2009-10-10 09:04:27 +00:00
|
|
|
//===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This file implements the SSAUpdater class.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2010-04-17 03:08:24 +00:00
|
|
|
#define DEBUG_TYPE "ssaupdater"
|
2009-10-10 09:04:27 +00:00
|
|
|
#include "llvm/Transforms/Utils/SSAUpdater.h"
|
|
|
|
#include "llvm/Instructions.h"
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
2010-04-17 03:08:24 +00:00
|
|
|
#include "llvm/Support/AlignOf.h"
|
|
|
|
#include "llvm/Support/Allocator.h"
|
2009-10-10 09:04:27 +00:00
|
|
|
#include "llvm/Support/CFG.h"
|
|
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
|
|
|
2010-04-17 03:08:24 +00:00
|
|
|
/// BBInfo - Per-basic block information used internally by SSAUpdater.
|
|
|
|
/// The predecessors of each block are cached here since pred_iterator is
|
|
|
|
/// slow and we need to iterate over the blocks at least a few times.
|
|
|
|
class SSAUpdater::BBInfo {
|
|
|
|
public:
|
|
|
|
BasicBlock *BB; // Back-pointer to the corresponding block.
|
|
|
|
Value *AvailableVal; // Value to use in this block.
|
|
|
|
BBInfo *DefBB; // Block that defines the available value.
|
|
|
|
int BlkNum; // Postorder number.
|
|
|
|
BBInfo *IDom; // Immediate dominator.
|
|
|
|
unsigned NumPreds; // Number of predecessor blocks.
|
|
|
|
BBInfo **Preds; // Array[NumPreds] of predecessor blocks.
|
|
|
|
PHINode *PHITag; // Marker for existing PHIs that match.
|
|
|
|
|
|
|
|
BBInfo(BasicBlock *ThisBB, Value *V)
|
|
|
|
: BB(ThisBB), AvailableVal(V), DefBB(V ? this : 0), BlkNum(0), IDom(0),
|
|
|
|
NumPreds(0), Preds(0), PHITag(0) { }
|
|
|
|
};
|
|
|
|
|
|
|
|
typedef DenseMap<BasicBlock*, SSAUpdater::BBInfo*> BBMapTy;
|
|
|
|
|
|
|
|
typedef DenseMap<BasicBlock*, Value*> AvailableValsTy;
|
2009-10-10 09:04:27 +00:00
|
|
|
static AvailableValsTy &getAvailableVals(void *AV) {
|
|
|
|
return *static_cast<AvailableValsTy*>(AV);
|
|
|
|
}
|
|
|
|
|
2010-04-17 03:08:24 +00:00
|
|
|
static BBMapTy *getBBMap(void *BM) {
|
|
|
|
return static_cast<BBMapTy*>(BM);
|
2009-10-10 09:04:27 +00:00
|
|
|
}
|
|
|
|
|
2009-10-10 23:15:24 +00:00
|
|
|
SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode*> *NewPHI)
|
2010-04-17 03:08:24 +00:00
|
|
|
: AV(0), PrototypeValue(0), BM(0), InsertedPHIs(NewPHI) {}
|
2009-10-10 09:04:27 +00:00
|
|
|
|
|
|
|
SSAUpdater::~SSAUpdater() {
|
|
|
|
delete &getAvailableVals(AV);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Initialize - Reset this object to get ready for a new set of SSA
|
|
|
|
/// updates. ProtoValue is the value used to name PHI nodes.
|
|
|
|
void SSAUpdater::Initialize(Value *ProtoValue) {
|
|
|
|
if (AV == 0)
|
|
|
|
AV = new AvailableValsTy();
|
|
|
|
else
|
|
|
|
getAvailableVals(AV).clear();
|
|
|
|
PrototypeValue = ProtoValue;
|
|
|
|
}
|
|
|
|
|
2009-10-10 23:41:48 +00:00
|
|
|
/// HasValueForBlock - Return true if the SSAUpdater already has a value for
|
|
|
|
/// the specified block.
|
|
|
|
bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
|
|
|
|
return getAvailableVals(AV).count(BB);
|
|
|
|
}
|
|
|
|
|
2009-10-10 09:04:27 +00:00
|
|
|
/// AddAvailableValue - Indicate that a rewritten value is available in the
|
|
|
|
/// specified block with the specified value.
|
|
|
|
void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
|
|
|
|
assert(PrototypeValue != 0 && "Need to initialize SSAUpdater");
|
|
|
|
assert(PrototypeValue->getType() == V->getType() &&
|
|
|
|
"All rewritten values must have the same type");
|
|
|
|
getAvailableVals(AV)[BB] = V;
|
|
|
|
}
|
|
|
|
|
2010-01-27 22:01:02 +00:00
|
|
|
/// IsEquivalentPHI - Check if PHI has the same incoming value as specified
|
|
|
|
/// in ValueMapping for each predecessor block.
