llvm-6502/lib/VMCore/PassManager.cpp

1529 lines
48 KiB
C++
Raw Normal View History

//===- PassManager.cpp - LLVM Pass Infrastructure Implementation ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LLVM Pass Manager infrastructure.
//
//===----------------------------------------------------------------------===//
#include "llvm/PassManagers.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Timer.h"
#include "llvm/Module.h"
#include "llvm/ModuleProvider.h"
#include "llvm/Support/Streams.h"
#include "llvm/Support/ManagedStatic.h"
#include <algorithm>
#include <vector>
#include <map>
using namespace llvm;
// See PassManagers.h for Pass Manager infrastructure overview.
namespace llvm {
//===----------------------------------------------------------------------===//
// Pass debugging information. Often it is useful to find out what pass is
// running when a crash occurs in a utility. When this library is compiled with
// debugging on, a command line option (--debug-pass) is enabled that causes the
// pass name to be printed before it executes.
//
// Different debug levels that can be enabled...
enum PassDebugLevel {
None, Arguments, Structure, Executions, Details
};
static cl::opt<enum PassDebugLevel>
PassDebugging("debug-pass", cl::Hidden,
cl::desc("Print PassManager debugging information"),
cl::values(
clEnumVal(None , "disable debug output"),
clEnumVal(Arguments , "print pass arguments to pass to 'opt'"),
clEnumVal(Structure , "print pass structure before run()"),
clEnumVal(Executions, "print pass name before it is executed"),
clEnumVal(Details , "print pass details when it is executed"),
clEnumValEnd));
} // End of llvm namespace
namespace {
//===----------------------------------------------------------------------===//
// BBPassManager
//
/// BBPassManager manages BasicBlockPass. It batches all the
/// pass together and sequence them to process one basic block before
/// processing next basic block.
class VISIBILITY_HIDDEN BBPassManager : public PMDataManager,
public FunctionPass {
public:
static char ID;
explicit BBPassManager(int Depth)
: PMDataManager(Depth), FunctionPass((intptr_t)&ID) {}
/// Execute all of the passes scheduled for execution. Keep track of
/// whether any of the passes modifies the function, and if so, return true.
bool runOnFunction(Function &F);
/// Pass Manager itself does not invalidate any analysis info.
void getAnalysisUsage(AnalysisUsage &Info) const {
Info.setPreservesAll();
}
bool doInitialization(Module &M);
bool doInitialization(Function &F);
bool doFinalization(Module &M);
bool doFinalization(Function &F);
virtual const char *getPassName() const {
return "BasicBlock Pass Manager";
}
// Print passes managed by this manager
void dumpPassStructure(unsigned Offset) {
llvm::cerr << std::string(Offset*2, ' ') << "BasicBlockPass Manager\n";
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
BasicBlockPass *BP = getContainedPass(Index);
BP->dumpPassStructure(Offset + 1);
dumpLastUses(BP, Offset+1);
}
}
BasicBlockPass *getContainedPass(unsigned N) {
assert ( N < PassVector.size() && "Pass number out of range!");
BasicBlockPass *BP = static_cast<BasicBlockPass *>(PassVector[N]);
return BP;
}
virtual PassManagerType getPassManagerType() const {
return PMT_BasicBlockPassManager;
}
};
char BBPassManager::ID = 0;
}
namespace llvm {
//===----------------------------------------------------------------------===//
// FunctionPassManagerImpl
//
/// FunctionPassManagerImpl manages FPPassManagers
class FunctionPassManagerImpl : public Pass,
public PMDataManager,
public PMTopLevelManager {
public:
static char ID;
explicit FunctionPassManagerImpl(int Depth) :
Pass((intptr_t)&ID), PMDataManager(Depth),
PMTopLevelManager(TLM_Function) { }
/// add - Add a pass to the queue of passes to run. This passes ownership of
/// the Pass to the PassManager. When the PassManager is destroyed, the pass
/// will be destroyed as well, so there is no need to delete the pass. This
/// implies that all passes MUST be allocated with 'new'.
void add(Pass *P) {
schedulePass(P);
}
/// run - Execute all of the passes scheduled for execution. Keep track of
/// whether any of the passes modifies the module, and if so, return true.
bool run(Function &F);
/// doInitialization - Run all of the initializers for the function passes.
///
bool doInitialization(Module &M);
/// doFinalization - Run all of the finalizers for the function passes.
///
bool doFinalization(Module &M);
/// Pass Manager itself does not invalidate any analysis info.
void getAnalysisUsage(AnalysisUsage &Info) const {
Info.setPreservesAll();
}
inline void addTopLevelPass(Pass *P) {
if (ImmutablePass *IP = dynamic_cast<ImmutablePass *> (P)) {
// P is a immutable pass and it will be managed by this
// top level manager. Set up analysis resolver to connect them.
AnalysisResolver *AR = new AnalysisResolver(*this);
P->setResolver(AR);
initializeAnalysisImpl(P);
addImmutablePass(IP);
recordAvailableAnalysis(IP);
} else {
P->assignPassManager(activeStack);
}
}
FPPassManager *getContainedManager(unsigned N) {
assert ( N < PassManagers.size() && "Pass number out of range!");
FPPassManager *FP = static_cast<FPPassManager *>(PassManagers[N]);
return FP;
}
};
char FunctionPassManagerImpl::ID = 0;
//===----------------------------------------------------------------------===//
// MPPassManager
//
/// MPPassManager manages ModulePasses and function pass managers.
/// It batches all Module passes and function pass managers together and
/// sequences them to process one module.
class MPPassManager : public Pass, public PMDataManager {
public:
static char ID;
explicit MPPassManager(int Depth) :
Pass((intptr_t)&ID), PMDataManager(Depth) { }
// Delete on the fly managers.
virtual ~MPPassManager() {
for (std::map<Pass *, FunctionPassManagerImpl *>::iterator
I = OnTheFlyManagers.begin(), E = OnTheFlyManagers.end();
I != E; ++I) {
FunctionPassManagerImpl *FPP = I->second;
delete FPP;
}
}
/// run - Execute all of the passes scheduled for execution. Keep track of
/// whether any of the passes modifies the module, and if so, return true.
bool runOnModule(Module &M);
/// Pass Manager itself does not invalidate any analysis info.
void getAnalysisUsage(AnalysisUsage &Info) const {
Info.setPreservesAll();
}
/// Add RequiredPass into list of lower level passes required by pass P.
