llvm-6502/lib/Transforms/Utils/LoopUnroll.cpp

480 lines
18 KiB
C++
Raw Normal View History

//===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements some loop unrolling utilities. It does not define any
// actual pass or policy, but provides a single function to perform loop
// unrolling.
//
// The process of unrolling can produce extraneous basic blocks linked with
// unconditional branches. This will be corrected in the future.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "loop-unroll"
#include "llvm/Transforms/Utils/UnrollLoop.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
[LPM] Make LoopSimplify no longer a LoopPass and instead both a utility function and a FunctionPass. This has many benefits. The motivating use case was to be able to compute function analysis passes *after* running LoopSimplify (to avoid invalidating them) and then to run other passes which require LoopSimplify. Specifically passes like unrolling and vectorization are critical to wire up to BranchProbabilityInfo and BlockFrequencyInfo so that they can be profile aware. For the LoopVectorize pass the only things in the way are LoopSimplify and LCSSA. This fixes LoopSimplify and LCSSA is next on my list. There are also a bunch of other benefits of doing this: - It is now very feasible to make more passes *preserve* LoopSimplify because they can simply run it after changing a loop. Because subsequence passes can assume LoopSimplify is preserved we can reduce the runs of this pass to the times when we actually mutate a loop structure. - The new pass manager should be able to more easily support loop passes factored in this way. - We can at long, long last observe that LoopSimplify is preserved across SCEV. This *halves* the number of times we run LoopSimplify!!! Now, getting here wasn't trivial. First off, the interfaces used by LoopSimplify are all over the map regarding how analysis are updated. We end up with weird "pass" parameters as a consequence. I'll try to clean at least some of this up later -- I'll have to have it all clean for the new pass manager. Next up I discovered a really frustrating bug. LoopUnroll *claims* to preserve LoopSimplify. That's actually a lie. But the way the LoopPassManager ends up running the passes, it always ran LoopSimplify on the unrolled-into loop, rectifying this oversight before any verification could kick in and point out that in fact nothing was preserved. So I've added code to the unroller to *actually* simplify the surrounding loop when it succeeds at unrolling. The only functional change in the test suite is that we now catch a case that was previously missed because SCEV and other loop transforms see their containing loops as simplified and thus don't miss some opportunities. One test case has been converted to check that we catch this case rather than checking that we miss it but at least don't get the wrong answer. Note that I have #if-ed out all of the verification logic in LoopSimplify! This is a temporary workaround while extracting these bits from the LoopPassManager. Currently, there is no way to have a pass in the LoopPassManager which preserves LoopSimplify along with one which does not. The LPM will try to verify on each loop in the nest that LoopSimplify holds but the now-Function-pass cannot distinguish what loop is being verified and so must try to verify all of them. The inner most loop is clearly no longer simplified as there is a pass which didn't even *attempt* to preserve it. =/ Once I get LCSSA out (and maybe LoopVectorize and some other fixes) I'll be able to re-enable this check and catch any places where we are still failing to preserve LoopSimplify. If this causes problems I can back this out and try to commit *all* of this at once, but so far this seems to work and allow much more incremental progress. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199884 91177308-0d34-0410-b5e6-96231b3b80d8
2014-01-23 11:23:19 +00:00
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/SimplifyIndVar.h"
using namespace llvm;
// TODO: Should these be here or in LoopUnroll?
STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
/// RemapInstruction - Convert the instruction operands from referencing the
/// current values into those specified by VMap.
static inline void RemapInstruction(Instruction *I,
ValueToValueMapTy &VMap) {
for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
Value *Op = I->getOperand(op);
ValueToValueMapTy::iterator It = VMap.find(Op);
if (It != VMap.end())
I->setOperand(op, It->second);
}
if (PHINode *PN = dyn_cast<PHINode>(I)) {
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
if (It != VMap.end())
PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
}
}
}
/// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
/// only has one predecessor, and that predecessor only has one successor.
/// The LoopInfo Analysis that is passed will be kept consistent.
/// Returns the new combined block.
static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI,
LPPassManager *LPM) {
// Merge basic blocks into their predecessor if there is only one distinct
// pred, and if there is only one distinct successor of the predecessor, and
// if there are no PHI nodes.
BasicBlock *OnlyPred = BB->getSinglePredecessor();
if (!OnlyPred) return 0;
if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
return 0;
DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
// Resolve any PHI nodes at the start of the block. They are all
// guaranteed to have exactly one entry if they exist, unless there are
// multiple duplicate (but guaranteed to be equal) entries for the
// incoming edges. This occurs when there are multiple edges from
// OnlyPred to OnlySucc.
FoldSingleEntryPHINodes(BB);
// Delete the unconditional branch from the predecessor...
OnlyPred->getInstList().pop_back();
// Make all PHI nodes that referred to BB now refer to Pred as their
// source...
BB->replaceAllUsesWith(OnlyPred);
// Move all definitions in the successor to the predecessor...
OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
// OldName will be valid until erased.
StringRef OldName = BB->getName();
// Erase basic block from the function...
