llvm-6502/lib/CodeGen/InstrSched/SchedGraph.cpp

764 lines
22 KiB
C++
Raw Normal View History

/*
****************************************************************************
* File:
* SchedGraph.cpp
*
* Purpose:
* Scheduling graph based on SSA graph plus extra dependence edges
* capturing dependences due to machine resources (machine registers,
* CC registers, and any others).
*
* History:
* 7/20/01 - Vikram Adve - Created
***************************************************************************/
#include "llvm/InstrTypes.h"
#include "llvm/Instruction.h"
#include "llvm/BasicBlock.h"
#include "llvm/Method.h"
#include "llvm/CodeGen/SchedGraph.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/TargetMachine.h"
#include "llvm/Support/StringExtras.h"
#include <algorithm>
//************************* Class Implementations **************************/
//
// class SchedGraphEdge
//
/*ctor*/
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphNode* _sink,
SchedGraphEdgeDepType _depType,
DataDepOrderType _depOrderType,
int _minDelay)
: src(_src),
sink(_sink),
depType(_depType),
depOrderType(_depOrderType),
val(NULL),
minDelay((_minDelay >= 0)? _minDelay : _src->getLatency())
{
src->addOutEdge(this);
sink->addInEdge(this);
}
/*ctor*/
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphNode* _sink,
Value* _val,
DataDepOrderType _depOrderType,
int _minDelay)
: src(_src),
sink(_sink),
depType(DefUseDep),
depOrderType(_depOrderType),
val(_val),
minDelay((_minDelay >= 0)? _minDelay : _src->getLatency())
{
src->addOutEdge(this);
sink->addInEdge(this);
}
/*ctor*/
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphNode* _sink,
unsigned int _regNum,
DataDepOrderType _depOrderType,
int _minDelay)
: src(_src),
sink(_sink),
depType(MachineRegister),
depOrderType(_depOrderType),
minDelay((_minDelay >= 0)? _minDelay : _src->getLatency()),
machineRegNum(_regNum)
{
src->addOutEdge(this);
sink->addInEdge(this);
}
/*ctor*/
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphNode* _sink,
ResourceId _resourceId,
int _minDelay)
: src(_src),
sink(_sink),
depType(MachineResource),
depOrderType(NonDataDep),
minDelay((_minDelay >= 0)? _minDelay : _src->getLatency()),
resourceId(_resourceId)
{
src->addOutEdge(this);
sink->addInEdge(this);
}
void SchedGraphEdge::dump(int indent=0) const {
printIndent(indent); cout << *this;
}
//
// class SchedGraphNode
//
/*ctor*/
SchedGraphNode::SchedGraphNode(unsigned int _nodeId,
const Instruction* _instr,
const MachineInstr* _minstr,
const TargetMachine& target)
: nodeId(_nodeId),
instr(_instr),
minstr(_minstr),
latency(0)
{
if (minstr)
{
MachineOpCode mopCode = minstr->getOpCode();
latency = target.getInstrInfo().hasResultInterlock(mopCode)
? target.getInstrInfo().minLatency(mopCode)
: target.getInstrInfo().maxLatency(mopCode);
}
}
/*dtor*/
SchedGraphNode::~SchedGraphNode()
{
// a node deletes its outgoing edges only
for (unsigned i=0, N=outEdges.size(); i < N; i++)
delete outEdges[i];
}
void SchedGraphNode::dump(int indent=0) const {
printIndent(indent); cout << *this;
}
inline void
SchedGraphNode::addInEdge(SchedGraphEdge* edge)
{
inEdges.push_back(edge);
}
inline void
SchedGraphNode::addOutEdge(SchedGraphEdge* edge)
{
outEdges.push_back(edge);
}
inline void
SchedGraphNode::removeInEdge(const SchedGraphEdge* edge)
{
assert(edge->getSink() == this);
for (iterator I = beginInEdges(); I != endInEdges(); ++I)
if ((*I) == edge)
{
inEdges.erase(I);
break;
}
}
inline void
SchedGraphNode::removeOutEdge(const SchedGraphEdge* edge)
{
assert(edge->getSrc() == this);
for (iterator I = beginOutEdges(); I != endOutEdges(); ++I)
if ((*I) == edge)
{
outEdges.erase(I);
break;
}
}
void
SchedGraphNode::eraseAllEdges()
{
// Disconnect and delete all in-edges and out-edges for the node.
