llvm-6502/lib/CodeGen/RegAllocSimple.cpp

392 lines
14 KiB
C++
Raw Normal View History

//===-- RegAllocSimple.cpp - A simple generic register allocator --- ------===//
//
// This file implements a simple register allocator. *Very* simple.
//
//===----------------------------------------------------------------------===//
#include "llvm/Function.h"
#include "llvm/iTerminators.h"
#include "llvm/Type.h"
#include "llvm/Constants.h"
#include "llvm/Pass.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Target/MachineInstrInfo.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/InstVisitor.h"
#include "Support/Statistic.h"
namespace {
struct RegAllocSimple : public FunctionPass {
TargetMachine &TM;
MachineBasicBlock *CurrMBB;
MachineFunction *MF;
unsigned maxOffset;
const MRegisterInfo *RegInfo;
unsigned NumBytesAllocated, ByteAlignment;
// Maps SSA Regs => offsets on the stack where these values are stored
std::map<unsigned, unsigned> VirtReg2OffsetMap;
// Maps SSA Regs => physical regs
std::map<unsigned, unsigned> SSA2PhysRegMap;
// Maps physical register to their register classes
std::map<unsigned, const TargetRegisterClass*> PhysReg2RegClassMap;
// Made to combat the incorrect allocation of r2 = add r1, r1
std::map<unsigned, unsigned> VirtReg2PhysRegMap;
// Maps RegClass => which index we can take a register from. Since this is a
// simple register allocator, when we need a register of a certain class, we
// just take the next available one.
std::map<unsigned, unsigned> RegsUsed;
std::map<const TargetRegisterClass*, unsigned> RegClassIdx;
RegAllocSimple(TargetMachine &tm) : TM(tm), CurrMBB(0), maxOffset(0),
RegInfo(tm.getRegisterInfo()),
ByteAlignment(4)
{
// build reverse mapping for physReg -> register class
RegInfo->buildReg2RegClassMap(PhysReg2RegClassMap);
RegsUsed[RegInfo->getFramePointer()] = 1;
RegsUsed[RegInfo->getStackPointer()] = 1;
cleanupAfterFunction();
}
bool isAvailableReg(unsigned Reg) {
// assert(Reg < MRegisterInfo::FirstVirtualReg && "...");
return RegsUsed.find(Reg) == RegsUsed.end();
}
///
unsigned allocateStackSpaceFor(unsigned VirtReg,
const TargetRegisterClass *regClass);
/// Given size (in bytes), returns a register that is currently unused
/// Side effect: marks that register as being used until manually cleared
unsigned getFreeReg(unsigned virtualReg);
/// Returns all `borrowed' registers back to the free pool
void clearAllRegs() {
RegClassIdx.clear();
}
/// Invalidates any references, real or implicit, to physical registers
///
void invalidatePhysRegs(const MachineInstr *MI) {
unsigned Opcode = MI->getOpcode();
const MachineInstrInfo &MII = TM.getInstrInfo();
const MachineInstrDescriptor &Desc = MII.get(Opcode);
const unsigned *regs = Desc.ImplicitUses;
while (*regs)
RegsUsed[*regs++] = 1;
regs = Desc.ImplicitDefs;
while (*regs)
RegsUsed[*regs++] = 1;
}
void cleanupAfterFunction() {
VirtReg2OffsetMap.clear();
SSA2PhysRegMap.clear();
NumBytesAllocated = ByteAlignment;
}
/// Moves value from memory into that register
MachineBasicBlock::iterator
moveUseToReg (MachineBasicBlock *MBB,
MachineBasicBlock::iterator I, unsigned VirtReg,
unsigned &PhysReg);
/// Saves reg value on the stack (maps virtual register to stack value)
MachineBasicBlock::iterator
saveVirtRegToStack (MachineBasicBlock *MBB,
MachineBasicBlock::iterator I, unsigned VirtReg,
unsigned PhysReg);
MachineBasicBlock::iterator
savePhysRegToStack (MachineBasicBlock *MBB,
MachineBasicBlock::iterator I, unsigned PhysReg);
/// runOnFunction - Top level implementation of instruction selection for
/// the entire function.