// ScalarEvolution holds references to loop exit blocks.
if (LPM) {
if (ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>()) {
if (Loop *L = LI->getLoopFor(BB))
SE->forgetLoop(L);
}
}
LI->removeBlock(BB);
// Inherit predecessor's name if it exists...
if (!OldName.empty() && !OnlyPred->hasName())
OnlyPred->setName(OldName);
BB->eraseFromParent();
return OnlyPred;
}
/// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
/// if unrolling was successful, or false if the loop was unmodified. Unrolling
/// can only fail when the loop's latch block is not terminated by a conditional
/// branch instruction. However, if the trip count (and multiple) are not known,
/// loop unrolling will mostly produce more code that is no faster.
///
/// TripCount is generally defined as the number of times the loop header
/// executes. UnrollLoop relaxes the definition to permit early exits: here
/// TripCount is the iteration on which control exits LatchBlock if no early
/// exits were taken. Note that UnrollLoop assumes that the loop counter test
/// terminates LatchBlock in order to remove unnecesssary instances of the
/// test. In other words, control may exit the loop prior to TripCount
/// iterations via an early branch, but control may not exit the loop from the
/// LatchBlock's terminator prior to TripCount iterations.
///
/// Similarly, TripMultiple divides the number of times that the LatchBlock may
/// execute without exiting the loop.
///
/// The LoopInfo Analysis that is passed will be kept consistent.
///
/// If a LoopPassManager is passed in, and the loop is fully removed, it will be
/// removed from the LoopPassManager as well. LPM can also be NULL.
///
/// This utility preserves LoopInfo. If DominatorTree or ScalarEvolution are
[LPM] Make LoopSimplify no longer a LoopPass and instead both a utility function and a FunctionPass. This has many benefits. The motivating use case was to be able to compute function analysis passes *after* running LoopSimplify (to avoid invalidating them) and then to run other passes which require LoopSimplify. Specifically passes like unrolling and vectorization are critical to wire up to BranchProbabilityInfo and BlockFrequencyInfo so that they can be profile aware. For the LoopVectorize pass the only things in the way are LoopSimplify and LCSSA. This fixes LoopSimplify and LCSSA is next on my list. There are also a bunch of other benefits of doing this: - It is now very feasible to make more passes *preserve* LoopSimplify because they can simply run it after changing a loop. Because subsequence passes can assume LoopSimplify is preserved we can reduce the runs of this pass to the times when we actually mutate a loop structure. - The new pass manager should be able to more easily support loop passes factored in this way. - We can at long, long last observe that LoopSimplify is preserved across SCEV. This *halves* the number of times we run LoopSimplify!!! Now, getting here wasn't trivial. First off, the interfaces used by LoopSimplify are all over the map regarding how analysis are updated. We end up with weird "pass" parameters as a consequence. I'll try to clean at least some of this up later -- I'll have to have it all clean for the new pass manager. Next up I discovered a really frustrating bug. LoopUnroll *claims* to preserve LoopSimplify. That's actually a lie. But the way the LoopPassManager ends up running the passes, it always ran LoopSimplify on the unrolled-into loop, rectifying this oversight before any verification could kick in and point out that in fact nothing was preserved. So I've added code to the unroller to *actually* simplify the surrounding loop when it succeeds at unrolling. The only functional change in the test suite is that we now catch a case that was previously missed because SCEV and other loop transforms see their containing loops as simplified and thus don't miss some opportunities. One test case has been converted to check that we catch this case rather than checking that we miss it but at least don't get the wrong answer. Note that I have #if-ed out all of the verification logic in LoopSimplify! This is a temporary workaround while extracting these bits from the LoopPassManager. Currently, there is no way to have a pass in the LoopPassManager which preserves LoopSimplify along with one which does not. The LPM will try to verify on each loop in the nest that LoopSimplify holds but the now-Function-pass cannot distinguish what loop is being verified and so must try to verify all of them. The inner most loop is clearly no longer simplified as there is a pass which didn't even *attempt* to preserve it. =/ Once I get LCSSA out (and maybe LoopVectorize and some other fixes) I'll be able to re-enable this check and catch any places where we are still failing to preserve LoopSimplify. If this causes problems I can back this out and try to commit *all* of this at once, but so far this seems to work and allow much more incremental progress. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199884 91177308-0d34-0410-b5e6-96231b3b80d8
2014-01-23 11:23:19 +00:00
/// available from the Pass it must also preserve those analyses.
bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
bool AllowRuntime, unsigned TripMultiple,
[LPM] Make LoopSimplify no longer a LoopPass and instead both a utility function and a FunctionPass. This has many benefits. The motivating use case was to be able to compute function analysis passes *after* running LoopSimplify (to avoid invalidating them) and then to run other passes which require LoopSimplify. Specifically passes like unrolling and vectorization are critical to wire up to BranchProbabilityInfo and BlockFrequencyInfo so that they can be profile aware. For the LoopVectorize pass the only things in the way are LoopSimplify and LCSSA. This fixes LoopSimplify and LCSSA is next on my list. There are also a bunch of other benefits of doing this: - It is now very feasible to make more passes *preserve* LoopSimplify because they can simply run it after changing a loop. Because subsequence passes can assume LoopSimplify is preserved we can reduce the runs of this pass to the times when we actually mutate a loop structure. - The new pass manager should be able to more easily support loop passes factored in this way. - We can at long, long last observe that LoopSimplify is preserved across SCEV. This *halves* the number of times we run LoopSimplify!!! Now, getting here wasn't trivial. First off, the interfaces used by LoopSimplify are all over the map regarding how analysis are updated. We end up with weird "pass" parameters as a consequence. I'll try to clean at least some of this up later -- I'll have to have it all clean for the new pass manager. Next up I discovered a really frustrating bug. LoopUnroll *claims* to preserve LoopSimplify. That's actually a lie. But the way the LoopPassManager ends up running the passes, it always ran LoopSimplify on the unrolled-into loop, rectifying this oversight before any verification could kick in and point out that in fact nothing was preserved. So I've added code to the unroller to *actually* simplify the surrounding loop when it succeeds at unrolling. The only functional change in the test suite is that we now catch a case that was previously missed because SCEV and other loop transforms see their containing loops as simplified and thus don't miss some opportunities. One test case has been converted to check that we catch this case rather than checking that we miss it but at least don't get the wrong answer. Note that I have #if-ed out all of the verification logic in LoopSimplify! This is a temporary workaround while extracting these bits from the LoopPassManager. Currently, there is no way to have a pass in the LoopPassManager which preserves LoopSimplify along with one which does not. The LPM will try to verify on each loop in the nest that LoopSimplify holds but the now-Function-pass cannot distinguish what loop is being verified and so must try to verify all of them. The inner most loop is clearly no longer simplified as there is a pass which didn't even *attempt* to preserve it. =/ Once I get LCSSA out (and maybe LoopVectorize and some other fixes) I'll be able to re-enable this check and catch any places where we are still failing to preserve LoopSimplify. If this causes problems I can back this out and try to commit *all* of this at once, but so far this seems to work and allow much more incremental progress. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199884 91177308-0d34-0410-b5e6-96231b3b80d8
2014-01-23 11:23:19 +00:00
LoopInfo *LI, Pass *PP, LPPassManager *LPM) {
BasicBlock *Preheader = L->getLoopPreheader();
if (!Preheader) {
DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n");
return false;
}
BasicBlock *LatchBlock = L->getLoopLatch();
if (!LatchBlock) {
DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n");
return false;
}
// Loops with indirectbr cannot be cloned.
if (!L->isSafeToClone()) {
DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n");
return false;
}
BasicBlock *Header = L->getHeader();
BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
if (!BI || BI->isUnconditional()) {
// The loop-rotate pass can be helpful to avoid this in many cases.
DEBUG(dbgs() <<
" Can't unroll; loop not terminated by a conditional branch.\n");
return false;
}
if (Header->hasAddressTaken()) {
// The loop-rotate pass can be helpful to avoid this in many cases.
DEBUG(dbgs() <<
" Won't unroll loop: address of header block is taken.\n");
return false;
}
if (TripCount != 0)
DEBUG(dbgs() << " Trip Count = " << TripCount << "\n");
if (TripMultiple != 1)
DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n");
// Effectively "DCE" unrolled iterations that are beyond the tripcount
// and will never be executed.
if (TripCount != 0 && Count > TripCount)
Count = TripCount;
// Don't enter the unroll code if there is nothing to do. This way we don't
// need to support "partial unrolling by 1".
if (TripCount == 0 && Count < 2)
return false;
assert(Count > 0);
assert(TripMultiple > 0);
assert(TripCount == 0 || TripCount % TripMultiple == 0);
// Are we eliminating the loop control altogether?
bool CompletelyUnroll = Count == TripCount;
// We assume a run-time trip count if the compiler cannot
// figure out the loop trip count and the unroll-runtime
// flag is specified.
bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
if (RuntimeTripCount && !UnrollRuntimeLoopProlog(L, Count, LI, LPM))
return false;
// Notify ScalarEvolution that the loop will be substantially changed,
// if not outright eliminated.