/// RequiredPass is run on the fly by Pass Manager when P requests it
/// through getAnalysis interface.
virtual void addLowerLevelRequiredPass(Pass *P, Pass *RequiredPass);
/// Return function pass corresponding to PassInfo PI, that is
/// required by module pass MP. Instantiate analysis pass, by using
/// its runOnFunction() for function F.
virtual Pass* getOnTheFlyPass(Pass *MP, const PassInfo *PI, Function &F);
virtual const char *getPassName() const {
return "Module Pass Manager";
}
// Print passes managed by this manager
void dumpPassStructure(unsigned Offset) {
llvm::cerr << std::string(Offset*2, ' ') << "ModulePass Manager\n";
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
ModulePass *MP = getContainedPass(Index);
MP->dumpPassStructure(Offset + 1);
if (FunctionPassManagerImpl *FPP = OnTheFlyManagers[MP])
FPP->dumpPassStructure(Offset + 2);
dumpLastUses(MP, Offset+1);
}
}
ModulePass *getContainedPass(unsigned N) {
assert ( N < PassVector.size() && "Pass number out of range!");
ModulePass *MP = static_cast<ModulePass *>(PassVector[N]);
return MP;
}
virtual PassManagerType getPassManagerType() const {
return PMT_ModulePassManager;
}
private:
/// Collection of on the fly FPPassManagers. These managers manage
/// function passes that are required by module passes.
std::map<Pass *, FunctionPassManagerImpl *> OnTheFlyManagers;
};
char MPPassManager::ID = 0;
//===----------------------------------------------------------------------===//
// PassManagerImpl
//
/// PassManagerImpl manages MPPassManagers
class PassManagerImpl : public Pass,
public PMDataManager,
public PMTopLevelManager {
public:
static char ID;
explicit PassManagerImpl(int Depth) :
Pass((intptr_t)&ID), PMDataManager(Depth),
PMTopLevelManager(TLM_Pass) { }
/// add - Add a pass to the queue of passes to run. This passes ownership of
/// the Pass to the PassManager. When the PassManager is destroyed, the pass
/// will be destroyed as well, so there is no need to delete the pass. This
/// implies that all passes MUST be allocated with 'new'.
void add(Pass *P) {
schedulePass(P);
}
/// run - Execute all of the passes scheduled for execution. Keep track of
/// whether any of the passes modifies the module, and if so, return true.
bool run(Module &M);
/// Pass Manager itself does not invalidate any analysis info.
void getAnalysisUsage(AnalysisUsage &Info) const {
Info.setPreservesAll();
}
inline void addTopLevelPass(Pass *P) {
if (ImmutablePass *IP = dynamic_cast<ImmutablePass *> (P)) {
// P is a immutable pass and it will be managed by this
// top level manager. Set up analysis resolver to connect them.
AnalysisResolver *AR = new AnalysisResolver(*this);
P->setResolver(AR);
initializeAnalysisImpl(P);
addImmutablePass(IP);
recordAvailableAnalysis(IP);
} else {
P->assignPassManager(activeStack);
}
}
MPPassManager *getContainedManager(unsigned N) {
assert ( N < PassManagers.size() && "Pass number out of range!");
MPPassManager *MP = static_cast<MPPassManager *>(PassManagers[N]);
return MP;
}
};
char PassManagerImpl::ID = 0;
} // End of llvm namespace
namespace {
//===----------------------------------------------------------------------===//
// TimingInfo Class - This class is used to calculate information about the
// amount of time each pass takes to execute. This only happens when
// -time-passes is enabled on the command line.
//
class VISIBILITY_HIDDEN TimingInfo {
std::map<Pass*, Timer> TimingData;
TimerGroup TG;
public:
// Use 'create' member to get this.
TimingInfo() : TG("... Pass execution timing report ...") {}
// TimingDtor - Print out information about timing information
~TimingInfo() {
// Delete all of the timers...
TimingData.clear();
// TimerGroup is deleted next, printing the report.
}
// createTheTimeInfo - This method either initializes the TheTimeInfo pointer
// to a non null value (if the -time-passes option is enabled) or it leaves it
// null. It may be called multiple times.
static void createTheTimeInfo();
void passStarted(Pass *P) {
if (dynamic_cast<PMDataManager *>(P))
return;
std::map<Pass*, Timer>::iterator I = TimingData.find(P);
if (I == TimingData.end())
I=TimingData.insert(std::make_pair(P, Timer(P->getPassName(), TG))).first;
I->second.startTimer();
}
void passEnded(Pass *P) {
if (dynamic_cast<PMDataManager *>(P))
return;
std::map<Pass*, Timer>::iterator I = TimingData.find(P);
assert (I != TimingData.end() && "passStarted/passEnded not nested right!");
I->second.stopTimer();
}
};
static TimingInfo *TheTimeInfo;
} // End of anon namespace
//===----------------------------------------------------------------------===//
// PMTopLevelManager implementation
/// Initialize top level manager. Create first pass manager.