|
2010-04-17 03:08:24 +00:00
|
|
|
static bool IsEquivalentPHI(PHINode *PHI,
|
2010-01-27 22:01:02 +00:00
|
|
|
DenseMap<BasicBlock*, Value*> &ValueMapping) {
|
|
|
|
unsigned PHINumValues = PHI->getNumIncomingValues();
|
|
|
|
if (PHINumValues != ValueMapping.size())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// Scan the phi to see if it matches.
|
|
|
|
for (unsigned i = 0, e = PHINumValues; i != e; ++i)
|
|
|
|
if (ValueMapping[PHI->getIncomingBlock(i)] !=
|
|
|
|
PHI->getIncomingValue(i)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2009-10-10 23:00:11 +00:00
|
|
|
/// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
|
|
|
|
/// live at the end of the specified block.
|
2009-10-10 22:41:58 +00:00
|
|
|
Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
|
2010-04-17 03:08:24 +00:00
|
|
|
assert(BM == 0 && "Unexpected Internal State");
|
2009-10-10 22:41:58 +00:00
|
|
|
Value *Res = GetValueAtEndOfBlockInternal(BB);
|
2010-04-17 03:08:24 +00:00
|
|
|
assert(BM == 0 && "Unexpected Internal State");
|
2009-10-10 09:04:27 +00:00
|
|
|
return Res;
|
|
|
|
}
|
|
|
|
|
2009-10-10 23:00:11 +00:00
|
|
|
/// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
|
|
|
|
/// is live in the middle of the specified block.
|
|
|
|
///
|
|
|
|
/// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one
|
|
|
|
/// important case: if there is a definition of the rewritten value after the
|
|
|
|
/// 'use' in BB. Consider code like this:
|
|
|
|
///
|
|
|
|
/// X1 = ...
|
|
|
|
/// SomeBB:
|
|
|
|
/// use(X)
|
|
|
|
/// X2 = ...
|
|
|
|
/// br Cond, SomeBB, OutBB
|
|
|
|
///
|
|
|
|
/// In this case, there are two values (X1 and X2) added to the AvailableVals
|
|
|
|
/// set by the client of the rewriter, and those values are both live out of
|
|
|
|
/// their respective blocks. However, the use of X happens in the *middle* of
|
|
|
|
/// a block. Because of this, we need to insert a new PHI node in SomeBB to
|
|
|
|
/// merge the appropriate values, and this value isn't live out of the block.
|
|
|
|
///
|
|
|
|
Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
|
|
|
|
// If there is no definition of the renamed variable in this block, just use
|
|
|
|
// GetValueAtEndOfBlock to do our work.
|
2010-04-17 03:08:24 +00:00
|
|
|
if (!HasValueForBlock(BB))
|
2009-10-10 23:00:11 +00:00
|
|
|
return GetValueAtEndOfBlock(BB);
|
2009-10-16 15:20:13 +00:00
|
|
|
|
2009-10-10 23:00:11 +00:00
|
|
|
// Otherwise, we have the hard case. Get the live-in values for each
|
|
|
|
// predecessor.
|
|
|
|
SmallVector<std::pair<BasicBlock*, Value*>, 8> PredValues;
|
|
|
|
Value *SingularValue = 0;
|
2009-10-16 15:20:13 +00:00
|
|
|
|
2009-10-10 23:00:11 +00:00
|
|
|
// We can get our predecessor info by walking the pred_iterator list, but it
|
|
|
|
// is relatively slow. If we already have PHI nodes in this block, walk one
|
|
|
|
// of them to get the predecessor list instead.
|
|
|
|
if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
|
|
|
|
for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
|
|
|
|
BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
|
|
|
|
Value *PredVal = GetValueAtEndOfBlock(PredBB);
|
|
|
|
PredValues.push_back(std::make_pair(PredBB, PredVal));
|
2009-10-16 15:20:13 +00:00
|
|
|
|
2009-10-10 23:00:11 +00:00
|
|
|
// Compute SingularValue.
|
|
|
|
if (i == 0)
|
|
|
|
SingularValue = PredVal;
|
|
|
|
else if (PredVal != SingularValue)
|
|
|
|
SingularValue = 0;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
bool isFirstPred = true;
|
|
|
|
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
|
|
|
|
BasicBlock *PredBB = *PI;
|
|
|
|
Value *PredVal = GetValueAtEndOfBlock(PredBB);
|
|
|
|
PredValues.push_back(std::make_pair(PredBB, PredVal));
|
2009-10-16 15:20:13 +00:00
|
|
|
|
2009-10-10 23:00:11 +00:00
|
|
|
// Compute SingularValue.
