460 lines
14 KiB
C++
Raw Normal View History

//===- GVNPRE.cpp - Eliminate redundant values and expressions ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the Owen Anderson and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass performs a hybrid of global value numbering and partial redundancy
// elimination, known as GVN-PRE. It performs partial redundancy elimination on
// values, rather than lexical expressions, allowing a more comprehensive view
// the optimization. It replaces redundant values with uses of earlier
// occurences of the same value. While this is beneficial in that it eliminates
// unneeded computation, it also increases register pressure by creating large
// live ranges, and should be used with caution on platforms that a very
// sensitive to register pressure.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "gvnpre"
#include "llvm/Value.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Instructions.h"
#include "llvm/Function.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
#include <algorithm>
#include <map>
#include <set>
#include <cstdio>
using namespace llvm;
namespace {
class VISIBILITY_HIDDEN GVNPRE : public FunctionPass {
bool runOnFunction(Function &F);
public:
static char ID; // Pass identification, replacement for typeid
GVNPRE() : FunctionPass((intptr_t)&ID) { nextValueNumber = 0; }
private:
uint32_t nextValueNumber;
struct Expression {
char opcode;
Value* value;
uint32_t lhs;
uint32_t rhs;
bool operator<(const Expression& other) const {
if (opcode < other.opcode)
return true;
else if (other.opcode < opcode)
return false;
if (opcode == 0) {
if (value < other.value)
return true;
else
return false;
} else {
if (lhs < other.lhs)
return true;
else if (other.lhs < lhs)
return true;
else if (rhs < other.rhs)
return true;
else
return false;
}
}
bool operator==(const Expression& other) const {
if (opcode != other.opcode)
return false;
if (value != other.value)
return false;
if (lhs != other.lhs)
return false;
if (rhs != other.rhs)
return false;
return true;
}
};
typedef std::map<Expression, uint32_t> ValueTable;
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<DominatorTree>();
AU.addRequired<PostDominatorTree>();
}
// Helper fuctions
// FIXME: eliminate or document these better
void dump(ValueTable& VN, std::set<Expression>& s);
void clean(ValueTable VN, std::set<Expression>& set);
Expression add(ValueTable& VN, std::set<Expression>& MS, Instruction* V);
ValueTable::iterator lookup(ValueTable& VN, Value* V);
Expression buildExpression(ValueTable& VN, Value* V);
std::set<Expression>::iterator find_leader(ValueTable VN,
std::set<Expression>& vals,
uint32_t v);
void phi_translate(ValueTable& VN,
std::set<Expression>& anticIn, BasicBlock* B,
std::set<Expression>& out);
// For a given block, calculate the generated expressions, temporaries,
// and the AVAIL_OUT set
void CalculateAvailOut(ValueTable& VN, std::set<Expression>& MS,
DominatorTree::Node* DI,
std::set<Expression>& currExps,
std::set<PHINode*>& currPhis,
std::set<Expression>& currTemps,
std::set<Expression>& currAvail,
std::map<BasicBlock*, std::set<Expression> > availOut);
};
char GVNPRE::ID = 0;
}
FunctionPass *llvm::createGVNPREPass() { return new GVNPRE(); }
RegisterPass<GVNPRE> X("gvnpre",
"Global Value Numbering/Partial Redundancy Elimination");
// Given a Value, build an Expression to represent it
GVNPRE::Expression GVNPRE::buildExpression(ValueTable& VN, Value* V) {
if (Instruction* I = dyn_cast<Instruction>(V)) {
Expression e;
switch (I->getOpcode()) {
case 7:
e.opcode = 1; // ADD
break;
case 8:
e.opcode = 2; // SUB
break;
case 9:
e.opcode = 3; // MUL
break;
case 10:
e.opcode = 4; // UDIV
break;
case 11:
e.opcode = 5; // SDIV
break;
case 12:
e.opcode = 6; // FDIV
break;
case 13:
e.opcode = 7; // UREM
break;
case 14:
e.opcode = 8; // SREM
break;
case 15:
e.opcode = 9; // FREM
break;
default:
e.opcode = 0; // OPAQUE
e.lhs = 0;
e.rhs = 0;
e.value = V;
return e;
}
e.value = 0;
ValueTable::iterator lhs = lookup(VN, I->getOperand(0));
if (lhs == VN.end()) {
Expression lhsExp = buildExpression(VN, I->getOperand(0));
VN.insert(std::make_pair(lhsExp, nextValueNumber));
e.lhs = nextValueNumber;
nextValueNumber++;
} else
e.lhs = lhs->second;
ValueTable::iterator rhs = lookup(VN, I->getOperand(1));
if (rhs == VN.end()) {
Expression rhsExp = buildExpression(VN, I->getOperand(1));
VN.insert(std::make_pair(rhsExp, nextValueNumber));
e.rhs = nextValueNumber;
nextValueNumber++;
} else
e.rhs = rhs->second;
return e;
} else {
Expression e;
e.opcode = 0;
e.value = V;
e.lhs = 0;
e.rhs = 0;
return e;
}
}
GVNPRE::Expression GVNPRE::add(ValueTable& VN, std::set<Expression>& MS,
Instruction* V) {
Expression e = buildExpression(VN, V);
if (VN.insert(std::make_pair(e, nextValueNumber)).second)
nextValueNumber++;
if (e.opcode != 0 || (e.opcode == 0 && isa<PHINode>(e.value)))
MS.insert(e);
return e;
}
GVNPRE::ValueTable::iterator GVNPRE::lookup(ValueTable& VN, Value* V) {
Expression e = buildExpression(VN, V);
return VN.find(e);
}
std::set<GVNPRE::Expression>::iterator GVNPRE::find_leader(GVNPRE::ValueTable VN,
std::set<GVNPRE::Expression>& vals,
uint32_t v) {
for (std::set<Expression>::iterator I = vals.begin(), E = vals.end();
I != E; ++I)
if (VN[*I] == v)
return I;
return vals.end();
}
void GVNPRE::phi_translate(GVNPRE::ValueTable& VN,
std::set<GVNPRE::Expression>& anticIn, BasicBlock* B,
std::set<GVNPRE::Expression>& out) {
BasicBlock* succ = B->getTerminator()->getSuccessor(0);
for (std::set<Expression>::iterator I = anticIn.begin(), E = anticIn.end();
I != E; ++I) {
if (I->opcode == 0) {
Value *v = I->value;
if (PHINode* p = dyn_cast<PHINode>(v))
if (p->getParent() == succ) {
out.insert(buildExpression(VN, p->getIncomingValueForBlock(B)));
continue;
}
}
//out.insert(*I);
}
}
// Remove all expressions whose operands are not themselves in the set
void GVNPRE::clean(GVNPRE::ValueTable VN, std::set<GVNPRE::Expression>& set) {
unsigned size = set.size();
unsigned old = 0;
while (size != old) {
old = size;
std::vector<Expression> worklist(set.begin(), set.end());
while (!worklist.empty()) {
Expression e = worklist.back();
worklist.pop_back();
if (e.opcode == 0) // OPAQUE
continue;
bool lhsValid = false;
for (std::set<Expression>::iterator I = set.begin(), E = set.end();
I != E; ++I)
if (VN[*I] == e.lhs);
lhsValid = true;
bool rhsValid = false;
for (std::set<Expression>::iterator I = set.begin(), E = set.end();
I != E; ++I)
if (VN[*I] == e.rhs);
rhsValid = true;
if (!lhsValid || !rhsValid)
set.erase(e);
}
size = set.size();
}
}
void GVNPRE::dump(GVNPRE::ValueTable& VN, std::set<GVNPRE::Expression>& s) {
printf("{ ");
for (std::set<Expression>::iterator I = s.begin(), E = s.end(); I != E; ++I) {
printf("(%d, %s, value.%d, value.%d) ", I->opcode, I->value == 0 ? "0" : I->value->getName().c_str(), I->lhs, I->rhs);
}
printf("}\n\n");
}
void GVNPRE::CalculateAvailOut(GVNPRE::ValueTable& VN, std::set<Expression>& MS,
DominatorTree::Node* DI,
std::set<Expression>& currExps,
std::set<PHINode*>& currPhis,
std::set<Expression>& currTemps,
std::set<Expression>& currAvail,
std::map<BasicBlock*, std::set<Expression> > availOut) {
BasicBlock* BB = DI->getBlock();
// A block inherits AVAIL_OUT from its dominator
if (DI->getIDom() != 0)
currAvail.insert(availOut[DI->getIDom()->getBlock()].begin(),
availOut[DI->getIDom()->getBlock()].end());
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
BI != BE; ++BI) {
// Handle PHI nodes...
if (PHINode* p = dyn_cast<PHINode>(BI)) {
add(VN, MS, p);
currPhis.insert(p);
// Handle binary ops...