PMTopLevelManager::PMTopLevelManager (enum TopLevelManagerType t) {
if (t == TLM_Pass) {
MPPassManager *MPP = new MPPassManager(1);
MPP->setTopLevelManager(this);
addPassManager(MPP);
activeStack.push(MPP);
}
else if (t == TLM_Function) {
FPPassManager *FPP = new FPPassManager(1);
FPP->setTopLevelManager(this);
addPassManager(FPP);
activeStack.push(FPP);
}
}
/// Set pass P as the last user of the given analysis passes.
void PMTopLevelManager::setLastUser(SmallVector<Pass *, 12> &AnalysisPasses,
Pass *P) {
for (SmallVector<Pass *, 12>::iterator I = AnalysisPasses.begin(),
E = AnalysisPasses.end(); I != E; ++I) {
Pass *AP = *I;
LastUser[AP] = P;
if (P == AP)
continue;
// If AP is the last user of other passes then make P last user of
// such passes.
for (std::map<Pass *, Pass *>::iterator LUI = LastUser.begin(),
LUE = LastUser.end(); LUI != LUE; ++LUI) {
if (LUI->second == AP)
LastUser[LUI->first] = P;
}
}
}
/// Collect passes whose last user is P
void PMTopLevelManager::collectLastUses(SmallVector<Pass *, 12> &LastUses,
Pass *P) {
for (std::map<Pass *, Pass *>::iterator LUI = LastUser.begin(),
LUE = LastUser.end(); LUI != LUE; ++LUI)
if (LUI->second == P)
LastUses.push_back(LUI->first);
}
/// Schedule pass P for execution. Make sure that passes required by
/// P are run before P is run. Update analysis info maintained by
/// the manager. Remove dead passes. This is a recursive function.
void PMTopLevelManager::schedulePass(Pass *P) {
// TODO : Allocate function manager for this pass, other wise required set
// may be inserted into previous function manager
// Give pass a chance to prepare the stage.
P->preparePassManager(activeStack);
AnalysisUsage AnUsage;
P->getAnalysisUsage(AnUsage);
const std::vector<AnalysisID> &RequiredSet = AnUsage.getRequiredSet();
for (std::vector<AnalysisID>::const_iterator I = RequiredSet.begin(),
E = RequiredSet.end(); I != E; ++I) {
Pass *AnalysisPass = findAnalysisPass(*I);
if (!AnalysisPass) {
AnalysisPass = (*I)->createPass();
// Schedule this analysis run first only if it is not a lower level
// analysis pass. Lower level analsyis passes are run on the fly.
if (P->getPotentialPassManagerType () >=
AnalysisPass->getPotentialPassManagerType())
schedulePass(AnalysisPass);
else
delete AnalysisPass;
}
}
// Now all required passes are available.
addTopLevelPass(P);
}
/// Find the pass that implements Analysis AID. Search immutable
/// passes and all pass managers. If desired pass is not found
/// then return NULL.
Pass *PMTopLevelManager::findAnalysisPass(AnalysisID AID) {
Pass *P = NULL;
// Check pass managers
for (std::vector<PMDataManager *>::iterator I = PassManagers.begin(),
E = PassManagers.end(); P == NULL && I != E; ++I) {
PMDataManager *PMD = *I;
P = PMD->findAnalysisPass(AID, false);
}
// Check other pass managers
for (std::vector<PMDataManager *>::iterator I = IndirectPassManagers.begin(),
E = IndirectPassManagers.end(); P == NULL && I != E; ++I)
P = (*I)->findAnalysisPass(AID, false);
for (std::vector<ImmutablePass *>::iterator I = ImmutablePasses.begin(),
E = ImmutablePasses.end(); P == NULL && I != E; ++I) {
const PassInfo *PI = (*I)->getPassInfo();
if (PI == AID)
P = *I;
// If Pass not found then check the interfaces implemented by Immutable Pass
if (!P) {
const std::vector<const PassInfo*> &ImmPI =
PI->getInterfacesImplemented();
if (std::find(ImmPI.begin(), ImmPI.end(), AID) != ImmPI.end())
P = *I;
}
}
return P;
}
// Print passes managed by this top level manager.
void PMTopLevelManager::dumpPasses() const {
if (PassDebugging < Structure)
return;
// Print out the immutable passes
for (unsigned i = 0, e = ImmutablePasses.size(); i != e; ++i) {
ImmutablePasses[i]->dumpPassStructure(0);
}
// Every class that derives from PMDataManager also derives from Pass
// (sometimes indirectly), but there's no inheritance relationship
// between PMDataManager and Pass, so we have to dynamic_cast to get
// from a PMDataManager* to a Pass*.
for (std::vector<PMDataManager *>::const_iterator I = PassManagers.begin(),
E = PassManagers.end(); I != E; ++I)
dynamic_cast<Pass *>(*I)->dumpPassStructure(1);
}
void PMTopLevelManager::dumpArguments() const {
if (PassDebugging < Arguments)
return;
cerr << "Pass Arguments: ";
for (std::vector<PMDataManager *>::const_iterator I = PassManagers.begin(),
E = PassManagers.end(); I != E; ++I) {
PMDataManager *PMD = *I;
PMD->dumpPassArguments();
}
cerr << "\n";
}
void PMTopLevelManager::initializeAllAnalysisInfo() {
for (std::vector<PMDataManager *>::iterator I = PassManagers.begin(),
E = PassManagers.end(); I != E; ++I) {
PMDataManager *PMD = *I;
PMD->initializeAnalysisInfo();
}
// Initailize other pass managers
for (std::vector<PMDataManager *>::iterator I = IndirectPassManagers.begin(),
E = IndirectPassManagers.end(); I != E; ++I)
(*I)->initializeAnalysisInfo();
}
/// Destructor
PMTopLevelManager::~PMTopLevelManager() {
for (std::vector<PMDataManager *>::iterator I = PassManagers.begin(),
E = PassManagers.end(); I != E; ++I)
delete *I;
for (std::vector<ImmutablePass *>::iterator
I = ImmutablePasses.begin(), E = ImmutablePasses.end(); I != E; ++I)
delete *I;
}
//===----------------------------------------------------------------------===//
// PMDataManager implementation
/// Augement AvailableAnalysis by adding analysis made available by pass P.
void PMDataManager::recordAvailableAnalysis(Pass *P) {
if (const PassInfo *PI = P->getPassInfo()) {
AvailableAnalysis[PI] = P;
//This pass is the current implementation of all of the interfaces it
//implements as well.