|
|
|
|
if (isFirstPred) {
|
|
|
|
SingularValue = PredVal;
|
|
|
|
isFirstPred = false;
|
|
|
|
} else if (PredVal != SingularValue)
|
|
|
|
SingularValue = 0;
|
|
|
|
}
|
|
|
|
}
|
2009-10-16 15:20:13 +00:00
|
|
|
|
2009-10-10 23:00:11 +00:00
|
|
|
// If there are no predecessors, just return undef.
|
|
|
|
if (PredValues.empty())
|
|
|
|
return UndefValue::get(PrototypeValue->getType());
|
2009-10-16 15:20:13 +00:00
|
|
|
|
2009-10-10 23:00:11 +00:00
|
|
|
// Otherwise, if all the merged values are the same, just use it.
|
|
|
|
if (SingularValue != 0)
|
|
|
|
return SingularValue;
|
2009-10-16 15:20:13 +00:00
|
|
|
|
2010-04-17 03:08:24 +00:00
|
|
|
// Otherwise, we do need a PHI: check to see if we already have one available
|
|
|
|
// in this block that produces the right value.
|
|
|
|
if (isa<PHINode>(BB->begin())) {
|
|
|
|
DenseMap<BasicBlock*, Value*> ValueMapping(PredValues.begin(),
|
|
|
|
PredValues.end());
|
|
|
|
PHINode *SomePHI;
|
|
|
|
for (BasicBlock::iterator It = BB->begin();
|
|
|
|
(SomePHI = dyn_cast<PHINode>(It)); ++It) {
|
|
|
|
if (IsEquivalentPHI(SomePHI, ValueMapping))
|
|
|
|
return SomePHI;
|
|
|
|
}
|
|
|
|
}
|
2010-01-27 22:01:02 +00:00
|
|
|
|
2009-12-21 07:16:11 +00:00
|
|
|
// Ok, we have no way out, insert a new one now.
|
2009-10-10 23:00:11 +00:00
|
|
|
PHINode *InsertedPHI = PHINode::Create(PrototypeValue->getType(),
|
|
|
|
PrototypeValue->getName(),
|
|
|
|
&BB->front());
|
|
|
|
InsertedPHI->reserveOperandSpace(PredValues.size());
|
2009-10-16 15:20:13 +00:00
|
|
|
|
2009-10-10 23:00:11 +00:00
|
|
|
// Fill in all the predecessors of the PHI.
|
|
|
|
for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
|
|
|
|
InsertedPHI->addIncoming(PredValues[i].second, PredValues[i].first);
|
2009-10-16 15:20:13 +00:00
|
|
|
|
2009-10-10 23:00:11 +00:00
|
|
|
// See if the PHI node can be merged to a single value. This can happen in
|
|
|
|
// loop cases when we get a PHI of itself and one other value.
|
|
|
|
if (Value *ConstVal = InsertedPHI->hasConstantValue()) {
|
|
|
|
InsertedPHI->eraseFromParent();
|
|
|
|
return ConstVal;
|
|
|
|
}
|
2009-10-10 23:15:24 +00:00
|
|
|
|
|
|
|
// If the client wants to know about all new instructions, tell it.
|
|
|
|
if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
|
2009-10-16 15:20:13 +00:00
|
|
|
|
2010-01-05 01:26:49 +00:00
|
|
|
DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n");
|
2009-10-10 23:00:11 +00:00
|
|
|
return InsertedPHI;
|
|
|
|
}
|
|
|
|
|
2009-10-10 09:04:27 +00:00
|
|
|
/// RewriteUse - Rewrite a use of the symbolic value. This handles PHI nodes,
|
|
|
|
/// which use their value in the corresponding predecessor.
|
|
|
|
void SSAUpdater::RewriteUse(Use &U) {
|
|
|
|
Instruction *User = cast<Instruction>(U.getUser());
|
2010-04-17 03:08:24 +00:00
|
|
|
|
2009-10-20 20:27:49 +00:00
|
|
|
Value *V;
|
|
|
|
if (PHINode *UserPN = dyn_cast<PHINode>(User))
|
|
|
|
V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
|
|
|
|
else
|
|
|
|
V = GetValueInMiddleOfBlock(User->getParent());
|
2009-10-16 15:20:13 +00:00
|
|
|
|
2009-10-20 15:42:00 +00:00
|
|
|
U.set(V);
|
2009-10-10 09:04:27 +00:00
|
|
|
}
|
|
|
|
|
2009-10-10 22:41:58 +00:00
|
|
|
/// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
|
|
|
|
/// for the specified BB and if so, return it. If not, construct SSA form by
|
2010-04-17 03:08:24 +00:00
|
|
|
/// first calculating the required placement of PHIs and then inserting new
|
|
|
|
/// PHIs where needed.
