llvm-6502/lib/ExecutionEngine/ExecutionEngine.cpp

474 lines
18 KiB
C++
Raw Normal View History

//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the common interface used by the various execution engine
// subclasses.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "jit"
#include "Interpreter/Interpreter.h"
#include "JIT/JIT.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/IntrinsicLowering.h"
#include "llvm/Module.h"
#include "llvm/ModuleProvider.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/Target/TargetData.h"
#include "Support/Debug.h"
#include "Support/Statistic.h"
#include "Support/DynamicLinker.h"
#include "Config/dlfcn.h"
using namespace llvm;
namespace {
Statistic<> NumInitBytes("lli", "Number of bytes of global vars initialized");
Statistic<> NumGlobals ("lli", "Number of global vars initialized");
}
ExecutionEngine::ExecutionEngine(ModuleProvider *P) :
CurMod(*P->getModule()), MP(P) {
assert(P && "ModuleProvider is null?");
}
ExecutionEngine::ExecutionEngine(Module *M) : CurMod(*M), MP(0) {
assert(M && "Module is null?");
}
ExecutionEngine::~ExecutionEngine() {
delete MP;
}
// CreateArgv - Turn a vector of strings into a nice argv style array of
// pointers to null terminated strings.
//
static void *CreateArgv(ExecutionEngine *EE,
const std::vector<std::string> &InputArgv) {
unsigned PtrSize = EE->getTargetData().getPointerSize();
char *Result = new char[(InputArgv.size()+1)*PtrSize];
DEBUG(std::cerr << "ARGV = " << (void*)Result << "\n");
const Type *SBytePtr = PointerType::get(Type::SByteTy);
for (unsigned i = 0; i != InputArgv.size(); ++i) {
unsigned Size = InputArgv[i].size()+1;
char *Dest = new char[Size];
DEBUG(std::cerr << "ARGV[" << i << "] = " << (void*)Dest << "\n");
std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
Dest[Size-1] = 0;
// Endian safe: Result[i] = (PointerTy)Dest;
EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize),
SBytePtr);
}
// Null terminate it
EE->StoreValueToMemory(PTOGV(0),
(GenericValue*)(Result+InputArgv.size()*PtrSize),
SBytePtr);
return Result;
}
/// runFunctionAsMain - This is a helper function which wraps runFunction to
/// handle the common task of starting up main with the specified argc, argv,
/// and envp parameters.
int ExecutionEngine::runFunctionAsMain(Function *Fn,
const std::vector<std::string> &argv,
const char * const * envp) {
std::vector<GenericValue> GVArgs;
GenericValue GVArgc;
GVArgc.IntVal = argv.size();
GVArgs.push_back(GVArgc); // Arg #0 = argc.
GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv.
assert(((char **)GVTOP(GVArgs[1]))[0] && "argv[0] was null after CreateArgv");
std::vector<std::string> EnvVars;
for (unsigned i = 0; envp[i]; ++i)
EnvVars.push_back(envp[i]);
GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp.
return runFunction(Fn, GVArgs).IntVal;
}
/// If possible, create a JIT, unless the caller specifically requests an
/// Interpreter or there's an error. If even an Interpreter cannot be created,
/// NULL is returned.
///
ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP,
bool ForceInterpreter,
IntrinsicLowering *IL) {
ExecutionEngine *EE = 0;
// Unless the interpreter was explicitly selected, try making a JIT.
if (!ForceInterpreter)
EE = JIT::create(MP, IL);
// If we can't make a JIT, make an interpreter instead.
try {
if (EE == 0)
EE = Interpreter::create(MP->materializeModule(), IL);
} catch (...) {
EE = 0;
}
if (EE == 0) delete IL;
return EE;
}
/// getPointerToGlobal - This returns the address of the specified global
/// value. This may involve code generation if it's a function.