const std::vector<const PassInfo*> &II = PI->getInterfacesImplemented();
for (unsigned i = 0, e = II.size(); i != e; ++i)
AvailableAnalysis[II[i]] = P;
}
}
// Return true if P preserves high level analysis used by other
// passes managed by this manager
bool PMDataManager::preserveHigherLevelAnalysis(Pass *P) {
AnalysisUsage AnUsage;
P->getAnalysisUsage(AnUsage);
if (AnUsage.getPreservesAll())
return true;
const std::vector<AnalysisID> &PreservedSet = AnUsage.getPreservedSet();
for (std::vector<Pass *>::iterator I = HigherLevelAnalysis.begin(),
E = HigherLevelAnalysis.end(); I != E; ++I) {
Pass *P1 = *I;
if (!dynamic_cast<ImmutablePass*>(P1) &&
std::find(PreservedSet.begin(), PreservedSet.end(),
P1->getPassInfo()) ==
PreservedSet.end())
return false;
}
return true;
}
/// verifyPreservedAnalysis -- Verify analysis presreved by pass P.
void PMDataManager::verifyPreservedAnalysis(Pass *P) {
AnalysisUsage AnUsage;
P->getAnalysisUsage(AnUsage);
const std::vector<AnalysisID> &PreservedSet = AnUsage.getPreservedSet();
// Verify preserved analysis
for (std::vector<AnalysisID>::const_iterator I = PreservedSet.begin(),
E = PreservedSet.end(); I != E; ++I) {
AnalysisID AID = *I;
Pass *AP = findAnalysisPass(AID, true);
if (AP)
AP->verifyAnalysis();
}
}
/// Remove Analyss not preserved by Pass P
void PMDataManager::removeNotPreservedAnalysis(Pass *P) {
AnalysisUsage AnUsage;
P->getAnalysisUsage(AnUsage);
if (AnUsage.getPreservesAll())
return;
const std::vector<AnalysisID> &PreservedSet = AnUsage.getPreservedSet();
for (std::map<AnalysisID, Pass*>::iterator I = AvailableAnalysis.begin(),
E = AvailableAnalysis.end(); I != E; ) {
std::map<AnalysisID, Pass*>::iterator Info = I++;
if (!dynamic_cast<ImmutablePass*>(Info->second)
&& std::find(PreservedSet.begin(), PreservedSet.end(), Info->first) ==
PreservedSet.end())
// Remove this analysis
AvailableAnalysis.erase(Info);
}
// Check inherited analysis also. If P is not preserving analysis
// provided by parent manager then remove it here.
for (unsigned Index = 0; Index < PMT_Last; ++Index) {
if (!InheritedAnalysis[Index])
continue;
for (std::map<AnalysisID, Pass*>::iterator
I = InheritedAnalysis[Index]->begin(),
E = InheritedAnalysis[Index]->end(); I != E; ) {
std::map<AnalysisID, Pass *>::iterator Info = I++;
if (!dynamic_cast<ImmutablePass*>(Info->second) &&
std::find(PreservedSet.begin(), PreservedSet.end(), Info->first) ==
PreservedSet.end())
// Remove this analysis
InheritedAnalysis[Index]->erase(Info);
}
}
}
/// Remove analysis passes that are not used any longer
void PMDataManager::removeDeadPasses(Pass *P, const char *Msg,
enum PassDebuggingString DBG_STR) {
SmallVector<Pass *, 12> DeadPasses;
// If this is a on the fly manager then it does not have TPM.
if (!TPM)
return;
TPM->collectLastUses(DeadPasses, P);
for (SmallVector<Pass *, 12>::iterator I = DeadPasses.begin(),
E = DeadPasses.end(); I != E; ++I) {
dumpPassInfo(*I, FREEING_MSG, DBG_STR, Msg);
if (TheTimeInfo) TheTimeInfo->passStarted(*I);
(*I)->releaseMemory();
if (TheTimeInfo) TheTimeInfo->passEnded(*I);
std::map<AnalysisID, Pass*>::iterator Pos =
AvailableAnalysis.find((*I)->getPassInfo());
// It is possible that pass is already removed from the AvailableAnalysis
if (Pos != AvailableAnalysis.end())
AvailableAnalysis.erase(Pos);
}
}
/// Add pass P into the PassVector. Update
/// AvailableAnalysis appropriately if ProcessAnalysis is true.
void PMDataManager::add(Pass *P,
bool ProcessAnalysis) {
// This manager is going to manage pass P. Set up analysis resolver
// to connect them.
AnalysisResolver *AR = new AnalysisResolver(*this);
P->setResolver(AR);
// If a FunctionPass F is the last user of ModulePass info M
// then the F's manager, not F, records itself as a last user of M.
SmallVector<Pass *, 12> TransferLastUses;
if (ProcessAnalysis) {
// At the moment, this pass is the last user of all required passes.
SmallVector<Pass *, 12> LastUses;
SmallVector<Pass *, 8> RequiredPasses;
SmallVector<AnalysisID, 8> ReqAnalysisNotAvailable;
unsigned PDepth = this->getDepth();
collectRequiredAnalysis(RequiredPasses,
ReqAnalysisNotAvailable, P);
for (SmallVector<Pass *, 8>::iterator I = RequiredPasses.begin(),
E = RequiredPasses.end(); I != E; ++I) {
Pass *PRequired = *I;
unsigned RDepth = 0;
PMDataManager &DM = PRequired->getResolver()->getPMDataManager();
RDepth = DM.getDepth();
if (PDepth == RDepth)
LastUses.push_back(PRequired);
else if (PDepth > RDepth) {
// Let the parent claim responsibility of last use
TransferLastUses.push_back(PRequired);
// Keep track of higher level analysis used by this manager.
HigherLevelAnalysis.push_back(PRequired);
} else
assert (0 && "Unable to accomodate Required Pass");
}
// Set P as P's last user until someone starts using P.
// However, if P is a Pass Manager then it does not need
// to record its last user.
if (!dynamic_cast<PMDataManager *>(P))
LastUses.push_back(P);
TPM->setLastUser(LastUses, P);
if (!TransferLastUses.empty()) {
Pass *My_PM = dynamic_cast<Pass *>(this);
TPM->setLastUser(TransferLastUses, My_PM);
TransferLastUses.clear();
}
// Now, take care of required analysises that are not available.
for (SmallVector<AnalysisID, 8>::iterator
I = ReqAnalysisNotAvailable.begin(),
E = ReqAnalysisNotAvailable.end() ;I != E; ++I) {
Pass *AnalysisPass = (*I)->createPass();
this->addLowerLevelRequiredPass(P, AnalysisPass);
}
// Take a note of analysis required and made available by this pass.