|
2009-10-10 22:41:58 +00:00
|
|
|
Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
|
2009-10-10 09:04:27 +00:00
|
|
|
AvailableValsTy &AvailableVals = getAvailableVals(AV);
|
2010-04-17 03:08:24 +00:00
|
|
|
if (Value *V = AvailableVals[BB])
|
|
|
|
return V;
|
|
|
|
|
|
|
|
// Pool allocation used internally by GetValueAtEndOfBlock.
|
|
|
|
BumpPtrAllocator Allocator;
|
|
|
|
BBMapTy BBMapObj;
|
|
|
|
BM = &BBMapObj;
|
2009-10-16 15:20:13 +00:00
|
|
|
|
2010-04-17 03:08:24 +00:00
|
|
|
SmallVector<BBInfo*, 100> BlockList;
|
|
|
|
BuildBlockList(BB, &BlockList, &Allocator);
|
|
|
|
|
|
|
|
// Special case: bail out if BB is unreachable.
|
|
|
|
if (BlockList.size() == 0) {
|
|
|
|
BM = 0;
|
|
|
|
return UndefValue::get(PrototypeValue->getType());
|
2009-10-10 09:04:27 +00:00
|
|
|
}
|
2009-10-16 15:20:13 +00:00
|
|
|
|
2010-04-17 03:08:24 +00:00
|
|
|
FindDominators(&BlockList);
|
|
|
|
FindPHIPlacement(&BlockList);
|
|
|
|
FindAvailableVals(&BlockList);
|
2010-04-03 03:50:38 +00:00
|
|
|
|
2010-04-17 03:08:24 +00:00
|
|
|
BM = 0;
|
|
|
|
return BBMapObj[BB]->DefBB->AvailableVal;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
|
|
|
|
/// vector, set Info->NumPreds, and allocate space in Info->Preds.
|
|
|
|
static void FindPredecessorBlocks(SSAUpdater::BBInfo *Info,
|
|
|
|
SmallVectorImpl<BasicBlock*> *Preds,
|
|
|
|
BumpPtrAllocator *Allocator) {
|
|
|
|
// We can get our predecessor info by walking the pred_iterator list,
|
|
|
|
// but it is relatively slow. If we already have PHI nodes in this
|
|
|
|
// block, walk one of them to get the predecessor list instead.
|
|
|
|
BasicBlock *BB = Info->BB;
|
2010-04-03 03:50:38 +00:00
|
|
|
if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
|
2010-04-17 03:08:24 +00:00
|
|
|
for (unsigned PI = 0, E = SomePhi->getNumIncomingValues(); PI != E; ++PI)
|
|
|
|
Preds->push_back(SomePhi->getIncomingBlock(PI));
|
|
|
|
} else {
|
|
|
|
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
|
|
|
|
Preds->push_back(*PI);
|
|
|
|
}
|
2010-04-03 03:50:38 +00:00
|
|
|
|
2010-04-17 03:08:24 +00:00
|
|
|
Info->NumPreds = Preds->size();
|
|
|
|
Info->Preds = static_cast<SSAUpdater::BBInfo**>
|
|
|
|
(Allocator->Allocate(Info->NumPreds * sizeof(SSAUpdater::BBInfo*),
|
|
|
|
AlignOf<SSAUpdater::BBInfo*>::Alignment));
|
|
|
|
}
|
|
|
|
|
|
|
|
/// BuildBlockList - Starting from the specified basic block, traverse back
|
|
|
|
/// through its predecessors until reaching blocks with known values. Create
|
|
|
|
/// BBInfo structures for the blocks and append them to the block list.
|
|
|
|
void SSAUpdater::BuildBlockList(BasicBlock *BB, BlockListTy *BlockList,
|
|
|
|
BumpPtrAllocator *Allocator) {
|
|
|
|
AvailableValsTy &AvailableVals = getAvailableVals(AV);
|
|
|
|
BBMapTy *BBMap = getBBMap(BM);
|
|
|
|
SmallVector<BBInfo*, 10> RootList;
|
|
|
|
SmallVector<BBInfo*, 64> WorkList;
|
|
|
|
|
|
|
|
BBInfo *Info = new (*Allocator) BBInfo(BB, 0);
|
|
|
|
(*BBMap)[BB] = Info;
|
|
|
|
WorkList.push_back(Info);
|
|
|
|
|
|
|
|
// Search backward from BB, creating BBInfos along the way and stopping when
|
|
|
|
// reaching blocks that define the value. Record those defining blocks on
|
|
|
|
// the RootList.
|
|
|
|
SmallVector<BasicBlock*, 10> Preds;
|
|
|
|
while (!WorkList.empty()) {
|
|
|
|
Info = WorkList.pop_back_val();
|
|
|
|
Preds.clear();
|
|
|
|
FindPredecessorBlocks(Info, &Preds, Allocator);
|
|
|
|
|
|
|
|
// Treat an unreachable predecessor as a definition with 'undef'.