[LPM] Make LoopSimplify no longer a LoopPass and instead both a utility function and a FunctionPass. This has many benefits. The motivating use case was to be able to compute function analysis passes *after* running LoopSimplify (to avoid invalidating them) and then to run other passes which require LoopSimplify. Specifically passes like unrolling and vectorization are critical to wire up to BranchProbabilityInfo and BlockFrequencyInfo so that they can be profile aware. For the LoopVectorize pass the only things in the way are LoopSimplify and LCSSA. This fixes LoopSimplify and LCSSA is next on my list. There are also a bunch of other benefits of doing this: - It is now very feasible to make more passes *preserve* LoopSimplify because they can simply run it after changing a loop. Because subsequence passes can assume LoopSimplify is preserved we can reduce the runs of this pass to the times when we actually mutate a loop structure. - The new pass manager should be able to more easily support loop passes factored in this way. - We can at long, long last observe that LoopSimplify is preserved across SCEV. This *halves* the number of times we run LoopSimplify!!! Now, getting here wasn't trivial. First off, the interfaces used by LoopSimplify are all over the map regarding how analysis are updated. We end up with weird "pass" parameters as a consequence. I'll try to clean at least some of this up later -- I'll have to have it all clean for the new pass manager. Next up I discovered a really frustrating bug. LoopUnroll *claims* to preserve LoopSimplify. That's actually a lie. But the way the LoopPassManager ends up running the passes, it always ran LoopSimplify on the unrolled-into loop, rectifying this oversight before any verification could kick in and point out that in fact nothing was preserved. So I've added code to the unroller to *actually* simplify the surrounding loop when it succeeds at unrolling. The only functional change in the test suite is that we now catch a case that was previously missed because SCEV and other loop transforms see their containing loops as simplified and thus don't miss some opportunities. One test case has been converted to check that we catch this case rather than checking that we miss it but at least don't get the wrong answer. Note that I have #if-ed out all of the verification logic in LoopSimplify! This is a temporary workaround while extracting these bits from the LoopPassManager. Currently, there is no way to have a pass in the LoopPassManager which preserves LoopSimplify along with one which does not. The LPM will try to verify on each loop in the nest that LoopSimplify holds but the now-Function-pass cannot distinguish what loop is being verified and so must try to verify all of them. The inner most loop is clearly no longer simplified as there is a pass which didn't even *attempt* to preserve it. =/ Once I get LCSSA out (and maybe LoopVectorize and some other fixes) I'll be able to re-enable this check and catch any places where we are still failing to preserve LoopSimplify. If this causes problems I can back this out and try to commit *all* of this at once, but so far this seems to work and allow much more incremental progress. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199884 91177308-0d34-0410-b5e6-96231b3b80d8
2014-01-23 11:23:19 +00:00
if (PP) {
ScalarEvolution *SE = PP->getAnalysisIfAvailable<ScalarEvolution>();
if (SE)
SE->forgetLoop(L);
}
// If we know the trip count, we know the multiple...
unsigned BreakoutTrip = 0;
if (TripCount != 0) {
BreakoutTrip = TripCount % Count;
TripMultiple = 0;
} else {
// Figure out what multiple to use.
BreakoutTrip = TripMultiple =
(unsigned)GreatestCommonDivisor64(Count, TripMultiple);
}
if (CompletelyUnroll) {
DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
<< " with trip count " << TripCount << "!\n");
} else {
DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
<< " by " << Count);
if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
} else if (TripMultiple != 1) {
DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
} else if (RuntimeTripCount) {
DEBUG(dbgs() << " with run-time trip count");
}
DEBUG(dbgs() << "!\n");
}
bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
// For the first iteration of the loop, we should use the precloned values for
// PHI nodes. Insert associations now.
ValueToValueMapTy LastValueMap;
std::vector<PHINode*> OrigPHINode;
for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
OrigPHINode.push_back(cast<PHINode>(I));
}
std::vector<BasicBlock*> Headers;
std::vector<BasicBlock*> Latches;
Headers.push_back(Header);
Latches.push_back(LatchBlock);
// The current on-the-fly SSA update requires blocks to be processed in
// reverse postorder so that LastValueMap contains the correct value at each
// exit.
LoopBlocksDFS DFS(L);
DFS.perform(LI);
// Stash the DFS iterators before adding blocks to the loop.
LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
for (unsigned It = 1; It != Count; ++It) {
std::vector<BasicBlock*> NewBlocks;
for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
ValueToValueMapTy VMap;
BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
Header->getParent()->getBasicBlockList().push_back(New);
// Loop over all of the PHI nodes in the block, changing them to use the
// incoming values from the previous block.
if (*BB == Header)
for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]);
Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
if (Instruction *InValI = dyn_cast<Instruction>(InVal))
if (It > 1 && L->contains(InValI))
InVal = LastValueMap[InValI];
VMap[OrigPHINode[i]] = InVal;
New->getInstList().erase(NewPHI);
}
// Update our running map of newest clones
LastValueMap[*BB] = New;
for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
VI != VE; ++VI)
LastValueMap[VI->first] = VI->second;
L->addBasicBlockToLoop(New, LI->getBase());
// Add phi entries for newly created values to all exit blocks.
for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB);
SI != SE; ++SI) {
if (L->contains(*SI))
continue;
for (BasicBlock::iterator BBI = (*SI)->begin();
PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
Value *Incoming = phi->getIncomingValueForBlock(*BB);
ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
if (It != LastValueMap.end())
Incoming = It->second;
phi->addIncoming(Incoming, New);
}
}
// Keep track of new headers and latches as we create them, so that
// we can insert the proper branches later.
if (*BB == Header)
Headers.push_back(New);
if (*BB == LatchBlock)
Latches.push_back(New);
NewBlocks.push_back(New);
}
// Remap all instructions in the most recent iteration
for (unsigned i = 0; i < NewBlocks.size(); ++i)
for (BasicBlock::iterator I = NewBlocks[i]->begin(),
E = NewBlocks[i]->end(); I != E; ++I)
::RemapInstruction(I, LastValueMap);
}
// Loop over the PHI nodes in the original block, setting incoming values.
for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
PHINode *PN = OrigPHINode[i];
if (CompletelyUnroll) {
PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
Header->getInstList().erase(PN);
}
else if (Count > 1) {
Value *InVal = PN->removeIncomingValue(LatchBlock, false);
// If this value was defined in the loop, take the value defined by the
// last iteration of the loop.
if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
if (L->contains(InValI))
InVal = LastValueMap[InVal];
}
assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
PN->addIncoming(InVal, Latches.back());
}
}
// Now that all the basic blocks for the unrolled iterations are in place,
// set up the branches to connect them.
for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
// The original branch was replicated in each unrolled iteration.
BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
// The branch destination.
unsigned j = (i + 1) % e;
BasicBlock *Dest = Headers[j];
bool NeedConditional = true;
if (RuntimeTripCount && j != 0) {
NeedConditional = false;
}
// For a complete unroll, make the last iteration end with a branch
// to the exit block.
if (CompletelyUnroll && j == 0) {
Dest = LoopExit;
NeedConditional = false;
}
// If we know the trip count or a multiple of it, we can safely use an
// unconditional branch for some iterations.
if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
NeedConditional = false;
}
if (NeedConditional) {
// Update the conditional branch's successor for the following
// iteration.
Term->setSuccessor(!ContinueOnTrue, Dest);
} else {
// Remove phi operands at this loop exit
if (Dest != LoopExit) {
BasicBlock *BB = Latches[i];
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
SI != SE; ++SI) {
if (*SI == Headers[i])
continue;
for (BasicBlock::iterator BBI = (*SI)->begin();
PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
Phi->removeIncomingValue(BB, false);
}
}
}
// Replace the conditional branch with an unconditional one.
BranchInst::Create(Dest, Term);
Term->eraseFromParent();
}
}
// Merge adjacent basic blocks, if possible.
for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
if (Term->isUnconditional()) {
BasicBlock *Dest = Term->getSuccessor(0);
if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, LPM))
std::replace(Latches.begin(), Latches.end(), Dest, Fold);
}
}
[LPM] Make LoopSimplify no longer a LoopPass and instead both a utility function and a FunctionPass. This has many benefits. The motivating use case was to be able to compute function analysis passes *after* running LoopSimplify (to avoid invalidating them) and then to run other passes which require LoopSimplify. Specifically passes like unrolling and vectorization are critical to wire up to BranchProbabilityInfo and BlockFrequencyInfo so that they can be profile aware. For the LoopVectorize pass the only things in the way are LoopSimplify and LCSSA. This fixes LoopSimplify and LCSSA is next on my list. There are also a bunch of other benefits of doing this: - It is now very feasible to make more passes *preserve* LoopSimplify because they can simply run it after changing a loop. Because subsequence passes can assume LoopSimplify is preserved we can reduce the runs of this pass to the times when we actually mutate a loop structure. - The new pass manager should be able to more easily support loop passes factored in this way. - We can at long, long last observe that LoopSimplify is preserved across SCEV. This *halves* the number of times we run LoopSimplify!!! Now, getting here wasn't trivial. First off, the interfaces used by LoopSimplify are all over the map regarding how analysis are updated. We end up with weird "pass" parameters as a consequence. I'll try to clean at least some of this up later -- I'll have to have it all clean for the new pass manager. Next up I discovered a really frustrating bug. LoopUnroll *claims* to preserve LoopSimplify. That's actually a lie. But the way the LoopPassManager ends up running the passes, it always ran LoopSimplify on the unrolled-into loop, rectifying this oversight before any verification could kick in and point out that in fact nothing was preserved. So I've added code to the unroller to *actually* simplify the surrounding loop when it succeeds at unrolling. The only functional change in the test suite is that we now catch a case that was previously missed because SCEV and other loop transforms see their containing loops as simplified and thus don't miss some opportunities. One test case has been converted to check that we catch this case rather than checking that we miss it but at least don't get the wrong answer. Note that I have #if-ed out all of the verification logic in LoopSimplify! This is a temporary workaround while extracting these bits from the LoopPassManager. Currently, there is no way to have a pass in the LoopPassManager which preserves LoopSimplify along with one which does not. The LPM will try to verify on each loop in the nest that LoopSimplify holds but the now-Function-pass cannot distinguish what loop is being verified and so must try to verify all of them. The inner most loop is clearly no longer simplified as there is a pass which didn't even *attempt* to preserve it. =/ Once I get LCSSA out (and maybe LoopVectorize and some other fixes) I'll be able to re-enable this check and catch any places where we are still failing to preserve LoopSimplify. If this causes problems I can back this out and try to commit *all* of this at once, but so far this seems to work and allow much more incremental progress. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199884 91177308-0d34-0410-b5e6-96231b3b80d8
2014-01-23 11:23:19 +00:00
DominatorTree *DT = 0;
if (PP) {
// FIXME: Reconstruct dom info, because it is not preserved properly.