// Remove the analysis not preserved by this pass
removeNotPreservedAnalysis(P);
recordAvailableAnalysis(P);
}
// Add pass
PassVector.push_back(P);
}
/// Populate RP with analysis pass that are required by
/// pass P and are available. Populate RP_NotAvail with analysis
/// pass that are required by pass P but are not available.
void PMDataManager::collectRequiredAnalysis(SmallVector<Pass *, 8>&RP,
SmallVector<AnalysisID, 8> &RP_NotAvail,
Pass *P) {
AnalysisUsage AnUsage;
P->getAnalysisUsage(AnUsage);
const std::vector<AnalysisID> &RequiredSet = AnUsage.getRequiredSet();
for (std::vector<AnalysisID>::const_iterator
I = RequiredSet.begin(), E = RequiredSet.end();
I != E; ++I) {
AnalysisID AID = *I;
if (Pass *AnalysisPass = findAnalysisPass(*I, true))
RP.push_back(AnalysisPass);
else
RP_NotAvail.push_back(AID);
}
const std::vector<AnalysisID> &IDs = AnUsage.getRequiredTransitiveSet();
for (std::vector<AnalysisID>::const_iterator I = IDs.begin(),
E = IDs.end(); I != E; ++I) {
AnalysisID AID = *I;
if (Pass *AnalysisPass = findAnalysisPass(*I, true))
RP.push_back(AnalysisPass);
else
RP_NotAvail.push_back(AID);
}
}
// All Required analyses should be available to the pass as it runs! Here
// we fill in the AnalysisImpls member of the pass so that it can
// successfully use the getAnalysis() method to retrieve the
// implementations it needs.
//
void PMDataManager::initializeAnalysisImpl(Pass *P) {
AnalysisUsage AnUsage;
P->getAnalysisUsage(AnUsage);
for (std::vector<const PassInfo *>::const_iterator
I = AnUsage.getRequiredSet().begin(),
E = AnUsage.getRequiredSet().end(); I != E; ++I) {
Pass *Impl = findAnalysisPass(*I, true);
if (Impl == 0)
// This may be analysis pass that is initialized on the fly.
// If that is not the case then it will raise an assert when it is used.
continue;
AnalysisResolver *AR = P->getResolver();
AR->addAnalysisImplsPair(*I, Impl);
}
}
/// Find the pass that implements Analysis AID. If desired pass is not found
/// then return NULL.
Pass *PMDataManager::findAnalysisPass(AnalysisID AID, bool SearchParent) {
// Check if AvailableAnalysis map has one entry.
std::map<AnalysisID, Pass*>::const_iterator I = AvailableAnalysis.find(AID);
if (I != AvailableAnalysis.end())
return I->second;
// Search Parents through TopLevelManager
if (SearchParent)
return TPM->findAnalysisPass(AID);
return NULL;
}
// Print list of passes that are last used by P.
void PMDataManager::dumpLastUses(Pass *P, unsigned Offset) const{
SmallVector<Pass *, 12> LUses;
// If this is a on the fly manager then it does not have TPM.
if (!TPM)
return;
TPM->collectLastUses(LUses, P);
for (SmallVector<Pass *, 12>::iterator I = LUses.begin(),
E = LUses.end(); I != E; ++I) {
llvm::cerr << "--" << std::string(Offset*2, ' ');
(*I)->dumpPassStructure(0);
}
}
void PMDataManager::dumpPassArguments() const {
for(std::vector<Pass *>::const_iterator I = PassVector.begin(),
E = PassVector.end(); I != E; ++I) {
if (PMDataManager *PMD = dynamic_cast<PMDataManager *>(*I))
PMD->dumpPassArguments();
else
if (const PassInfo *PI = (*I)->getPassInfo())
if (!PI->isAnalysisGroup())
cerr << " -" << PI->getPassArgument();
}
}
void PMDataManager::dumpPassInfo(Pass *P, enum PassDebuggingString S1,
enum PassDebuggingString S2,
const char *Msg) {
if (PassDebugging < Executions)
return;
cerr << (void*)this << std::string(getDepth()*2+1, ' ');
switch (S1) {
case EXECUTION_MSG:
cerr << "Executing Pass '" << P->getPassName();
break;
case MODIFICATION_MSG:
cerr << "Made Modification '" << P->getPassName();
break;
case FREEING_MSG:
cerr << " Freeing Pass '" << P->getPassName();
break;
default:
break;
}
switch (S2) {
case ON_BASICBLOCK_MSG:
cerr << "' on BasicBlock '" << Msg << "'...\n";
break;
case ON_FUNCTION_MSG:
cerr << "' on Function '" << Msg << "'...\n";
break;
case ON_MODULE_MSG:
cerr << "' on Module '" << Msg << "'...\n";
break;
case ON_LOOP_MSG:
cerr << "' on Loop " << Msg << "'...\n";
break;
case ON_CG_MSG:
cerr << "' on Call Graph " << Msg << "'...\n";
break;
default:
break;
}
}
void PMDataManager::dumpAnalysisSetInfo(const char *Msg, Pass *P,
const std::vector<AnalysisID> &Set)
const {
if (PassDebugging >= Details && !Set.empty()) {
cerr << (void*)P << std::string(getDepth()*2+3, ' ') << Msg << " Analyses:";
for (unsigned i = 0; i != Set.size(); ++i) {
if (i) cerr << ",";
cerr << " " << Set[i]->getPassName();
}
cerr << "\n";
}
}
/// Add RequiredPass into list of lower level passes required by pass P.
/// RequiredPass is run on the fly by Pass Manager when P requests it
/// through getAnalysis interface.
/// This should be handled by specific pass manager.
void PMDataManager::addLowerLevelRequiredPass(Pass *P, Pass *RequiredPass) {
if (TPM) {
TPM->dumpArguments();
TPM->dumpPasses();
}
// Module Level pass may required Function Level analysis info
// (e.g. dominator info). Pass manager uses on the fly function pass manager
// to provide this on demand. In that case, in Pass manager terminology,
// module level pass is requiring lower level analysis info managed by
// lower level pass manager.