// Note that we delete the in-edges too since they have been
// disconnected from the source node and will not be deleted there.
for (iterator I = beginInEdges(); I != endInEdges(); ++I)
{
(*I)->getSrc()->removeOutEdge(*I);
delete *I;
}
for (iterator I = beginOutEdges(); I != endOutEdges(); ++I)
{
(*I)->getSink()->removeInEdge(*I);
delete *I;
}
inEdges.clear();
outEdges.clear();
}
//
// class SchedGraph
//
/*ctor*/
SchedGraph::SchedGraph(const BasicBlock* bb,
const TargetMachine& target)
{
bbVec.push_back(bb);
this->buildGraph(target);
}
/*dtor*/
SchedGraph::~SchedGraph()
{
// delete all the nodes. each node deletes its out-edges.
for (iterator I=begin(); I != end(); ++I)
delete (*I).second;
}
void
SchedGraph::dump() const
{
cout << " Sched Graph for Basic Blocks: ";
for (unsigned i=0, N=bbVec.size(); i < N; i++)
{
cout << (bbVec[i]->hasName()? bbVec[i]->getName() : "block")
<< " (" << bbVec[i] << ")"
<< ((i == N-1)? "" : ", ");
}
cout << endl << endl << " Actual Root nodes : ";
for (unsigned i=0, N=graphRoot->outEdges.size(); i < N; i++)
cout << graphRoot->outEdges[i]->getSink()->getNodeId()
<< ((i == N-1)? "" : ", ");
cout << endl << " Graph Nodes:" << endl;
for (const_iterator I=begin(); I != end(); ++I)
cout << endl << * (*I).second;
cout << endl;
}
void
SchedGraph::addDummyEdges()
{
assert(graphRoot->outEdges.size() == 0);
for (const_iterator I=begin(); I != end(); ++I)
{
SchedGraphNode* node = (*I).second;
assert(node != graphRoot && node != graphLeaf);
if (node->beginInEdges() == node->endInEdges())
(void) new SchedGraphEdge(graphRoot, node, SchedGraphEdge::CtrlDep,
SchedGraphEdge::NonDataDep, 0);
if (node->beginOutEdges() == node->endOutEdges())
(void) new SchedGraphEdge(node, graphLeaf, SchedGraphEdge::CtrlDep,
SchedGraphEdge::NonDataDep, 0);
}
}
void
SchedGraph::addCDEdges(const TerminatorInst* term,
const TargetMachine& target)
{
const MachineInstrInfo& mii = target.getInstrInfo();
MachineCodeForVMInstr& termMvec = term->getMachineInstrVec();
// Find the first branch instr in the sequence of machine instrs for term
//
unsigned first = 0;
while (! mii.isBranch(termMvec[first]->getOpCode()))
++first;
assert(first < termMvec.size() &&
"No branch instructions for BR? Ok, but weird! Delete assertion.");
if (first == termMvec.size())
return;
SchedGraphNode* firstBrNode = this->getGraphNodeForInstr(termMvec[first]);
// Add CD edges from each instruction in the sequence to the
// *last preceding* branch instr. in the sequence
//
for (int i = (int) termMvec.size()-1; i > (int) first; i--)
{
SchedGraphNode* toNode = this->getGraphNodeForInstr(termMvec[i]);
assert(toNode && "No node for instr generated for branch?");
for (int j = i-1; j >= 0; j--)
if (mii.isBranch(termMvec[j]->getOpCode()))
{
SchedGraphNode* brNode = this->getGraphNodeForInstr(termMvec[j]);
assert(brNode && "No node for instr generated for branch?");
(void) new SchedGraphEdge(brNode, toNode, SchedGraphEdge::CtrlDep,
SchedGraphEdge::NonDataDep, 0);
break; // only one incoming edge is enough
}
}
// Add CD edges from each instruction preceding the first branch
// to the first branch
//
for (int i = first-1; i >= 0; i--)
{
SchedGraphNode* fromNode = this->getGraphNodeForInstr(termMvec[i]);
assert(fromNode && "No node for instr generated for branch?");
(void) new SchedGraphEdge(fromNode, firstBrNode, SchedGraphEdge::CtrlDep,
SchedGraphEdge::NonDataDep, 0);
}
// Now add CD edges to the first branch instruction in the sequence
// from all preceding instructions in the basic block.
//
const BasicBlock* bb = term->getParent();
for (BasicBlock::const_iterator II = bb->begin(); II != bb->end(); ++II)
{
if ((*II) == (const Instruction*) term) // special case, handled above
continue;
assert(! (*II)->isTerminator() && "Two terminators in basic block?");
const MachineCodeForVMInstr& mvec = (*II)->getMachineInstrVec();
for (unsigned i=0, N=mvec.size(); i < N; i++)
{
SchedGraphNode* fromNode = this->getGraphNodeForInstr(mvec[i]);
if (fromNode == NULL)
continue; // dummy instruction, e.g., PHI
(void) new SchedGraphEdge(fromNode, firstBrNode,
SchedGraphEdge::CtrlDep,
SchedGraphEdge::NonDataDep, 0);
// If we find any other machine instructions (other than due to
// the terminator) that also have delay slots, add an outgoing edge
// from the instruction to the instructions in the delay slots.