// Incrementally updating domtree after loop unrolling would be easy.
if (DominatorTreeWrapperPass *DTWP =
[LPM] Make LoopSimplify no longer a LoopPass and instead both a utility function and a FunctionPass. This has many benefits. The motivating use case was to be able to compute function analysis passes *after* running LoopSimplify (to avoid invalidating them) and then to run other passes which require LoopSimplify. Specifically passes like unrolling and vectorization are critical to wire up to BranchProbabilityInfo and BlockFrequencyInfo so that they can be profile aware. For the LoopVectorize pass the only things in the way are LoopSimplify and LCSSA. This fixes LoopSimplify and LCSSA is next on my list. There are also a bunch of other benefits of doing this: - It is now very feasible to make more passes *preserve* LoopSimplify because they can simply run it after changing a loop. Because subsequence passes can assume LoopSimplify is preserved we can reduce the runs of this pass to the times when we actually mutate a loop structure. - The new pass manager should be able to more easily support loop passes factored in this way. - We can at long, long last observe that LoopSimplify is preserved across SCEV. This *halves* the number of times we run LoopSimplify!!! Now, getting here wasn't trivial. First off, the interfaces used by LoopSimplify are all over the map regarding how analysis are updated. We end up with weird "pass" parameters as a consequence. I'll try to clean at least some of this up later -- I'll have to have it all clean for the new pass manager. Next up I discovered a really frustrating bug. LoopUnroll *claims* to preserve LoopSimplify. That's actually a lie. But the way the LoopPassManager ends up running the passes, it always ran LoopSimplify on the unrolled-into loop, rectifying this oversight before any verification could kick in and point out that in fact nothing was preserved. So I've added code to the unroller to *actually* simplify the surrounding loop when it succeeds at unrolling. The only functional change in the test suite is that we now catch a case that was previously missed because SCEV and other loop transforms see their containing loops as simplified and thus don't miss some opportunities. One test case has been converted to check that we catch this case rather than checking that we miss it but at least don't get the wrong answer. Note that I have #if-ed out all of the verification logic in LoopSimplify! This is a temporary workaround while extracting these bits from the LoopPassManager. Currently, there is no way to have a pass in the LoopPassManager which preserves LoopSimplify along with one which does not. The LPM will try to verify on each loop in the nest that LoopSimplify holds but the now-Function-pass cannot distinguish what loop is being verified and so must try to verify all of them. The inner most loop is clearly no longer simplified as there is a pass which didn't even *attempt* to preserve it. =/ Once I get LCSSA out (and maybe LoopVectorize and some other fixes) I'll be able to re-enable this check and catch any places where we are still failing to preserve LoopSimplify. If this causes problems I can back this out and try to commit *all* of this at once, but so far this seems to work and allow much more incremental progress. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199884 91177308-0d34-0410-b5e6-96231b3b80d8
2014-01-23 11:23:19 +00:00
PP->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) {
DT = &DTWP->getDomTree();
DT->recalculate(*L->getHeader()->getParent());
}
// Simplify any new induction variables in the partially unrolled loop.
[LPM] Make LoopSimplify no longer a LoopPass and instead both a utility function and a FunctionPass. This has many benefits. The motivating use case was to be able to compute function analysis passes *after* running LoopSimplify (to avoid invalidating them) and then to run other passes which require LoopSimplify. Specifically passes like unrolling and vectorization are critical to wire up to BranchProbabilityInfo and BlockFrequencyInfo so that they can be profile aware. For the LoopVectorize pass the only things in the way are LoopSimplify and LCSSA. This fixes LoopSimplify and LCSSA is next on my list. There are also a bunch of other benefits of doing this: - It is now very feasible to make more passes *preserve* LoopSimplify because they can simply run it after changing a loop. Because subsequence passes can assume LoopSimplify is preserved we can reduce the runs of this pass to the times when we actually mutate a loop structure. - The new pass manager should be able to more easily support loop passes factored in this way. - We can at long, long last observe that LoopSimplify is preserved across SCEV. This *halves* the number of times we run LoopSimplify!!! Now, getting here wasn't trivial. First off, the interfaces used by LoopSimplify are all over the map regarding how analysis are updated. We end up with weird "pass" parameters as a consequence. I'll try to clean at least some of this up later -- I'll have to have it all clean for the new pass manager. Next up I discovered a really frustrating bug. LoopUnroll *claims* to preserve LoopSimplify. That's actually a lie. But the way the LoopPassManager ends up running the passes, it always ran LoopSimplify on the unrolled-into loop, rectifying this oversight before any verification could kick in and point out that in fact nothing was preserved. So I've added code to the unroller to *actually* simplify the surrounding loop when it succeeds at unrolling. The only functional change in the test suite is that we now catch a case that was previously missed because SCEV and other loop transforms see their containing loops as simplified and thus don't miss some opportunities. One test case has been converted to check that we catch this case rather than checking that we miss it but at least don't get the wrong answer. Note that I have #if-ed out all of the verification logic in LoopSimplify! This is a temporary workaround while extracting these bits from the LoopPassManager. Currently, there is no way to have a pass in the LoopPassManager which preserves LoopSimplify along with one which does not. The LPM will try to verify on each loop in the nest that LoopSimplify holds but the now-Function-pass cannot distinguish what loop is being verified and so must try to verify all of them. The inner most loop is clearly no longer simplified as there is a pass which didn't even *attempt* to preserve it. =/ Once I get LCSSA out (and maybe LoopVectorize and some other fixes) I'll be able to re-enable this check and catch any places where we are still failing to preserve LoopSimplify. If this causes problems I can back this out and try to commit *all* of this at once, but so far this seems to work and allow much more incremental progress. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199884 91177308-0d34-0410-b5e6-96231b3b80d8
2014-01-23 11:23:19 +00:00
ScalarEvolution *SE = PP->getAnalysisIfAvailable<ScalarEvolution>();
if (SE && !CompletelyUnroll) {
SmallVector<WeakVH, 16> DeadInsts;
simplifyLoopIVs(L, SE, LPM, DeadInsts);
// Aggressively clean up dead instructions that simplifyLoopIVs already
// identified. Any remaining should be cleaned up below.