///
bool runOnMachineFunction(MachineFunction &Fn);
bool runOnFunction(Function &Fn) {
return runOnMachineFunction(MachineFunction::get(&Fn));
}
};
}
unsigned RegAllocSimple::allocateStackSpaceFor(unsigned VirtReg,
const TargetRegisterClass *regClass)
{
if (VirtReg2OffsetMap.find(VirtReg) == VirtReg2OffsetMap.end()) {
#if 0
unsigned size = regClass->getDataSize();
unsigned over = NumBytesAllocated - (NumBytesAllocated % ByteAlignment);
if (size >= ByteAlignment - over) {
// need to pad by (ByteAlignment - over)
NumBytesAllocated += ByteAlignment - over;
}
VirtReg2OffsetMap[VirtReg] = NumBytesAllocated;
NumBytesAllocated += size;
#endif
// FIXME: forcing each arg to take 4 bytes on the stack
VirtReg2OffsetMap[VirtReg] = NumBytesAllocated;
NumBytesAllocated += ByteAlignment;
}
return VirtReg2OffsetMap[VirtReg];
}
unsigned RegAllocSimple::getFreeReg(unsigned virtualReg) {
const TargetRegisterClass* regClass = MF->getRegClass(virtualReg);
unsigned physReg;
assert(regClass);
if (RegClassIdx.find(regClass) != RegClassIdx.end()) {
unsigned regIdx = RegClassIdx[regClass]++;
assert(regIdx < regClass->getNumRegs() && "Not enough registers!");
physReg = regClass->getRegister(regIdx);
} else {
physReg = regClass->getRegister(0);
// assert(physReg < regClass->getNumRegs() && "No registers in class!");
RegClassIdx[regClass] = 1;
}
if (isAvailableReg(physReg))
return physReg;
else {
return getFreeReg(virtualReg);
}
}
MachineBasicBlock::iterator
RegAllocSimple::moveUseToReg (MachineBasicBlock *MBB,
MachineBasicBlock::iterator I,
unsigned VirtReg, unsigned &PhysReg)
{
const TargetRegisterClass* regClass = MF->getRegClass(VirtReg);
assert(regClass);
unsigned stackOffset = allocateStackSpaceFor(VirtReg, regClass);
PhysReg = getFreeReg(VirtReg);
// Add move instruction(s)
return RegInfo->loadRegOffset2Reg(MBB, I, PhysReg,
RegInfo->getFramePointer(),
-stackOffset, regClass->getDataSize());
}
MachineBasicBlock::iterator
RegAllocSimple::saveVirtRegToStack (MachineBasicBlock *MBB,
MachineBasicBlock::iterator I,
unsigned VirtReg, unsigned PhysReg)
{
const TargetRegisterClass* regClass = MF->getRegClass(VirtReg);
assert(regClass);
unsigned stackOffset = allocateStackSpaceFor(VirtReg, regClass);
// Add move instruction(s)
return RegInfo->storeReg2RegOffset(MBB, I, PhysReg,
RegInfo->getFramePointer(),
-stackOffset, regClass->getDataSize());
}
MachineBasicBlock::iterator
RegAllocSimple::savePhysRegToStack (MachineBasicBlock *MBB,
MachineBasicBlock::iterator I,
unsigned PhysReg)
{
const TargetRegisterClass* regClass = MF->getRegClass(PhysReg);
assert(regClass);
unsigned offset = allocateStackSpaceFor(PhysReg, regClass);
// Add move instruction(s)
return RegInfo->storeReg2RegOffset(MBB, I, PhysReg,
RegInfo->getFramePointer(),
offset, regClass->getDataSize());
}
bool RegAllocSimple::runOnMachineFunction(MachineFunction &Fn) {
cleanupAfterFunction();
unsigned virtualReg, physReg;
DEBUG(std::cerr << "Machine Function " << "\n");
MF = &Fn;
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
MBB != MBBe; ++MBB)
{
CurrMBB = &(*MBB);
// Handle PHI instructions specially: add moves to each pred block
while (MBB->front()->getOpcode() == 0) {
MachineInstr *MI = MBB->front();
// get rid of the phi
MBB->erase(MBB->begin());
// a preliminary pass that will invalidate any registers that
// are used by the instruction (including implicit uses)
invalidatePhysRegs(MI);
DEBUG(std::cerr << "num invalid regs: " << RegsUsed.size() << "\n");
DEBUG(std::cerr << "num ops: " << MI->getNumOperands() << "\n");
MachineOperand &targetReg = MI->getOperand(0);
// If it's a virtual register, allocate a physical one
// otherwise, just use whatever register is there now
// note: it MUST be a register -- we're assigning to it
virtualReg = (unsigned) targetReg.getAllocatedRegNum();
if (targetReg.isVirtualRegister()) {
physReg = getFreeReg(virtualReg);
} else {
physReg = virtualReg;
}
// Find the register class of the target register: should be the
// same as the values we're trying to store there
const TargetRegisterClass* regClass = PhysReg2RegClassMap[physReg];
assert(regClass && "Target register class not found!");
unsigned dataSize = regClass->getDataSize();