|
|
|
|
if (Info->NumPreds == 0) {
|
|
|
|
Info->AvailableVal = UndefValue::get(PrototypeValue->getType());
|
|
|
|
Info->DefBB = Info;
|
|
|
|
RootList.push_back(Info);
|
|
|
|
continue;
|
2009-10-10 09:04:27 +00:00
|
|
|
}
|
2010-03-31 20:51:00 +00:00
|
|
|
|
2010-04-17 03:08:24 +00:00
|
|
|
for (unsigned p = 0; p != Info->NumPreds; ++p) {
|
|
|
|
BasicBlock *Pred = Preds[p];
|
|
|
|
// Check if BBMap already has a BBInfo for the predecessor block.
|
|
|
|
BBMapTy::value_type &BBMapBucket = BBMap->FindAndConstruct(Pred);
|
|
|
|
if (BBMapBucket.second) {
|
|
|
|
Info->Preds[p] = BBMapBucket.second;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Create a new BBInfo for the predecessor.
|
|
|
|
Value *PredVal = AvailableVals.lookup(Pred);
|
|
|
|
BBInfo *PredInfo = new (*Allocator) BBInfo(Pred, PredVal);
|
|
|
|
BBMapBucket.second = PredInfo;
|
|
|
|
Info->Preds[p] = PredInfo;
|
|
|
|
|
|
|
|
if (PredInfo->AvailableVal) {
|
|
|
|
RootList.push_back(PredInfo);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
WorkList.push_back(PredInfo);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Now that we know what blocks are backwards-reachable from the starting
|
|
|
|
// block, do a forward depth-first traversal to assign postorder numbers
|
|
|
|
// to those blocks.
|
|
|
|
BBInfo *PseudoEntry = new (*Allocator) BBInfo(0, 0);
|
|
|
|
unsigned BlkNum = 1;
|
|
|
|
|
|
|
|
// Initialize the worklist with the roots from the backward traversal.
|
|
|
|
while (!RootList.empty()) {
|
|
|
|
Info = RootList.pop_back_val();
|
|
|
|
Info->IDom = PseudoEntry;
|
|
|
|
Info->BlkNum = -1;
|
|
|
|
WorkList.push_back(Info);
|
|
|
|
}
|
|
|
|
|
|
|
|
while (!WorkList.empty()) {
|
|
|
|
Info = WorkList.back();
|
|
|
|
|
|
|
|
if (Info->BlkNum == -2) {
|
|
|
|
// All the successors have been handled; assign the postorder number.
|
|
|
|
Info->BlkNum = BlkNum++;
|
|
|
|
// If not a root, put it on the BlockList.
|
|
|
|
if (!Info->AvailableVal)
|
|
|
|
BlockList->push_back(Info);
|
|
|
|
WorkList.pop_back();
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Leave this entry on the worklist, but set its BlkNum to mark that its
|
|
|
|
// successors have been put on the worklist. When it returns to the top
|
|
|
|
// the list, after handling its successors, it will be assigned a number.
|
|
|
|
Info->BlkNum = -2;
|
|
|
|
|
|
|
|
// Add unvisited successors to the work list.
|
|
|
|
for (succ_iterator SI = succ_begin(Info->BB), E = succ_end(Info->BB);
|
|
|
|
SI != E; ++SI) {
|
|
|
|
BBInfo *SuccInfo = (*BBMap)[*SI];
|
|
|
|
if (!SuccInfo || SuccInfo->BlkNum)
|
|
|
|
continue;
|
|
|
|
SuccInfo->BlkNum = -1;
|
|
|
|
WorkList.push_back(SuccInfo);
|
2010-04-03 03:50:38 +00:00
|
|
|
}
|
2010-03-31 20:51:00 +00:00
|
|
|
}
|
2010-04-17 03:08:24 +00:00
|
|
|
PseudoEntry->BlkNum = BlkNum;
|
|
|
|
}
|
2010-03-31 20:51:00 +00:00
|
|
|
|
2010-04-17 03:08:24 +00:00
|
|
|
/// IntersectDominators - This is the dataflow lattice "meet" operation for
|
|
|
|
/// finding dominators. Given two basic blocks, it walks up the dominator
|
|
|
|
/// tree until it finds a common dominator of both. It uses the postorder
|
|
|
|
/// number of the blocks to determine how to do that.