while (!DeadInsts.empty())
if (Instruction *Inst =
dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
RecursivelyDeleteTriviallyDeadInstructions(Inst);
}
}
// At this point, the code is well formed. We now do a quick sweep over the
// inserted code, doing constant propagation and dead code elimination as we
// go.
const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
Instruction *Inst = I++;
if (isInstructionTriviallyDead(Inst))
(*BB)->getInstList().erase(Inst);
else if (Value *V = SimplifyInstruction(Inst))
if (LI->replacementPreservesLCSSAForm(Inst, V)) {
Inst->replaceAllUsesWith(V);
(*BB)->getInstList().erase(Inst);
}
}
NumCompletelyUnrolled += CompletelyUnroll;
++NumUnrolled;
[LPM] Make LoopSimplify no longer a LoopPass and instead both a utility function and a FunctionPass. This has many benefits. The motivating use case was to be able to compute function analysis passes *after* running LoopSimplify (to avoid invalidating them) and then to run other passes which require LoopSimplify. Specifically passes like unrolling and vectorization are critical to wire up to BranchProbabilityInfo and BlockFrequencyInfo so that they can be profile aware. For the LoopVectorize pass the only things in the way are LoopSimplify and LCSSA. This fixes LoopSimplify and LCSSA is next on my list. There are also a bunch of other benefits of doing this: - It is now very feasible to make more passes *preserve* LoopSimplify because they can simply run it after changing a loop. Because subsequence passes can assume LoopSimplify is preserved we can reduce the runs of this pass to the times when we actually mutate a loop structure. - The new pass manager should be able to more easily support loop passes factored in this way. - We can at long, long last observe that LoopSimplify is preserved across SCEV. This *halves* the number of times we run LoopSimplify!!! Now, getting here wasn't trivial. First off, the interfaces used by LoopSimplify are all over the map regarding how analysis are updated. We end up with weird "pass" parameters as a consequence. I'll try to clean at least some of this up later -- I'll have to have it all clean for the new pass manager. Next up I discovered a really frustrating bug. LoopUnroll *claims* to preserve LoopSimplify. That's actually a lie. But the way the LoopPassManager ends up running the passes, it always ran LoopSimplify on the unrolled-into loop, rectifying this oversight before any verification could kick in and point out that in fact nothing was preserved. So I've added code to the unroller to *actually* simplify the surrounding loop when it succeeds at unrolling. The only functional change in the test suite is that we now catch a case that was previously missed because SCEV and other loop transforms see their containing loops as simplified and thus don't miss some opportunities. One test case has been converted to check that we catch this case rather than checking that we miss it but at least don't get the wrong answer. Note that I have #if-ed out all of the verification logic in LoopSimplify! This is a temporary workaround while extracting these bits from the LoopPassManager. Currently, there is no way to have a pass in the LoopPassManager which preserves LoopSimplify along with one which does not. The LPM will try to verify on each loop in the nest that LoopSimplify holds but the now-Function-pass cannot distinguish what loop is being verified and so must try to verify all of them. The inner most loop is clearly no longer simplified as there is a pass which didn't even *attempt* to preserve it. =/ Once I get LCSSA out (and maybe LoopVectorize and some other fixes) I'll be able to re-enable this check and catch any places where we are still failing to preserve LoopSimplify. If this causes problems I can back this out and try to commit *all* of this at once, but so far this seems to work and allow much more incremental progress. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199884 91177308-0d34-0410-b5e6-96231b3b80d8
2014-01-23 11:23:19 +00:00
Loop *OuterL = L->getParentLoop();
// Remove the loop from the LoopPassManager if it's completely removed.