for (int i = MI->getNumOperands() - 1; i >= 2; i-=2) {
MachineOperand &opVal = MI->getOperand(i-1);
// Get the MachineBasicBlock equivalent of the BasicBlock that is the
// source path the phi
MachineBasicBlock *opBlock = MI->getOperand(i).getMachineBasicBlock();
MachineBasicBlock::iterator opI = opBlock->end();
MachineInstr *opMI = *(--opI);
const MachineInstrInfo &MII = TM.getInstrInfo();
// must backtrack over ALL the branches in the previous block, until no more
while ((MII.isBranch(opMI->getOpcode()) || MII.isReturn(opMI->getOpcode()))
&& opI != opBlock->begin())
{
opMI = *(--opI);
}
// move back to the first branch instruction so new instructions
// are inserted right in front of it and not in front of a non-branch
++opI;
// Retrieve the constant value from this op, move it to target
// register of the phi
if (opVal.getType() == MachineOperand::MO_SignExtendedImmed ||
opVal.getType() == MachineOperand::MO_UnextendedImmed)
{
opI = RegInfo->moveImm2Reg(opBlock, opI, physReg,
(unsigned) opVal.getImmedValue(),
dataSize);
saveVirtRegToStack(opBlock, opI, virtualReg, physReg);
} else {
// Allocate a physical register and add a move in the BB
unsigned opVirtualReg = (unsigned) opVal.getAllocatedRegNum();
unsigned opPhysReg; // = getFreeReg(opVirtualReg);
opI = moveUseToReg(opBlock, opI, opVirtualReg, physReg);
//opI = RegInfo->moveReg2Reg(opBlock, opI, physReg, opPhysReg,
// dataSize);
// Save that register value to the stack of the TARGET REG
saveVirtRegToStack(opBlock, opI, virtualReg, physReg);
}
// make regs available to other instructions
clearAllRegs();
}
// really delete the instruction
delete MI;
}
//loop over each basic block
for (MachineBasicBlock::iterator I = MBB->begin(); I != MBB->end(); ++I)
{
MachineInstr *MI = *I;
// a preliminary pass that will invalidate any registers that
// are used by the instruction (including implicit uses)
invalidatePhysRegs(MI);
// Loop over uses, move from memory into registers
for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
MachineOperand &op = MI->getOperand(i);
if (op.getType() == MachineOperand::MO_SignExtendedImmed ||
op.getType() == MachineOperand::MO_UnextendedImmed)
{
DEBUG(std::cerr << "const\n");
} else if (op.isVirtualRegister()) {
virtualReg = (unsigned) op.getAllocatedRegNum();
DEBUG(std::cerr << "op: " << op << "\n");
DEBUG(std::cerr << "\t inst[" << i << "]: ";
MI->print(std::cerr, TM));
// make sure the same virtual register maps to the same physical
// register in any given instruction
if (VirtReg2PhysRegMap.find(virtualReg) != VirtReg2PhysRegMap.end()) {
physReg = VirtReg2PhysRegMap[virtualReg];
} else {
if (op.opIsDef()) {
if (TM.getInstrInfo().isTwoAddrInstr(MI->getOpcode()) && i == 0) {
// must be same register number as the first operand
// This maps a = b + c into b += c, and saves b into a's spot
physReg = (unsigned) MI->getOperand(1).getAllocatedRegNum();
} else {
physReg = getFreeReg(virtualReg);
}
MachineBasicBlock::iterator J = I;
J = saveVirtRegToStack(CurrMBB, ++J, virtualReg, physReg);
I = --J;
} else {
I = moveUseToReg(CurrMBB, I, virtualReg, physReg);
}
VirtReg2PhysRegMap[virtualReg] = physReg;
}
MI->SetMachineOperandReg(i, physReg);
DEBUG(std::cerr << "virt: " << virtualReg <<
", phys: " << op.getAllocatedRegNum() << "\n");
}
}
clearAllRegs();
VirtReg2PhysRegMap.clear();
}
}
// add prologue we should preserve callee-save registers...
MachineFunction::iterator Fi = Fn.begin();
MachineBasicBlock *MBB = Fi;
MachineBasicBlock::iterator MBBi = MBB->begin();
RegInfo->emitPrologue(MBB, MBBi, NumBytesAllocated);
// add epilogue to restore the callee-save registers
// loop over the basic block
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
MBB != MBBe; ++MBB)
{
// check if last instruction is a RET
MachineBasicBlock::iterator I = (*MBB).end();
MachineInstr *MI = *(--I);
const MachineInstrInfo &MII = TM.getInstrInfo();
if (MII.isReturn(MI->getOpcode())) {
// this block has a return instruction, add epilogue
RegInfo->emitEpilogue(MBB, I, NumBytesAllocated);
}
}
return false; // We never modify the LLVM itself.
}
Pass *createSimpleX86RegisterAllocator(TargetMachine &TM) {
return new RegAllocSimple(TM);
}