|
|
|
|
static SSAUpdater::BBInfo *IntersectDominators(SSAUpdater::BBInfo *Blk1,
|
|
|
|
SSAUpdater::BBInfo *Blk2) {
|
|
|
|
while (Blk1 != Blk2) {
|
|
|
|
while (Blk1->BlkNum < Blk2->BlkNum) {
|
|
|
|
Blk1 = Blk1->IDom;
|
|
|
|
if (!Blk1)
|
|
|
|
return Blk2;
|
|
|
|
}
|
|
|
|
while (Blk2->BlkNum < Blk1->BlkNum) {
|
|
|
|
Blk2 = Blk2->IDom;
|
|
|
|
if (!Blk2)
|
|
|
|
return Blk1;
|
2010-04-03 03:50:38 +00:00
|
|
|
}
|
2010-04-17 03:08:24 +00:00
|
|
|
}
|
|
|
|
return Blk1;
|
|
|
|
}
|
2009-10-16 15:20:13 +00:00
|
|
|
|
2010-04-17 03:08:24 +00:00
|
|
|
/// FindDominators - Calculate the dominator tree for the subset of the CFG
|
|
|
|
/// corresponding to the basic blocks on the BlockList. This uses the
|
|
|
|
/// algorithm from: "A Simple, Fast Dominance Algorithm" by Cooper, Harvey and
|
|
|
|
/// Kennedy, published in Software--Practice and Experience, 2001, 4:1-10.
|
|
|
|
/// Because the CFG subset does not include any edges leading into blocks that
|
|
|
|
/// define the value, the results are not the usual dominator tree. The CFG
|
|
|
|
/// subset has a single pseudo-entry node with edges to a set of root nodes
|
|
|
|
/// for blocks that define the value. The dominators for this subset CFG are
|
|
|
|
/// not the standard dominators but they are adequate for placing PHIs within
|
|
|
|
/// the subset CFG.
|
|
|
|
void SSAUpdater::FindDominators(BlockListTy *BlockList) {
|
|
|
|
bool Changed;
|
|
|
|
do {
|
|
|
|
Changed = false;
|
|
|
|
// Iterate over the list in reverse order, i.e., forward on CFG edges.
|
|
|
|
for (BlockListTy::reverse_iterator I = BlockList->rbegin(),
|
|
|
|
E = BlockList->rend(); I != E; ++I) {
|
|
|
|
BBInfo *Info = *I;
|
|
|
|
|
|
|
|
// Start with the first predecessor.
|
|
|
|
assert(Info->NumPreds > 0 && "unreachable block");
|
|
|
|
BBInfo *NewIDom = Info->Preds[0];
|
|
|
|
|
|
|
|
// Iterate through the block's other predecessors.
|
|
|
|
for (unsigned p = 1; p != Info->NumPreds; ++p) {
|
|
|
|
BBInfo *Pred = Info->Preds[p];
|
|
|
|
NewIDom = IntersectDominators(NewIDom, Pred);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check if the IDom value has changed.
|
|
|
|
if (NewIDom != Info->IDom) {
|
|
|
|
Info->IDom = NewIDom;
|
|
|
|
Changed = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} while (Changed);
|
|
|
|
}
|
2010-03-31 20:51:00 +00:00
|
|
|
|
2010-04-17 03:08:24 +00:00
|
|
|
/// IsDefInDomFrontier - Search up the dominator tree from Pred to IDom for
|
|
|
|
/// any blocks containing definitions of the value. If one is found, then the
|
|
|
|
/// successor of Pred is in the dominance frontier for the definition, and
|
|
|
|
/// this function returns true.
|
|
|
|
static bool IsDefInDomFrontier(const SSAUpdater::BBInfo *Pred,
|
|
|
|
const SSAUpdater::BBInfo *IDom) {
|
|
|
|
for (; Pred != IDom; Pred = Pred->IDom) {
|
|
|
|
if (Pred->DefBB == Pred)
|
|
|
|
return true;
|
2010-03-31 20:51:00 +00:00
|
|
|
}
|
2010-04-17 03:08:24 +00:00
|
|
|
return false;
|
|
|
|
}
|
2009-10-16 15:20:13 +00:00
|
|
|
|
2010-04-17 03:08:24 +00:00
|
|
|
/// FindPHIPlacement - PHIs are needed in the iterated dominance frontiers of
|
|
|
|
/// the known definitions. Iteratively add PHIs in the dom frontiers until
|
|
|
|
/// nothing changes. Along the way, keep track of the nearest dominating
|
|
|
|
/// definitions for non-PHI blocks.
|
|
|
|
void SSAUpdater::FindPHIPlacement(BlockListTy *BlockList) {
|
|
|
|
bool Changed;
|
|
|
|
do {
|
|
|
|
Changed = false;
|
|
|
|
// Iterate over the list in reverse order, i.e., forward on CFG edges.
|
|
|
|
for (BlockListTy::reverse_iterator I = BlockList->rbegin(),
|
|
|
|
E = BlockList->rend(); I != E; ++I) {
|
|
|
|
BBInfo *Info = *I;
|
|
|
|
|
|
|
|
// If this block already needs a PHI, there is nothing to do here.
|
|
|
|
if (Info->DefBB == Info)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// Default to use the same def as the immediate dominator.