//
unsigned d = mii.getNumDelaySlots(mvec[i]->getOpCode());
assert(i+d < N && "Insufficient delay slots for instruction?");
for (unsigned j=1; j <= d; j++)
{
SchedGraphNode* toNode = this->getGraphNodeForInstr(mvec[i+j]);
assert(toNode && "No node for machine instr in delay slot?");
(void) new SchedGraphEdge(fromNode, toNode,
SchedGraphEdge::CtrlDep,
SchedGraphEdge::NonDataDep, 0);
}
}
}
}
void
SchedGraph::addMemEdges(const vector<const Instruction*>& memVec,
const TargetMachine& target)
{
const MachineInstrInfo& mii = target.getInstrInfo();
for (unsigned im=0, NM=memVec.size(); im < NM; im++)
{
const Instruction* fromInstr = memVec[im];
bool fromIsLoad = fromInstr->getOpcode() == Instruction::Load;
for (unsigned jm=im+1; jm < NM; jm++)
{
const Instruction* toInstr = memVec[jm];
bool toIsLoad = toInstr->getOpcode() == Instruction::Load;
SchedGraphEdge::DataDepOrderType depOrderType;
if (fromIsLoad)
{
if (toIsLoad) continue; // both instructions are loads
depOrderType = SchedGraphEdge::AntiDep;
}
else
{
depOrderType = (toIsLoad)? SchedGraphEdge::TrueDep
: SchedGraphEdge::OutputDep;
}
MachineCodeForVMInstr& fromInstrMvec=fromInstr->getMachineInstrVec();
MachineCodeForVMInstr& toInstrMvec = toInstr->getMachineInstrVec();
// We have two VM memory instructions, and at least one is a store.
// Add edges between all machine load/store instructions.
//
for (unsigned i=0, N=fromInstrMvec.size(); i < N; i++)
{
MachineOpCode fromOpCode = fromInstrMvec[i]->getOpCode();
if (mii.isLoad(fromOpCode) || mii.isStore(fromOpCode))
{
SchedGraphNode* fromNode =
this->getGraphNodeForInstr(fromInstrMvec[i]);
assert(fromNode && "No node for memory instr?");
for (unsigned j=0, M=toInstrMvec.size(); j < M; j++)
{
MachineOpCode toOpCode = toInstrMvec[j]->getOpCode();
if (mii.isLoad(toOpCode) || mii.isStore(toOpCode))
{
SchedGraphNode* toNode =
this->getGraphNodeForInstr(toInstrMvec[j]);
assert(toNode && "No node for memory instr?");
(void) new SchedGraphEdge(fromNode, toNode,
SchedGraphEdge::MemoryDep,
depOrderType, 1);
}
}
}
}
}
}
}
typedef vector< pair<SchedGraphNode*, unsigned int> > RegRefVec;
// The following needs to be a class, not a typedef, so we can use
// an opaque declaration in SchedGraph.h
class NodeToRegRefMap: public hash_map<int, RegRefVec> {
typedef hash_map<int, RegRefVec>:: iterator iterator;
typedef hash_map<int, RegRefVec>::const_iterator const_iterator;
};
void
SchedGraph::addMachineRegEdges(NodeToRegRefMap& regToRefVecMap,
const TargetMachine& target)
{
assert(bbVec.size() == 1 && "Only handling a single basic block here");
// This assumes that such hardwired registers are never allocated
// to any LLVM value (since register allocation happens later), i.e.,
// any uses or defs of this register have been made explicit!
// Also assumes that two registers with different numbers are
// not aliased!