// When Pass manager is not able to order required analysis info, Pass manager
// checks whether any lower level manager will be able to provide this
// analysis info on demand or not.
assert (0 && "Unable to handle Pass that requires lower level Analysis pass");
}
// Destructor
PMDataManager::~PMDataManager() {
for (std::vector<Pass *>::iterator I = PassVector.begin(),
E = PassVector.end(); I != E; ++I)
delete *I;
}
//===----------------------------------------------------------------------===//
// NOTE: Is this the right place to define this method ?
// getAnalysisToUpdate - Return an analysis result or null if it doesn't exist
Pass *AnalysisResolver::getAnalysisToUpdate(AnalysisID ID, bool dir) const {
return PM.findAnalysisPass(ID, dir);
}
Pass *AnalysisResolver::findImplPass(Pass *P, const PassInfo *AnalysisPI,
Function &F) {
return PM.getOnTheFlyPass(P, AnalysisPI, F);
}
//===----------------------------------------------------------------------===//
// BBPassManager implementation
/// Execute all of the passes scheduled for execution by invoking
/// runOnBasicBlock method. Keep track of whether any of the passes modifies
/// the function, and if so, return true.
bool
BBPassManager::runOnFunction(Function &F) {
if (F.isDeclaration())
return false;
bool Changed = doInitialization(F);
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
BasicBlockPass *BP = getContainedPass(Index);
AnalysisUsage AnUsage;
BP->getAnalysisUsage(AnUsage);
dumpPassInfo(BP, EXECUTION_MSG, ON_BASICBLOCK_MSG, I->getNameStart());
dumpAnalysisSetInfo("Required", BP, AnUsage.getRequiredSet());
initializeAnalysisImpl(BP);
if (TheTimeInfo) TheTimeInfo->passStarted(BP);
Changed |= BP->runOnBasicBlock(*I);
if (TheTimeInfo) TheTimeInfo->passEnded(BP);
if (Changed)
dumpPassInfo(BP, MODIFICATION_MSG, ON_BASICBLOCK_MSG,
I->getNameStart());
dumpAnalysisSetInfo("Preserved", BP, AnUsage.getPreservedSet());
verifyPreservedAnalysis(BP);
removeNotPreservedAnalysis(BP);
recordAvailableAnalysis(BP);
removeDeadPasses(BP, I->getNameStart(), ON_BASICBLOCK_MSG);
}
return Changed |= doFinalization(F);
}
// Implement doInitialization and doFinalization
inline bool BBPassManager::doInitialization(Module &M) {
bool Changed = false;
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
BasicBlockPass *BP = getContainedPass(Index);
Changed |= BP->doInitialization(M);
}
return Changed;
}
inline bool BBPassManager::doFinalization(Module &M) {
bool Changed = false;
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
BasicBlockPass *BP = getContainedPass(Index);
Changed |= BP->doFinalization(M);
}
return Changed;
}
inline bool BBPassManager::doInitialization(Function &F) {
bool Changed = false;
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
BasicBlockPass *BP = getContainedPass(Index);
Changed |= BP->doInitialization(F);
}
return Changed;
}
inline bool BBPassManager::doFinalization(Function &F) {
bool Changed = false;
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
BasicBlockPass *BP = getContainedPass(Index);
Changed |= BP->doFinalization(F);
}
return Changed;
}
//===----------------------------------------------------------------------===//
// FunctionPassManager implementation
/// Create new Function pass manager
FunctionPassManager::FunctionPassManager(ModuleProvider *P) {
FPM = new FunctionPassManagerImpl(0);
// FPM is the top level manager.
FPM->setTopLevelManager(FPM);
AnalysisResolver *AR = new AnalysisResolver(*FPM);
FPM->setResolver(AR);
MP = P;
}
FunctionPassManager::~FunctionPassManager() {
delete FPM;
}
/// add - Add a pass to the queue of passes to run. This passes
/// ownership of the Pass to the PassManager. When the
/// PassManager_X is destroyed, the pass will be destroyed as well, so
/// there is no need to delete the pass. (TODO delete passes.)
/// This implies that all passes MUST be allocated with 'new'.
void FunctionPassManager::add(Pass *P) {
FPM->add(P);
}
/// run - Execute all of the passes scheduled for execution. Keep
/// track of whether any of the passes modifies the function, and if
/// so, return true.
///
bool FunctionPassManager::run(Function &F) {
std::string errstr;
if (MP->materializeFunction(&F, &errstr)) {
cerr << "Error reading bitcode file: " << errstr << "\n";
abort();
}
return FPM->run(F);
}
/// doInitialization - Run all of the initializers for the function passes.
///
bool FunctionPassManager::doInitialization() {
return FPM->doInitialization(*MP->getModule());
}
/// doFinalization - Run all of the finalizers for the function passes.
///
bool FunctionPassManager::doFinalization() {
return FPM->doFinalization(*MP->getModule());
}
//===----------------------------------------------------------------------===//
// FunctionPassManagerImpl implementation
//
inline bool FunctionPassManagerImpl::doInitialization(Module &M) {
bool Changed = false;
for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) {
FPPassManager *FP = getContainedManager(Index);
Changed |= FP->doInitialization(M);
}
return Changed;
}
inline bool FunctionPassManagerImpl::doFinalization(Module &M) {
bool Changed = false;
for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) {
FPPassManager *FP = getContainedManager(Index);
Changed |= FP->doFinalization(M);
}
return Changed;
}
// Execute all the passes managed by this top level manager.