if (CompletelyUnroll && LPM != NULL)
LPM->deleteLoopFromQueue(L);
[LPM] Make LoopSimplify no longer a LoopPass and instead both a utility function and a FunctionPass. This has many benefits. The motivating use case was to be able to compute function analysis passes *after* running LoopSimplify (to avoid invalidating them) and then to run other passes which require LoopSimplify. Specifically passes like unrolling and vectorization are critical to wire up to BranchProbabilityInfo and BlockFrequencyInfo so that they can be profile aware. For the LoopVectorize pass the only things in the way are LoopSimplify and LCSSA. This fixes LoopSimplify and LCSSA is next on my list. There are also a bunch of other benefits of doing this: - It is now very feasible to make more passes *preserve* LoopSimplify because they can simply run it after changing a loop. Because subsequence passes can assume LoopSimplify is preserved we can reduce the runs of this pass to the times when we actually mutate a loop structure. - The new pass manager should be able to more easily support loop passes factored in this way. - We can at long, long last observe that LoopSimplify is preserved across SCEV. This *halves* the number of times we run LoopSimplify!!! Now, getting here wasn't trivial. First off, the interfaces used by LoopSimplify are all over the map regarding how analysis are updated. We end up with weird "pass" parameters as a consequence. I'll try to clean at least some of this up later -- I'll have to have it all clean for the new pass manager. Next up I discovered a really frustrating bug. LoopUnroll *claims* to preserve LoopSimplify. That's actually a lie. But the way the LoopPassManager ends up running the passes, it always ran LoopSimplify on the unrolled-into loop, rectifying this oversight before any verification could kick in and point out that in fact nothing was preserved. So I've added code to the unroller to *actually* simplify the surrounding loop when it succeeds at unrolling. The only functional change in the test suite is that we now catch a case that was previously missed because SCEV and other loop transforms see their containing loops as simplified and thus don't miss some opportunities. One test case has been converted to check that we catch this case rather than checking that we miss it but at least don't get the wrong answer. Note that I have #if-ed out all of the verification logic in LoopSimplify! This is a temporary workaround while extracting these bits from the LoopPassManager. Currently, there is no way to have a pass in the LoopPassManager which preserves LoopSimplify along with one which does not. The LPM will try to verify on each loop in the nest that LoopSimplify holds but the now-Function-pass cannot distinguish what loop is being verified and so must try to verify all of them. The inner most loop is clearly no longer simplified as there is a pass which didn't even *attempt* to preserve it. =/ Once I get LCSSA out (and maybe LoopVectorize and some other fixes) I'll be able to re-enable this check and catch any places where we are still failing to preserve LoopSimplify. If this causes problems I can back this out and try to commit *all* of this at once, but so far this seems to work and allow much more incremental progress. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199884 91177308-0d34-0410-b5e6-96231b3b80d8
2014-01-23 11:23:19 +00:00
// If we have a pass and a DominatorTree we should re-simplify impacted loops
// to ensure subsequent analyses can rely on this form. We want to simplify
// at least one layer outside of the loop that was unrolled so that any
// changes to the parent loop exposed by the unrolling are considered.
if (PP && DT) {
if (!OuterL && !CompletelyUnroll)
OuterL = L;
if (OuterL) {
ScalarEvolution *SE = PP->getAnalysisIfAvailable<ScalarEvolution>();
simplifyLoop(OuterL, DT, LI, PP, /*AliasAnalysis*/ 0, SE);
formLCSSARecursively(*OuterL, *DT, SE);
}
[LPM] Make LoopSimplify no longer a LoopPass and instead both a utility function and a FunctionPass. This has many benefits. The motivating use case was to be able to compute function analysis passes *after* running LoopSimplify (to avoid invalidating them) and then to run other passes which require LoopSimplify. Specifically passes like unrolling and vectorization are critical to wire up to BranchProbabilityInfo and BlockFrequencyInfo so that they can be profile aware. For the LoopVectorize pass the only things in the way are LoopSimplify and LCSSA. This fixes LoopSimplify and LCSSA is next on my list. There are also a bunch of other benefits of doing this: - It is now very feasible to make more passes *preserve* LoopSimplify because they can simply run it after changing a loop. Because subsequence passes can assume LoopSimplify is preserved we can reduce the runs of this pass to the times when we actually mutate a loop structure. - The new pass manager should be able to more easily support loop passes factored in this way. - We can at long, long last observe that LoopSimplify is preserved across SCEV. This *halves* the number of times we run LoopSimplify!!! Now, getting here wasn't trivial. First off, the interfaces used by LoopSimplify are all over the map regarding how analysis are updated. We end up with weird "pass" parameters as a consequence. I'll try to clean at least some of this up later -- I'll have to have it all clean for the new pass manager. Next up I discovered a really frustrating bug. LoopUnroll *claims* to preserve LoopSimplify. That's actually a lie. But the way the LoopPassManager ends up running the passes, it always ran LoopSimplify on the unrolled-into loop, rectifying this oversight before any verification could kick in and point out that in fact nothing was preserved. So I've added code to the unroller to *actually* simplify the surrounding loop when it succeeds at unrolling. The only functional change in the test suite is that we now catch a case that was previously missed because SCEV and other loop transforms see their containing loops as simplified and thus don't miss some opportunities. One test case has been converted to check that we catch this case rather than checking that we miss it but at least don't get the wrong answer. Note that I have #if-ed out all of the verification logic in LoopSimplify! This is a temporary workaround while extracting these bits from the LoopPassManager. Currently, there is no way to have a pass in the LoopPassManager which preserves LoopSimplify along with one which does not. The LPM will try to verify on each loop in the nest that LoopSimplify holds but the now-Function-pass cannot distinguish what loop is being verified and so must try to verify all of them. The inner most loop is clearly no longer simplified as there is a pass which didn't even *attempt* to preserve it. =/ Once I get LCSSA out (and maybe LoopVectorize and some other fixes) I'll be able to re-enable this check and catch any places where we are still failing to preserve LoopSimplify. If this causes problems I can back this out and try to commit *all* of this at once, but so far this seems to work and allow much more incremental progress. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199884 91177308-0d34-0410-b5e6-96231b3b80d8
2014-01-23 11:23:19 +00:00
}
return true;
}