|
|
|
|
BBInfo *NewDefBB = Info->IDom->DefBB;
|
|
|
|
for (unsigned p = 0; p != Info->NumPreds; ++p) {
|
|
|
|
if (IsDefInDomFrontier(Info->Preds[p], Info->IDom)) {
|
|
|
|
// Need a PHI here.
|
|
|
|
NewDefBB = Info;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check if anything changed.
|
|
|
|
if (NewDefBB != Info->DefBB) {
|
|
|
|
Info->DefBB = NewDefBB;
|
|
|
|
Changed = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} while (Changed);
|
|
|
|
}
|
2010-04-01 23:06:38 +00:00
|
|
|
|
2010-04-17 03:08:24 +00:00
|
|
|
/// FindAvailableVal - If this block requires a PHI, first check if an existing
|
|
|
|
/// PHI matches the PHI placement and reaching definitions computed earlier,
|
|
|
|
/// and if not, create a new PHI. Visit all the block's predecessors to
|
|
|
|
/// calculate the available value for each one and fill in the incoming values
|
|
|
|
/// for a new PHI.
|
|
|
|
void SSAUpdater::FindAvailableVals(BlockListTy *BlockList) {
|
|
|
|
AvailableValsTy &AvailableVals = getAvailableVals(AV);
|
2009-12-04 01:03:32 +00:00
|
|
|
|
2010-04-17 03:08:24 +00:00
|
|
|
// Go through the worklist in forward order (i.e., backward through the CFG)
|
|
|
|
// and check if existing PHIs can be used. If not, create empty PHIs where
|
|
|
|
// they are needed.
|
|
|
|
for (BlockListTy::iterator I = BlockList->begin(), E = BlockList->end();
|
|
|
|
I != E; ++I) {
|
|
|
|
BBInfo *Info = *I;
|
|
|
|
// Check if there needs to be a PHI in BB.
|
|
|
|
if (Info->DefBB != Info)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// Look for an existing PHI.
|
|
|
|
FindExistingPHI(Info->BB, BlockList);
|
|
|
|
if (Info->AvailableVal)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
PHINode *PHI = PHINode::Create(PrototypeValue->getType(),
|
|
|
|
PrototypeValue->getName(),
|
|
|
|
&Info->BB->front());
|
|
|
|
PHI->reserveOperandSpace(Info->NumPreds);
|
|
|
|
Info->AvailableVal = PHI;
|
|
|
|
AvailableVals[Info->BB] = PHI;
|
|
|
|
}
|
2009-10-16 15:20:13 +00:00
|
|
|
|
2010-04-17 03:08:24 +00:00
|
|
|
// Now go back through the worklist in reverse order to fill in the arguments
|
|
|
|
// for any new PHIs added in the forward traversal.
|
|
|
|
for (BlockListTy::reverse_iterator I = BlockList->rbegin(),
|
|
|
|
E = BlockList->rend(); I != E; ++I) {
|
|
|
|
BBInfo *Info = *I;
|
|
|
|
|
|
|
|
// Check if this block contains a newly added PHI.
|
|
|
|
if (Info->DefBB != Info)
|
|
|
|
continue;
|
|
|
|
PHINode *PHI = dyn_cast<PHINode>(Info->AvailableVal);
|
|
|
|
if (!PHI || PHI->getNumIncomingValues() == Info->NumPreds)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// Iterate through the block's predecessors.
|
|
|
|
for (unsigned p = 0; p != Info->NumPreds; ++p) {
|
|
|
|
BBInfo *PredInfo = Info->Preds[p];
|
|
|
|
BasicBlock *Pred = PredInfo->BB;
|
|
|
|
// Skip to the nearest preceding definition.
|
|
|
|
if (PredInfo->DefBB != PredInfo)
|
|
|
|
PredInfo = PredInfo->DefBB;
|
|
|
|
PHI->addIncoming(PredInfo->AvailableVal, Pred);
|
|
|
|
}
|
2009-10-16 15:20:13 +00:00
|
|
|
|
2010-04-17 03:08:24 +00:00
|
|
|
DEBUG(dbgs() << " Inserted PHI: " << *PHI << "\n");
|
2009-10-16 15:20:13 +00:00
|
|
|
|
2010-04-03 03:50:38 +00:00
|
|
|
// If the client wants to know about all new instructions, tell it.
|
2010-04-17 03:08:24 +00:00
|
|
|
if (InsertedPHIs) InsertedPHIs->push_back(PHI);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// FindExistingPHI - Look through the PHI nodes in a block to see if any of
|
|
|
|
/// them match what is needed.
