llvm-6502/lib/CodeGen/InlineSpiller.cpp

236 lines
8.5 KiB
C++
Raw Normal View History

//===-------- InlineSpiller.cpp - Insert spills and restores inline -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The inline spiller modifies the machine function directly instead of
// inserting spills and restores in VirtRegMap.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "spiller"
#include "Spiller.h"
#include "VirtRegMap.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace {
class InlineSpiller : public Spiller {
MachineFunction &mf_;
LiveIntervals &lis_;
VirtRegMap &vrm_;
MachineFrameInfo &mfi_;
MachineRegisterInfo &mri_;
const TargetInstrInfo &tii_;
const TargetRegisterInfo &tri_;
const BitVector reserved_;
// Variables that are valid during spill(), but used by multiple methods.
LiveInterval *li_;
const TargetRegisterClass *rc_;
int stackSlot_;
const SmallVectorImpl<LiveInterval*> *spillIs_;
~InlineSpiller() {}
public:
InlineSpiller(MachineFunction *mf, LiveIntervals *lis, VirtRegMap *vrm)
: mf_(*mf), lis_(*lis), vrm_(*vrm),
mfi_(*mf->getFrameInfo()),
mri_(mf->getRegInfo()),
tii_(*mf->getTarget().getInstrInfo()),
tri_(*mf->getTarget().getRegisterInfo()),
reserved_(tri_.getReservedRegs(mf_)) {}
void spill(LiveInterval *li,
std::vector<LiveInterval*> &newIntervals,
SmallVectorImpl<LiveInterval*> &spillIs,
SlotIndex *earliestIndex);
bool reMaterialize(LiveInterval &NewLI, MachineBasicBlock::iterator MI);
void insertReload(LiveInterval &NewLI, MachineBasicBlock::iterator MI);
void insertSpill(LiveInterval &NewLI, MachineBasicBlock::iterator MI);
};
}
namespace llvm {
Spiller *createInlineSpiller(MachineFunction *mf,
LiveIntervals *lis,
const MachineLoopInfo *mli,
VirtRegMap *vrm) {
return new InlineSpiller(mf, lis, vrm);
}
}
/// reMaterialize - Attempt to rematerialize li_->reg before MI instead of
/// reloading it.
bool InlineSpiller::reMaterialize(LiveInterval &NewLI,
MachineBasicBlock::iterator MI) {
SlotIndex UseIdx = lis_.getInstructionIndex(MI).getUseIndex();
LiveRange *LR = li_->getLiveRangeContaining(UseIdx);
if (!LR) {
DEBUG(dbgs() << "\tundef at " << UseIdx << ", adding <undef> flags.\n");
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isUse() && MO.getReg() == li_->reg)
MO.setIsUndef();
}
return true;
}
// Find the instruction that defined this value of li_->reg.
if (!LR->valno->isDefAccurate())
return false;
SlotIndex OrigDefIdx = LR->valno->def;
MachineInstr *OrigDefMI = lis_.getInstructionFromIndex(OrigDefIdx);
if (!OrigDefMI)
return false;
// FIXME: Provide AliasAnalysis argument.
if (!tii_.isTriviallyReMaterializable(OrigDefMI))
return false;
// A rematerializable instruction may be using other virtual registers.
// Make sure they are available at the new location.
for (unsigned i = 0, e = OrigDefMI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = OrigDefMI->getOperand(i);
if (!MO.isReg() || !MO.getReg() || MO.getReg() == li_->reg)
continue;
// Reserved physregs are OK. Others are not (probably from coalescing).
if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
if (reserved_.test(MO.getReg()))
continue;
else
return false;
}
// We don't want to move any virtual defs.
if (MO.isDef())
return false;
// We have a use of a virtual register other than li_->reg.
if (MO.isUndef())
continue;
// We cannot depend on virtual registers in spillIs_. They will be spilled.
for (unsigned si = 0, se = spillIs_->size(); si != se; ++si)
if ((*spillIs_)[si]->reg == MO.getReg())
return false;
// Is the register available here with the same value as at OrigDefMI?
LiveInterval &ULI = lis_.getInterval(MO.getReg());
LiveRange *HereLR = ULI.getLiveRangeContaining(UseIdx);
if (!HereLR)
return false;
LiveRange *DefLR = ULI.getLiveRangeContaining(OrigDefIdx.getUseIndex());
if (!DefLR || DefLR->valno != HereLR->valno)
return false;
}
// Finally we can rematerialize OrigDefMI before MI.