///
void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
return getPointerToFunction(F);
assert(GlobalAddress[GV] && "Global hasn't had an address allocated yet?");
return GlobalAddress[GV];
}
/// FIXME: document
///
GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
GenericValue Result;
if (ConstantExpr *CE = const_cast<ConstantExpr*>(dyn_cast<ConstantExpr>(C))) {
switch (CE->getOpcode()) {
case Instruction::GetElementPtr: {
Result = getConstantValue(CE->getOperand(0));
std::vector<Value*> Indexes(CE->op_begin()+1, CE->op_end());
uint64_t Offset =
TD->getIndexedOffset(CE->getOperand(0)->getType(), Indexes);
Result.LongVal += Offset;
return Result;
}
case Instruction::Cast: {
// We only need to handle a few cases here. Almost all casts will
// automatically fold, just the ones involving pointers won't.
//
Constant *Op = CE->getOperand(0);
// Handle cast of pointer to pointer...
if (Op->getType()->getPrimitiveID() == C->getType()->getPrimitiveID())
return getConstantValue(Op);
// Handle a cast of pointer to any integral type...
if (isa<PointerType>(Op->getType()) && C->getType()->isIntegral())
return getConstantValue(Op);
// Handle cast of long to pointer...
if (isa<PointerType>(C->getType()) && (Op->getType() == Type::LongTy ||
Op->getType() == Type::ULongTy))
return getConstantValue(Op);
break;
}
case Instruction::Add:
if (CE->getOperand(0)->getType() == Type::LongTy ||
CE->getOperand(0)->getType() == Type::ULongTy)
Result.LongVal = getConstantValue(CE->getOperand(0)).LongVal +
getConstantValue(CE->getOperand(1)).LongVal;
else
break;
return Result;
default:
break;
}
std::cerr << "ConstantExpr not handled as global var init: " << *CE << "\n";
abort();
}
switch (C->getType()->getPrimitiveID()) {
#define GET_CONST_VAL(TY, CLASS) \
case Type::TY##TyID: Result.TY##Val = cast<CLASS>(C)->getValue(); break
GET_CONST_VAL(Bool , ConstantBool);
GET_CONST_VAL(UByte , ConstantUInt);
GET_CONST_VAL(SByte , ConstantSInt);
GET_CONST_VAL(UShort , ConstantUInt);
GET_CONST_VAL(Short , ConstantSInt);
GET_CONST_VAL(UInt , ConstantUInt);
GET_CONST_VAL(Int , ConstantSInt);
GET_CONST_VAL(ULong , ConstantUInt);
GET_CONST_VAL(Long , ConstantSInt);
GET_CONST_VAL(Float , ConstantFP);
GET_CONST_VAL(Double , ConstantFP);
#undef GET_CONST_VAL
case Type::PointerTyID:
if (isa<ConstantPointerNull>(C)) {
Result.PointerVal = 0;
} else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)){
if (Function *F =
const_cast<Function*>(dyn_cast<Function>(CPR->getValue())))
Result = PTOGV(getPointerToFunctionOrStub(F));
else
Result = PTOGV(getOrEmitGlobalVariable(
cast<GlobalVariable>(CPR->getValue())));
} else {
assert(0 && "Unknown constant pointer type!");
}
break;
default:
std::cout << "ERROR: Constant unimp for type: " << C->getType() << "\n";
abort();
}
return Result;
}
/// FIXME: document
///
void ExecutionEngine::StoreValueToMemory(GenericValue Val, GenericValue *Ptr,
const Type *Ty) {
if (getTargetData().isLittleEndian()) {
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID:
case Type::UByteTyID:
case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break;
case Type::UShortTyID:
case Type::ShortTyID: Ptr->Untyped[0] = Val.UShortVal & 255;
Ptr->Untyped[1] = (Val.UShortVal >> 8) & 255;
break;
Store4BytesLittleEndian:
case Type::FloatTyID:
case Type::UIntTyID:
case Type::IntTyID: Ptr->Untyped[0] = Val.UIntVal & 255;
Ptr->Untyped[1] = (Val.UIntVal >> 8) & 255;
Ptr->Untyped[2] = (Val.UIntVal >> 16) & 255;
Ptr->Untyped[3] = (Val.UIntVal >> 24) & 255;
break;
case Type::PointerTyID: if (getTargetData().getPointerSize() == 4)
goto Store4BytesLittleEndian;
case Type::DoubleTyID:
case Type::ULongTyID:
case Type::LongTyID: Ptr->Untyped[0] = Val.ULongVal & 255;
Ptr->Untyped[1] = (Val.ULongVal >> 8) & 255;
Ptr->Untyped[2] = (Val.ULongVal >> 16) & 255;
Ptr->Untyped[3] = (Val.ULongVal >> 24) & 255;
