ty);
while ($2->begin() != $2->end()) {
if ($2->front().first->getType() != Ty)
ThrowException("All elements of a PHI node must be of the same type!");
((PHINode*)$$)->addIncoming($2->front().first, $2->front().second);
$2->pop_front();
}
delete $2; // Free the list...
}
| CALL Types ValueRef '(' ValueRefListE ')' {
const MethodType *Ty;
if (!(Ty = $2->isMethodType())) {
// Pull out the types of all of the arguments...
vector<const Type*> ParamTypes;
for (list<Value*>::iterator I = $5->begin(), E = $5->end(); I != E; ++I)
ParamTypes.push_back((*I)->getType());
Ty = MethodType::get($2, ParamTypes);
}
Value *V = getVal(Ty, $3); // Get the method we're calling...
// Create the call node...
if (!$5) { // Has no arguments?
$$ = new CallInst(V->castMethodAsserting(), vector<Value*>());
} else { // Has arguments?
// Loop through MethodType's arguments and ensure they are specified
// correctly!
//
MethodType::ParamTypes::const_iterator I = Ty->getParamTypes().begin();
MethodType::ParamTypes::const_iterator E = Ty->getParamTypes().end();
list<Value*>::iterator ArgI = $5->begin(), ArgE = $5->end();
for (; ArgI != ArgE && I != E; ++ArgI, ++I)
if ((*ArgI)->getType() != *I)
ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" +
(*I)->getName() + "'!");
if (I != E || (ArgI != ArgE && !Ty->isVarArg()))
ThrowException("Invalid number of parameters detected!");
$$ = new CallInst(V->castMethodAsserting(),
vector<Value*>($5->begin(), $5->end()));
}
delete $5;
}
| MemoryInst {
$$ = $1;
}
// UByteList - List of ubyte values for load and store instructions
UByteList : ',' ConstVector {
$$ = $2;
} | /* empty */ {
$$ = new vector<ConstPoolVal*>();
}
MemoryInst : MALLOC Types {
$$ = new MallocInst(checkNewType(PointerType::getPointerType($2)));
}
| MALLOC Types ',' UINT ValueRef {
if (!$2->isArrayType() || ((const ArrayType*)$2)->isSized())
ThrowException("Trying to allocate " + $2->getName() +
" as unsized array!");
const Type *Ty = checkNewType(PointerType::getPointerType($2));
$$ = new MallocInst(Ty, getVal($4, $5));
}
| ALLOCA Types {
$$ = new AllocaInst(checkNewType(PointerType::getPointerType($2)));
}
| ALLOCA Types ',' UINT ValueRef {
if (!$2->isArrayType() || ((const ArrayType*)$2)->isSized())
ThrowException("Trying to allocate " + $2->getName() +
" as unsized array!");
const Type *Ty = checkNewType(PointerType::getPointerType($2));
Value *ArrSize = getVal($4, $5);
$$ = new AllocaInst(Ty, ArrSize);
}
| FREE Types ValueRef {
if (!$2->isPointerType())
ThrowException("Trying to free nonpointer type " + $2->getName() + "!");
$$ = new FreeInst(getVal($2, $3));
}
| LOAD Types ValueRef UByteList {
if (!$2->isPointerType())
ThrowException("Can't load from nonpointer type: " + $2->getName());
if (LoadInst::getIndexedType($2, *$4) == 0)
ThrowException("Invalid indices for load instruction!");
$$ = new LoadInst(getVal($2, $3), *$4);
delete $4; // Free the vector...
}
| STORE Types ValueRef ',' Types ValueRef UByteList {
if (!$5->isPointerType())
ThrowException("Can't store to a nonpointer type: " + $5->getName());
const Type *ElTy = StoreInst::getIndexedType($5, *$7);
if (ElTy == 0)
ThrowException("Can't store into that field list!");
if (ElTy != $2)
ThrowException("Can't store '" + $2->getName() + "' into space of type '"+
ElTy->getName() + "'!");
$$ = new StoreInst(getVal($2, $3), getVal($5, $6), *$7);
delete $7;
}
| GETELEMENTPTR Types ValueRef UByteList {
if (!$2->isPointerType())
ThrowException("getelementptr insn requires pointer operand!");
if (!GetElementPtrInst::getIndexedType($2, *$4, true))
ThrowException("Can't get element ptr '" + $2->getName() + "'!");
$$ = new GetElementPtrInst(getVal($2, $3), *$4);
delete $4;
checkNewType($$->getType());
}
%%
int yyerror(const char *ErrorMsg) {
ThrowException(string("Parse error: ") + ErrorMsg);
return 0;
}