MachineBasicBlock &MBB = *MI->getParent();
tii_.reMaterialize(MBB, MI, NewLI.reg, 0, OrigDefMI, tri_);
SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(--MI).getDefIndex();
DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' << *MI);
VNInfo *DefVNI = NewLI.getNextValue(DefIdx, 0, true,
lis_.getVNInfoAllocator());
NewLI.addRange(LiveRange(DefIdx, UseIdx.getDefIndex(), DefVNI));
return true;
}
/// insertReload - Insert a reload of NewLI.reg before MI.
void InlineSpiller::insertReload(LiveInterval &NewLI,
MachineBasicBlock::iterator MI) {
MachineBasicBlock &MBB = *MI->getParent();
SlotIndex Idx = lis_.getInstructionIndex(MI).getDefIndex();
tii_.loadRegFromStackSlot(MBB, MI, NewLI.reg, stackSlot_, rc_, &tri_);
--MI; // Point to load instruction.
SlotIndex LoadIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
vrm_.addSpillSlotUse(stackSlot_, MI);
DEBUG(dbgs() << "\treload: " << LoadIdx << '\t' << *MI);
VNInfo *LoadVNI = NewLI.getNextValue(LoadIdx, 0, true,
lis_.getVNInfoAllocator());
NewLI.addRange(LiveRange(LoadIdx, Idx, LoadVNI));
}
/// insertSpill - Insert a spill of NewLI.reg after MI.
void InlineSpiller::insertSpill(LiveInterval &NewLI,
MachineBasicBlock::iterator MI) {
MachineBasicBlock &MBB = *MI->getParent();
SlotIndex Idx = lis_.getInstructionIndex(MI).getDefIndex();
tii_.storeRegToStackSlot(MBB, ++MI, NewLI.reg, true, stackSlot_, rc_, &tri_);
--MI; // Point to store instruction.
SlotIndex StoreIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
vrm_.addSpillSlotUse(stackSlot_, MI);
DEBUG(dbgs() << "\tspilled: " << StoreIdx << '\t' << *MI);
VNInfo *StoreVNI = NewLI.getNextValue(Idx, 0, true,
lis_.getVNInfoAllocator());
NewLI.addRange(LiveRange(Idx, StoreIdx, StoreVNI));
}
void InlineSpiller::spill(LiveInterval *li,
std::vector<LiveInterval*> &newIntervals,
SmallVectorImpl<LiveInterval*> &spillIs,
SlotIndex *earliestIndex) {
DEBUG(dbgs() << "Inline spilling " << *li << "\n");
assert(li->isSpillable() && "Attempting to spill already spilled value.");
assert(!li->isStackSlot() && "Trying to spill a stack slot.");
li_ = li;
rc_ = mri_.getRegClass(li->reg);
stackSlot_ = vrm_.assignVirt2StackSlot(li->reg);
spillIs_ = &spillIs;
// Iterate over instructions using register.
for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(li->reg);
MachineInstr *MI = RI.skipInstruction();) {
// Analyze instruction.
bool Reads, Writes;
SmallVector<unsigned, 8> Ops;
tie(Reads, Writes) = MI->readsWritesVirtualRegister(li->reg, &Ops);
// Allocate interval around instruction.
// FIXME: Infer regclass from instruction alone.
unsigned NewVReg = mri_.createVirtualRegister(rc_);
vrm_.grow();
LiveInterval &NewLI = lis_.getOrCreateInterval(NewVReg);
NewLI.markNotSpillable();
// Attempt remat instead of reload.
bool NeedsReload = Reads && !reMaterialize(NewLI, MI);
if (NeedsReload)
insertReload(NewLI, MI);
// Rewrite instruction operands.
bool hasLiveDef = false;
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(Ops[i]);
MO.setReg(NewVReg);
if (MO.isUse()) {
if (!MI->isRegTiedToDefOperand(Ops[i]))
MO.setIsKill();
} else {
if (!MO.isDead())
hasLiveDef = true;
}
}
// FIXME: Use a second vreg if instruction has no tied ops.
if (Writes && hasLiveDef)
insertSpill(NewLI, MI);
DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
newIntervals.push_back(&NewLI);
}
}