Ptr->Untyped[4] = (Val.ULongVal >> 32) & 255;
Ptr->Untyped[5] = (Val.ULongVal >> 40) & 255;
Ptr->Untyped[6] = (Val.ULongVal >> 48) & 255;
Ptr->Untyped[7] = (Val.ULongVal >> 56) & 255;
break;
default:
std::cout << "Cannot store value of type " << Ty << "!\n";
}
} else {
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID:
case Type::UByteTyID:
case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break;
case Type::UShortTyID:
case Type::ShortTyID: Ptr->Untyped[1] = Val.UShortVal & 255;
Ptr->Untyped[0] = (Val.UShortVal >> 8) & 255;
break;
Store4BytesBigEndian:
case Type::FloatTyID:
case Type::UIntTyID:
case Type::IntTyID: Ptr->Untyped[3] = Val.UIntVal & 255;
Ptr->Untyped[2] = (Val.UIntVal >> 8) & 255;
Ptr->Untyped[1] = (Val.UIntVal >> 16) & 255;
Ptr->Untyped[0] = (Val.UIntVal >> 24) & 255;
break;
case Type::PointerTyID: if (getTargetData().getPointerSize() == 4)
goto Store4BytesBigEndian;
case Type::DoubleTyID:
case Type::ULongTyID:
case Type::LongTyID: Ptr->Untyped[7] = Val.ULongVal & 255;
Ptr->Untyped[6] = (Val.ULongVal >> 8) & 255;
Ptr->Untyped[5] = (Val.ULongVal >> 16) & 255;
Ptr->Untyped[4] = (Val.ULongVal >> 24) & 255;
Ptr->Untyped[3] = (Val.ULongVal >> 32) & 255;
Ptr->Untyped[2] = (Val.ULongVal >> 40) & 255;
Ptr->Untyped[1] = (Val.ULongVal >> 48) & 255;
Ptr->Untyped[0] = (Val.ULongVal >> 56) & 255;
break;
default:
std::cout << "Cannot store value of type " << Ty << "!\n";
}
}
}
/// FIXME: document
///
GenericValue ExecutionEngine::LoadValueFromMemory(GenericValue *Ptr,
const Type *Ty) {
GenericValue Result;
if (getTargetData().isLittleEndian()) {
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID:
case Type::UByteTyID:
case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break;
case Type::UShortTyID:
case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[0] |
((unsigned)Ptr->Untyped[1] << 8);
break;
Load4BytesLittleEndian:
case Type::FloatTyID:
case Type::UIntTyID:
case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[0] |
((unsigned)Ptr->Untyped[1] << 8) |
((unsigned)Ptr->Untyped[2] << 16) |
((unsigned)Ptr->Untyped[3] << 24);
break;
case Type::PointerTyID: if (getTargetData().getPointerSize() == 4)
goto Load4BytesLittleEndian;
case Type::DoubleTyID:
case Type::ULongTyID:
case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[0] |
((uint64_t)Ptr->Untyped[1] << 8) |
((uint64_t)Ptr->Untyped[2] << 16) |
((uint64_t)Ptr->Untyped[3] << 24) |
((uint64_t)Ptr->Untyped[4] << 32) |
((uint64_t)Ptr->Untyped[5] << 40) |
((uint64_t)Ptr->Untyped[6] << 48) |
((uint64_t)Ptr->Untyped[7] << 56);
break;
default:
std::cout << "Cannot load value of type " << *Ty << "!\n";
abort();
}
} else {
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID:
case Type::UByteTyID:
case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break;
case Type::UShortTyID:
case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[1] |
((unsigned)Ptr->Untyped[0] << 8);
break;
Load4BytesBigEndian:
case Type::FloatTyID:
case Type::UIntTyID:
case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[3] |
((unsigned)Ptr->Untyped[2] << 8) |
((unsigned)Ptr->Untyped[1] << 16) |
((unsigned)Ptr->Untyped[0] << 24);
break;
case Type::PointerTyID: if (getTargetData().getPointerSize() == 4)
goto Load4BytesBigEndian;
case Type::DoubleTyID:
case Type::ULongTyID:
case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[7] |
((uint64_t)Ptr->Untyped[6] << 8) |
((uint64_t)Ptr->Untyped[5] << 16) |
((uint64_t)Ptr->Untyped[4] << 24) |
((uint64_t)Ptr->Untyped[3] << 32) |
((uint64_t)Ptr->Untyped[2] << 40) |
((uint64_t)Ptr->Untyped[1] << 48) |
((uint64_t)Ptr->Untyped[0] << 56);
break;
default:
std::cout << "Cannot load value of type " << *Ty << "!\n";
abort();
}
}
return Result;
}
// InitializeMemory - Recursive function to apply a Constant value into the
// specified memory location...