// Return true if any function is modified by a pass.
bool FunctionPassManagerImpl::run(Function &F) {
bool Changed = false;
TimingInfo::createTheTimeInfo();
dumpArguments();
dumpPasses();
initializeAllAnalysisInfo();
for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) {
FPPassManager *FP = getContainedManager(Index);
Changed |= FP->runOnFunction(F);
}
return Changed;
}
//===----------------------------------------------------------------------===//
// FPPassManager implementation
char FPPassManager::ID = 0;
/// Print passes managed by this manager
void FPPassManager::dumpPassStructure(unsigned Offset) {
llvm::cerr << std::string(Offset*2, ' ') << "FunctionPass Manager\n";
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
FunctionPass *FP = getContainedPass(Index);
FP->dumpPassStructure(Offset + 1);
dumpLastUses(FP, Offset+1);
}
}
/// Execute all of the passes scheduled for execution by invoking
/// runOnFunction method. Keep track of whether any of the passes modifies
/// the function, and if so, return true.
bool FPPassManager::runOnFunction(Function &F) {
bool Changed = false;
if (F.isDeclaration())
return false;
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
FunctionPass *FP = getContainedPass(Index);
AnalysisUsage AnUsage;
FP->getAnalysisUsage(AnUsage);
dumpPassInfo(FP, EXECUTION_MSG, ON_FUNCTION_MSG, F.getNameStart());
dumpAnalysisSetInfo("Required", FP, AnUsage.getRequiredSet());
initializeAnalysisImpl(FP);
if (TheTimeInfo) TheTimeInfo->passStarted(FP);
Changed |= FP->runOnFunction(F);
if (TheTimeInfo) TheTimeInfo->passEnded(FP);
if (Changed)
dumpPassInfo(FP, MODIFICATION_MSG, ON_FUNCTION_MSG, F.getNameStart());
dumpAnalysisSetInfo("Preserved", FP, AnUsage.getPreservedSet());
verifyPreservedAnalysis(FP);
removeNotPreservedAnalysis(FP);
recordAvailableAnalysis(FP);
removeDeadPasses(FP, F.getNameStart(), ON_FUNCTION_MSG);
}
return Changed;
}
bool FPPassManager::runOnModule(Module &M) {
bool Changed = doInitialization(M);
for(Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
this->runOnFunction(*I);
return Changed |= doFinalization(M);
}
inline bool FPPassManager::doInitialization(Module &M) {
bool Changed = false;
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
FunctionPass *FP = getContainedPass(Index);
Changed |= FP->doInitialization(M);
}
return Changed;
}
inline bool FPPassManager::doFinalization(Module &M) {
bool Changed = false;
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
FunctionPass *FP = getContainedPass(Index);
Changed |= FP->doFinalization(M);
}
return Changed;
}
//===----------------------------------------------------------------------===//
// MPPassManager implementation
/// Execute all of the passes scheduled for execution by invoking
/// runOnModule method. Keep track of whether any of the passes modifies
/// the module, and if so, return true.
bool
MPPassManager::runOnModule(Module &M) {
bool Changed = false;
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
ModulePass *MP = getContainedPass(Index);
AnalysisUsage AnUsage;
MP->getAnalysisUsage(AnUsage);
dumpPassInfo(MP, EXECUTION_MSG, ON_MODULE_MSG,
M.getModuleIdentifier().c_str());
dumpAnalysisSetInfo("Required", MP, AnUsage.getRequiredSet());
initializeAnalysisImpl(MP);
if (TheTimeInfo) TheTimeInfo->passStarted(MP);
Changed |= MP->runOnModule(M);
if (TheTimeInfo) TheTimeInfo->passEnded(MP);
if (Changed)
dumpPassInfo(MP, MODIFICATION_MSG, ON_MODULE_MSG,
M.getModuleIdentifier().c_str());
dumpAnalysisSetInfo("Preserved", MP, AnUsage.getPreservedSet());
verifyPreservedAnalysis(MP);
removeNotPreservedAnalysis(MP);
recordAvailableAnalysis(MP);
removeDeadPasses(MP, M.getModuleIdentifier().c_str(), ON_MODULE_MSG);
}
return Changed;
}
/// Add RequiredPass into list of lower level passes required by pass P.
/// RequiredPass is run on the fly by Pass Manager when P requests it
/// through getAnalysis interface.
void MPPassManager::addLowerLevelRequiredPass(Pass *P, Pass *RequiredPass) {
assert (P->getPotentialPassManagerType() == PMT_ModulePassManager
&& "Unable to handle Pass that requires lower level Analysis pass");
assert ((P->getPotentialPassManagerType() <
RequiredPass->getPotentialPassManagerType())
&& "Unable to handle Pass that requires lower level Analysis pass");
FunctionPassManagerImpl *FPP = OnTheFlyManagers[P];
if (!FPP) {
FPP = new FunctionPassManagerImpl(0);
// FPP is the top level manager.
FPP->setTopLevelManager(FPP);
OnTheFlyManagers[P] = FPP;
}
FPP->add(RequiredPass);
// Register P as the last user of RequiredPass.
SmallVector<Pass *, 12> LU;
LU.push_back(RequiredPass);
FPP->setLastUser(LU, P);
}
/// Return function pass corresponding to PassInfo PI, that is
/// required by module pass MP. Instantiate analysis pass, by using
/// its runOnFunction() for function F.
Pass* MPPassManager::getOnTheFlyPass(Pass *MP, const PassInfo *PI,
Function &F) {
AnalysisID AID = PI;
FunctionPassManagerImpl *FPP = OnTheFlyManagers[MP];
assert (FPP && "Unable to find on the fly pass");
FPP->run(F);
return (dynamic_cast<PMTopLevelManager *>(FPP))->findAnalysisPass(AID);
}
//===----------------------------------------------------------------------===//
// PassManagerImpl implementation
//
/// run - Execute all of the passes scheduled for execution. Keep track of
/// whether any of the passes modifies the module, and if so, return true.
bool PassManagerImpl::run(Module &M) {
bool Changed = false;
TimingInfo::createTheTimeInfo();
dumpArguments();
dumpPasses();
initializeAllAnalysisInfo();
for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) {
MPPassManager *MP = getContainedManager(Index);
Changed |= MP->runOnModule(M);
}
return Changed;
}
//===----------------------------------------------------------------------===//
// PassManager implementation
/// Create new pass manager
PassManager::PassManager() {
PM = new PassManagerImpl(0);
// PM is the top level manager
PM->setTopLevelManager(PM);
}
PassManager::~PassManager() {
delete PM;
}
/// add - Add a pass to the queue of passes to run. This passes ownership of
/// the Pass to the PassManager. When the PassManager is destroyed, the pass
/// will be destroyed as well, so there is no need to delete the pass. This
/// implies that all passes MUST be allocated with 'new'.
void
PassManager::add(Pass *P) {
PM->add(P);
}
/// run - Execute all of the passes scheduled for execution. Keep track of
/// whether any of the passes modifies the module, and if so, return true.
bool
PassManager::run(Module &M) {
return PM->run(M);
}
//===----------------------------------------------------------------------===//
// TimingInfo Class - This class is used to calculate information about the
// amount of time each pass takes to execute. This only happens with
// -time-passes is enabled on the command line.