//
for (NodeToRegRefMap::iterator I = regToRefVecMap.begin();
I != regToRefVecMap.end(); ++I)
{
int regNum = (*I).first;
RegRefVec& regRefVec = (*I).second;
// regRefVec is ordered by control flow order in the basic block
int lastDefIdx = -1;
for (unsigned i=0; i < regRefVec.size(); ++i)
{
SchedGraphNode* node = regRefVec[i].first;
bool isDef = regRefVec[i].second;
if (isDef)
{ // Each def gets an output edge from the last def
if (lastDefIdx > 0)
new SchedGraphEdge(regRefVec[lastDefIdx].first, node, regNum,
SchedGraphEdge::OutputDep);
// Also, an anti edge from all uses *since* the last def,
// But don't add edge from an instruction to itself!
for (int u = 1 + lastDefIdx; u < (int) i; u++)
if (regRefVec[u].first != node)
new SchedGraphEdge(regRefVec[u].first, node, regNum,
SchedGraphEdge::AntiDep);
}
else
{ // Each use gets a true edge from the last def
if (lastDefIdx > 0)
new SchedGraphEdge(regRefVec[lastDefIdx].first, node, regNum);
}
}
}
}
void
SchedGraph::addSSAEdge(SchedGraphNode* node,
Value* val,
const TargetMachine& target)
{
if (val->getValueType() != Value::InstructionVal)
return;
const Instruction* thisVMInstr = node->getInstr();
const Instruction* defVMInstr = (const Instruction*) val;
// Phi instructions are the only ones that produce a value but don't get
// any non-dummy machine instructions. Return here as an optimization.
//
if (defVMInstr->isPHINode())
return;
// Now add the graph edge for the appropriate machine instruction(s).
// Note that multiple machine instructions generated for the
// def VM instruction may modify the register for the def value.
//
MachineCodeForVMInstr& defMvec = defVMInstr->getMachineInstrVec();
const MachineInstrInfo& mii = target.getInstrInfo();
for (unsigned i=0, N=defMvec.size(); i < N; i++)
for (int o=0, N = mii.getNumOperands(defMvec[i]->getOpCode()); o < N; o++)
{
const MachineOperand& defOp = defMvec[i]->getOperand(o);
if (defOp.opIsDef()
&& (defOp.getOperandType() == MachineOperand::MO_VirtualRegister
|| defOp.getOperandType() == MachineOperand::MO_CCRegister)
&& (defOp.getVRegValue() == val))
{
// this instruction does define value `val'.
// if there is a node for it in the same graph, add an edge.
SchedGraphNode* defNode = this->getGraphNodeForInstr(defMvec[i]);
if (defNode != NULL)
(void) new SchedGraphEdge(defNode, node, val);
}
}
}
void
SchedGraph::addEdgesForInstruction(SchedGraphNode* node,
NodeToRegRefMap& regToRefVecMap,
const TargetMachine& target)
{
const Instruction& instr = * node->getInstr(); // No dummy nodes here!
const MachineInstr& minstr = * node->getMachineInstr();
// Add incoming edges for the following:
// (1) operands of the machine instruction, including hidden operands
// (2) machine register dependences
// (3) other resource dependences for the machine instruction, if any
// Also, note any uses or defs of machine registers.
//
for (unsigned i=0, numOps=minstr.getNumOperands(); i < numOps; i++)
{
const MachineOperand& mop = minstr.getOperand(i);
// if this writes to a machine register other than the hardwired
// "zero" register used on many processors, record the reference.
if (mop.getOperandType() == MachineOperand::MO_MachineRegister
&& (! (target.zeroRegNum >= 0
&& mop.getMachineRegNum()==(unsigned) target.zeroRegNum)))
{
regToRefVecMap[mop.getMachineRegNum()].
push_back(make_pair(node, i));
}
// ignore all other def operands
if (minstr.operandIsDefined(i))
continue;
switch(mop.getOperandType())
{
case MachineOperand::MO_VirtualRegister:
case MachineOperand::MO_CCRegister:
if (mop.getVRegValue())
addSSAEdge(node, mop.getVRegValue(), target);
break;
case MachineOperand::MO_MachineRegister:
break;
case MachineOperand::MO_SignExtendedImmed:
case MachineOperand::MO_UnextendedImmed:
case MachineOperand::MO_PCRelativeDisp:
break; // nothing to do for immediate fields
default:
assert(0 && "Unknown machine operand type in SchedGraph builder");
break;
}
}
// add all true, anti,
// and output dependences for this register. but ignore
}
void
SchedGraph::buildGraph(const TargetMachine& target)
{
const MachineInstrInfo& mii = target.getInstrInfo();
const BasicBlock* bb = bbVec[0];
assert(bbVec.size() == 1 && "Only handling a single basic block here");
// Use this data structures to note all LLVM memory instructions.
// We use this to add memory dependence edges without a second full walk.
//
vector<const Instruction*> memVec;
// Use this data structures to note any uses or definitions of
// machine registers so we can add edges for those later without
// extra passes over the nodes.
// The vector holds an ordered list of references to the machine reg,
// ordered according to control-flow order. This only works for a
// single basic block, hence the assertion. Each reference is identified
// by the pair: <node, operand-number>.