} else if (BinaryOperator* BO = dyn_cast<BinaryOperator>(BI)) {
Expression leftValue = buildExpression(VN, BO->getOperand(0));
Expression rightValue = buildExpression(VN, BO->getOperand(1));
Expression e = add(VN, MS, BO);
currExps.insert(leftValue);
currExps.insert(rightValue);
currExps.insert(e);
currTemps.insert(e);
// Handle unsupported ops
} else {
Expression e = add(VN, MS, BI);
currTemps.insert(e);
}
currAvail.insert(buildExpression(VN, BI));
}
}
bool GVNPRE::runOnFunction(Function &F) {
ValueTable VN;
std::set<Expression> maximalSet;
std::map<BasicBlock*, std::set<Expression> > generatedExpressions;
std::map<BasicBlock*, std::set<PHINode*> > generatedPhis;
std::map<BasicBlock*, std::set<Expression> > generatedTemporaries;
std::map<BasicBlock*, std::set<Expression> > availableOut;
std::map<BasicBlock*, std::set<Expression> > anticipatedIn;
DominatorTree &DT = getAnalysis<DominatorTree>();
// First Phase of BuildSets - calculate AVAIL_OUT
// Top-down walk of the dominator tree
for (df_iterator<DominatorTree::Node*> DI = df_begin(DT.getRootNode()),
E = df_end(DT.getRootNode()); DI != E; ++DI) {
// Get the sets to update for this block
std::set<Expression>& currExps = generatedExpressions[DI->getBlock()];
std::set<PHINode*>& currPhis = generatedPhis[DI->getBlock()];
std::set<Expression>& currTemps = generatedTemporaries[DI->getBlock()];
std::set<Expression>& currAvail = availableOut[DI->getBlock()];
CalculateAvailOut(VN, maximalSet, *DI, currExps, currPhis,
currTemps, currAvail, availableOut);
}
PostDominatorTree &PDT = getAnalysis<PostDominatorTree>();
// Second Phase of BuildSets - calculate ANTIC_IN
bool changed = true;
unsigned iterations = 0;
while (changed) {
changed = false;
std::set<Expression> anticOut;
// Top-down walk of the postdominator tree
for (df_iterator<PostDominatorTree::Node*> PDI =
df_begin(PDT.getRootNode()), E = df_end(DT.getRootNode());
PDI != E; ++PDI) {
BasicBlock* BB = PDI->getBlock();
std::set<Expression>& anticIn = anticipatedIn[BB];
std::set<Expression> old (anticIn.begin(), anticIn.end());
if (BB->getTerminator()->getNumSuccessors() == 1) {
phi_translate(VN, maximalSet, BB, anticOut);
} else if (BB->getTerminator()->getNumSuccessors() > 1) {
for (unsigned i = 0; i < BB->getTerminator()->getNumSuccessors(); ++i) {
BasicBlock* currSucc = BB->getTerminator()->getSuccessor(i);
std::set<Expression> temp;
if (i == 0)
temp.insert(maximalSet.begin(), maximalSet.end());
else
temp.insert(anticIn.begin(), anticIn.end());
anticIn.clear();
std::insert_iterator<std::set<Expression> > ai_ins(anticIn,
anticIn.begin());
std::set_difference(anticipatedIn[currSucc].begin(),
anticipatedIn[currSucc].end(),
temp.begin(),
temp.end(),
ai_ins);
}
}
std::set<Expression> S;
std::insert_iterator<std::set<Expression> > s_ins(S, S.begin());
std::set_union(anticOut.begin(), anticOut.end(),
generatedExpressions[BB].begin(),
generatedExpressions[BB].end(),
s_ins);
anticIn.clear();
std::insert_iterator<std::set<Expression> > antic_ins(anticIn,
anticIn.begin());
std::set_difference(S.begin(), S.end(),
generatedTemporaries[BB].begin(),
generatedTemporaries[BB].end(),
antic_ins);
clean(VN, anticIn);
if (old != anticIn)
changed = true;
anticOut.clear();
}
iterations++;
}
/*printf("Iterations: %d\n", iterations);
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
printf("Name: ");
printf(I->getName().c_str());
printf("\nTMP_GEN: ");
dump(VN, generatedTemporaries[I]);
printf("\nEXP_GEN: ");
dump(VN, generatedExpressions[I]);
//printf("\nANTIC_OUT: ");
//dump(VN, anticipatedOut[I]);
printf("\nANTIC_IN: \n");
dump(VN, anticipatedIn[I]);
printf("\n");
}*/
return false;
}