//
bool llvm::TimePassesIsEnabled = false;
static cl::opt<bool,true>
EnableTiming("time-passes", cl::location(TimePassesIsEnabled),
cl::desc("Time each pass, printing elapsed time for each on exit"));
// createTheTimeInfo - This method either initializes the TheTimeInfo pointer to
// a non null value (if the -time-passes option is enabled) or it leaves it
// null. It may be called multiple times.
void TimingInfo::createTheTimeInfo() {
if (!TimePassesIsEnabled || TheTimeInfo) return;
// Constructed the first time this is called, iff -time-passes is enabled.
// This guarantees that the object will be constructed before static globals,
// thus it will be destroyed before them.
static ManagedStatic<TimingInfo> TTI;
TheTimeInfo = &*TTI;
}
/// If TimingInfo is enabled then start pass timer.
void StartPassTimer(Pass *P) {
if (TheTimeInfo)
TheTimeInfo->passStarted(P);
}
/// If TimingInfo is enabled then stop pass timer.
void StopPassTimer(Pass *P) {
if (TheTimeInfo)
TheTimeInfo->passEnded(P);
}
//===----------------------------------------------------------------------===//
// PMStack implementation
//
// Pop Pass Manager from the stack and clear its analysis info.
void PMStack::pop() {
PMDataManager *Top = this->top();
Top->initializeAnalysisInfo();
S.pop_back();
}
// Push PM on the stack and set its top level manager.
void PMStack::push(PMDataManager *PM) {
PMDataManager *Top = NULL;
assert (PM && "Unable to push. Pass Manager expected");
if (this->empty()) {
Top = PM;
}
else {
Top = this->top();
PMTopLevelManager *TPM = Top->getTopLevelManager();
assert (TPM && "Unable to find top level manager");
TPM->addIndirectPassManager(PM);
PM->setTopLevelManager(TPM);
}
S.push_back(PM);
}
// Dump content of the pass manager stack.
void PMStack::dump() {
for(std::deque<PMDataManager *>::iterator I = S.begin(),
E = S.end(); I != E; ++I) {
Pass *P = dynamic_cast<Pass *>(*I);
printf("%s ", P->getPassName());
}
if (!S.empty())
printf("\n");
}
/// Find appropriate Module Pass Manager in the PM Stack and
/// add self into that manager.
void ModulePass::assignPassManager(PMStack &PMS,
PassManagerType PreferredType) {
// Find Module Pass Manager
while(!PMS.empty()) {
PassManagerType TopPMType = PMS.top()->getPassManagerType();
if (TopPMType == PreferredType)
break; // We found desired pass manager
else if (TopPMType > PMT_ModulePassManager)
PMS.pop(); // Pop children pass managers
else
break;
}
PMS.top()->add(this);
}
/// Find appropriate Function Pass Manager or Call Graph Pass Manager
/// in the PM Stack and add self into that manager.
void FunctionPass::assignPassManager(PMStack &PMS,
PassManagerType PreferredType) {
// Find Module Pass Manager (TODO : Or Call Graph Pass Manager)
while(!PMS.empty()) {
if (PMS.top()->getPassManagerType() > PMT_FunctionPassManager)
PMS.pop();
else
break;
}
FPPassManager *FPP = dynamic_cast<FPPassManager *>(PMS.top());
// Create new Function Pass Manager
if (!FPP) {
assert(!PMS.empty() && "Unable to create Function Pass Manager");
PMDataManager *PMD = PMS.top();
// [1] Create new Function Pass Manager
FPP = new FPPassManager(PMD->getDepth() + 1);
// [2] Set up new manager's top level manager
PMTopLevelManager *TPM = PMD->getTopLevelManager();
TPM->addIndirectPassManager(FPP);
// [3] Assign manager to manage this new manager. This may create
// and push new managers into PMS
// If Call Graph Pass Manager is active then use it to manage
// this new Function Pass manager.
if (PMD->getPassManagerType() == PMT_CallGraphPassManager)
FPP->assignPassManager(PMS, PMT_CallGraphPassManager);
else
FPP->assignPassManager(PMS);
// [4] Push new manager into PMS
PMS.push(FPP);
}
// Assign FPP as the manager of this pass.
FPP->add(this);
}
/// Find appropriate Basic Pass Manager or Call Graph Pass Manager
/// in the PM Stack and add self into that manager.
void BasicBlockPass::assignPassManager(PMStack &PMS,
PassManagerType PreferredType) {
BBPassManager *BBP = NULL;
// Basic Pass Manager is a leaf pass manager. It does not handle
// any other pass manager.
if (!PMS.empty())
BBP = dynamic_cast<BBPassManager *>(PMS.top());
// If leaf manager is not Basic Block Pass manager then create new
// basic Block Pass manager.
if (!BBP) {
assert(!PMS.empty() && "Unable to create BasicBlock Pass Manager");
PMDataManager *PMD = PMS.top();
// [1] Create new Basic Block Manager
BBP = new BBPassManager(PMD->getDepth() + 1);
// [2] Set up new manager's top level manager
// Basic Block Pass Manager does not live by itself
PMTopLevelManager *TPM = PMD->getTopLevelManager();
TPM->addIndirectPassManager(BBP);
// [3] Assign manager to manage this new manager. This may create
// and push new managers into PMS
BBP->assignPassManager(PMS);
// [4] Push new manager into PMS
PMS.push(BBP);
}
// Assign BBP as the manager of this pass.
BBP->add(this);
}
PassManagerBase::~PassManagerBase() {}