//
NodeToRegRefMap regToRefVecMap;
// Make a dummy root node. We'll add edges to the real roots later.
graphRoot = new SchedGraphNode(0, NULL, NULL, target);
graphLeaf = new SchedGraphNode(1, NULL, NULL, target);
//----------------------------------------------------------------
// First add nodes for all the machine instructions in the basic block.
// This greatly simplifies identifing which edges to add.
// Also, remember the load/store instructions to add memory deps later.
//----------------------------------------------------------------
for (BasicBlock::const_iterator II = bb->begin(); II != bb->end(); ++II)
{
const Instruction *instr = *II;
const MachineCodeForVMInstr& mvec = instr->getMachineInstrVec();
for (unsigned i=0, N=mvec.size(); i < N; i++)
if (! mii.isDummyPhiInstr(mvec[i]->getOpCode()))
{
SchedGraphNode* node = new SchedGraphNode(getNumNodes(),
instr, mvec[i], target);
this->noteGraphNodeForInstr(mvec[i], node);
}
if (instr->getOpcode() == Instruction::Load ||
instr->getOpcode() == Instruction::Store)
memVec.push_back(instr);
}
//----------------------------------------------------------------
// Now add the edges.
//----------------------------------------------------------------
// First, add edges to the terminator instruction of the basic block.
this->addCDEdges(bb->getTerminator(), target);
// Then add memory dep edges: store->load, load->store, and store->store
this->addMemEdges(memVec, target);
// Then add other edges for all instructions in the block.
for (SchedGraph::iterator GI = this->begin(); GI != this->end(); ++GI)
{
SchedGraphNode* node = (*GI).second;
addEdgesForInstruction(node, regToRefVecMap, target);
}
// Then add edges for dependences on machine registers
this->addMachineRegEdges(regToRefVecMap, target);
// Finally, add edges from the dummy root and to dummy leaf
this->addDummyEdges();
}
//
// class SchedGraphSet
//
/*ctor*/
SchedGraphSet::SchedGraphSet(const Method* _method,
const TargetMachine& target) :
method(_method)
{
buildGraphsForMethod(method, target);
}
/*dtor*/
SchedGraphSet::~SchedGraphSet()
{
// delete all the graphs
for (iterator I=begin(); I != end(); ++I)
delete (*I).second;
}
void
SchedGraphSet::dump() const
{
cout << "======== Sched graphs for method `"
<< (method->hasName()? method->getName() : "???")
<< "' ========" << endl << endl;
for (const_iterator I=begin(); I != end(); ++I)
(*I).second->dump();
cout << endl << "====== End graphs for method `"
<< (method->hasName()? method->getName() : "")
<< "' ========" << endl << endl;
}
void
SchedGraphSet::buildGraphsForMethod(const Method *method,
const TargetMachine& target)
{
for (Method::const_iterator BI = method->begin(); BI != method->end(); ++BI)
{
SchedGraph* graph = new SchedGraph(*BI, target);
this->noteGraphForBlock(*BI, graph);
}
}
ostream&
operator<<(ostream& os, const SchedGraphEdge& edge)
{
os << "edge [" << edge.src->getNodeId() << "] -> ["
<< edge.sink->getNodeId() << "] : ";
switch(edge.depType) {
case SchedGraphEdge::CtrlDep: os<< "Control Dep"; break;
case SchedGraphEdge::DefUseDep: os<< "Reg Value " << edge.val; break;
case SchedGraphEdge::MemoryDep: os<< "Mem Value " << edge.val; break;
case SchedGraphEdge::MachineRegister: os<< "Reg " <<edge.machineRegNum;break;
case SchedGraphEdge::MachineResource: os<<"Resource "<<edge.resourceId;break;
default: assert(0); break;
}
os << " : delay = " << edge.minDelay << endl;
return os;
}
ostream&
operator<<(ostream& os, const SchedGraphNode& node)
{
printIndent(4, os);
os << "Node " << node.nodeId << " : "
<< "latency = " << node.latency << endl;
printIndent(6, os);
if (node.getMachineInstr() == NULL)
os << "(Dummy node)" << endl;
else
{
os << *node.getMachineInstr() << endl;
printIndent(6, os);
os << node.inEdges.size() << " Incoming Edges:" << endl;
for (unsigned i=0, N=node.inEdges.size(); i < N; i++)
{
printIndent(8, os);
os << * node.inEdges[i];
}
printIndent(6, os);
os << node.outEdges.size() << " Outgoing Edges:" << endl;
for (unsigned i=0, N=node.outEdges.size(); i < N; i++)
{
printIndent(8, os);
os << * node.outEdges[i];
}
}
return os;
}