//
void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
if (Init->getType()->isFirstClassType()) {
GenericValue Val = getConstantValue(Init);
StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
return;
}
switch (Init->getType()->getPrimitiveID()) {
case Type::ArrayTyID: {
const ConstantArray *CPA = cast<ConstantArray>(Init);
const std::vector<Use> &Val = CPA->getValues();
unsigned ElementSize =
getTargetData().getTypeSize(cast<ArrayType>(CPA->getType())->getElementType());
for (unsigned i = 0; i < Val.size(); ++i)
InitializeMemory(cast<Constant>(Val[i].get()), (char*)Addr+i*ElementSize);
return;
}
case Type::StructTyID: {
const ConstantStruct *CPS = cast<ConstantStruct>(Init);
const StructLayout *SL =
getTargetData().getStructLayout(cast<StructType>(CPS->getType()));
const std::vector<Use> &Val = CPS->getValues();
for (unsigned i = 0; i < Val.size(); ++i)
InitializeMemory(cast<Constant>(Val[i].get()),
(char*)Addr+SL->MemberOffsets[i]);
return;
}
default:
std::cerr << "Bad Type: " << Init->getType() << "\n";
assert(0 && "Unknown constant type to initialize memory with!");
}
}
/// EmitGlobals - Emit all of the global variables to memory, storing their
/// addresses into GlobalAddress. This must make sure to copy the contents of
/// their initializers into the memory.
///
void ExecutionEngine::emitGlobals() {
const TargetData &TD = getTargetData();
// Loop over all of the global variables in the program, allocating the memory
// to hold them.
for (Module::giterator I = getModule().gbegin(), E = getModule().gend();
I != E; ++I)
if (!I->isExternal()) {
// Get the type of the global...
const Type *Ty = I->getType()->getElementType();
// Allocate some memory for it!
unsigned Size = TD.getTypeSize(Ty);
addGlobalMapping(I, new char[Size]);
DEBUG(std::cerr << "Global '" << I->getName() << "' -> "
<< (void*)GlobalAddress[I] << "\n");
} else {
// External variable reference. Try to use the dynamic loader to
// get a pointer to it.
if (void *SymAddr = GetAddressOfSymbol(I->getName().c_str()))
GlobalAddress[I] = SymAddr;
else {
std::cerr << "Could not resolve external global address: "
<< I->getName() << "\n";
abort();
}
}
// Now that all of the globals are set up in memory, loop through them all and
// initialize their contents.
for (Module::giterator I = getModule().gbegin(), E = getModule().gend();
I != E; ++I)
if (!I->isExternal())
EmitGlobalVariable(I);
}
// EmitGlobalVariable - This method emits the specified global variable to the
// address specified in GlobalAddresses, or allocates new memory if it's not
// already in the map.
void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
void *&GA = GlobalAddress[GV];
const Type *ElTy = GV->getType()->getElementType();
if (GA == 0) {
// If it's not already specified, allocate memory for the global.
GA = new char[getTargetData().getTypeSize(ElTy)];
}
InitializeMemory(GV->getInitializer(), GA);
NumInitBytes += getTargetData().getTypeSize(ElTy);
++NumGlobals;
}