|
|
|
|
void SSAUpdater::FindExistingPHI(BasicBlock *BB, BlockListTy *BlockList) {
|
|
|
|
PHINode *SomePHI;
|
|
|
|
for (BasicBlock::iterator It = BB->begin();
|
|
|
|
(SomePHI = dyn_cast<PHINode>(It)); ++It) {
|
|
|
|
if (CheckIfPHIMatches(SomePHI)) {
|
|
|
|
RecordMatchingPHI(SomePHI);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
// Match failed: clear all the PHITag values.
|
|
|
|
for (BlockListTy::iterator I = BlockList->begin(), E = BlockList->end();
|
|
|
|
I != E; ++I)
|
|
|
|
(*I)->PHITag = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// CheckIfPHIMatches - Check if a PHI node matches the placement and values
|
|
|
|
/// in the BBMap.
|
|
|
|
bool SSAUpdater::CheckIfPHIMatches(PHINode *PHI) {
|
|
|
|
BBMapTy *BBMap = getBBMap(BM);
|
|
|
|
SmallVector<PHINode*, 20> WorkList;
|
|
|
|
WorkList.push_back(PHI);
|
|
|
|
|
|
|
|
// Mark that the block containing this PHI has been visited.
|
|
|
|
(*BBMap)[PHI->getParent()]->PHITag = PHI;
|
|
|
|
|
|
|
|
while (!WorkList.empty()) {
|
|
|
|
PHI = WorkList.pop_back_val();
|
|
|
|
|
|
|
|
// Iterate through the PHI's incoming values.
|
|
|
|
for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
|
|
|
|
Value *IncomingVal = PHI->getIncomingValue(i);
|
|
|
|
BBInfo *PredInfo = (*BBMap)[PHI->getIncomingBlock(i)];
|
|
|
|
// Skip to the nearest preceding definition.
|
|
|
|
if (PredInfo->DefBB != PredInfo)
|
|
|
|
PredInfo = PredInfo->DefBB;
|
|
|
|
|
|
|
|
// Check if it matches the expected value.
|
|
|
|
if (PredInfo->AvailableVal) {
|
|
|
|
if (IncomingVal == PredInfo->AvailableVal)
|
|
|
|
continue;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check if the value is a PHI in the correct block.
|
|
|
|
PHINode *IncomingPHIVal = dyn_cast<PHINode>(IncomingVal);
|
|
|
|
if (!IncomingPHIVal || IncomingPHIVal->getParent() != PredInfo->BB)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// If this block has already been visited, check if this PHI matches.
|
|
|
|
if (PredInfo->PHITag) {
|
|
|
|
if (IncomingPHIVal == PredInfo->PHITag)
|
|
|
|
continue;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
PredInfo->PHITag = IncomingPHIVal;
|
|
|
|
|
|
|
|
WorkList.push_back(IncomingPHIVal);
|
|
|
|
}
|
2009-10-10 09:04:27 +00:00
|
|
|
}
|
2010-04-17 03:08:24 +00:00
|
|
|
return true;
|
|
|
|
}
|
2009-10-16 15:20:13 +00:00
|
|
|
|
2010-04-17 03:08:24 +00:00
|
|
|
/// RecordMatchingPHI - For a PHI node that matches, record it and its input
|
|
|
|
/// PHIs in both the BBMap and the AvailableVals mapping.
|
|
|
|
void SSAUpdater::RecordMatchingPHI(PHINode *PHI) {
|
|
|
|
BBMapTy *BBMap = getBBMap(BM);
|
|
|
|
AvailableValsTy &AvailableVals = getAvailableVals(AV);
|
|
|
|
SmallVector<PHINode*, 20> WorkList;
|
|
|
|
WorkList.push_back(PHI);
|
|
|
|
|
|
|
|
// Record this PHI.
|
|
|
|
BasicBlock *BB = PHI->getParent();
|
|
|
|
AvailableVals[BB] = PHI;
|
|
|
|
(*BBMap)[BB]->AvailableVal = PHI;
|
|
|
|
|
|
|
|
while (!WorkList.empty()) {
|
|
|
|
PHI = WorkList.pop_back_val();
|
|
|
|
|
|
|
|
// Iterate through the PHI's incoming values.
|
|
|
|
for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
|
|
|
|
PHINode *IncomingPHIVal = dyn_cast<PHINode>(PHI->getIncomingValue(i));
|
|
|
|
if (!IncomingPHIVal) continue;
|
|
|
|
BB = IncomingPHIVal->getParent();
|
|
|
|
BBInfo *Info = (*BBMap)[BB];
|
|
|
|
if (!Info || Info->AvailableVal)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// Record the PHI and add it to the worklist.
|
|
|
|
AvailableVals[BB] = IncomingPHIVal;
|
|
|
|
Info->AvailableVal = IncomingPHIVal;
|
|
|
|
WorkList.push_back(IncomingPHIVal);
|
|
|
|
}
|
|
|
|
}
|
2009-10-10 09:04:27 +00:00
|
|
|
}
|