llvm-6502/include/llvm/IR/Intrinsics.td

626 lines
29 KiB
TableGen
Raw Normal View History

//===- Intrinsics.td - Defines all LLVM intrinsics ---------*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines properties of all LLVM intrinsics.
//
//===----------------------------------------------------------------------===//
include "llvm/CodeGen/ValueTypes.td"
//===----------------------------------------------------------------------===//
// Properties we keep track of for intrinsics.
//===----------------------------------------------------------------------===//
class IntrinsicProperty;
// Intr*Mem - Memory properties. An intrinsic is allowed to have at most one of
// these properties set. They are listed from the most aggressive (best to use
// if correct) to the least aggressive. If no property is set, the worst case
// is assumed (it may read and write any memory it can get access to and it may
// have other side effects).
// IntrNoMem - The intrinsic does not access memory or have any other side
// effects. It may be CSE'd deleted if dead, etc.
def IntrNoMem : IntrinsicProperty;
// IntrReadArgMem - This intrinsic reads only from memory that one of its
// pointer-typed arguments points to, but may read an unspecified amount.
def IntrReadArgMem : IntrinsicProperty;
// IntrReadMem - This intrinsic reads from unspecified memory, so it cannot be
// moved across stores. However, it can be reordered otherwise and can be
// deleted if dead.
def IntrReadMem : IntrinsicProperty;
// IntrReadWriteArgMem - This intrinsic reads and writes only from memory that
// one of its arguments points to, but may access an unspecified amount. The
// reads and writes may be volatile, but except for this it has no other side
// effects.
def IntrReadWriteArgMem : IntrinsicProperty;
// Commutative - This intrinsic is commutative: X op Y == Y op X.
def Commutative : IntrinsicProperty;
// Throws - This intrinsic can throw.
def Throws : IntrinsicProperty;
// NoCapture - The specified argument pointer is not captured by the intrinsic.
class NoCapture<int argNo> : IntrinsicProperty {
int ArgNo = argNo;
}
// ReadOnly - The specified argument pointer is not written to through the
// pointer by the intrinsic.
class ReadOnly<int argNo> : IntrinsicProperty {
int ArgNo = argNo;
}
// ReadNone - The specified argument pointer is not dereferenced by the
// intrinsic.
class ReadNone<int argNo> : IntrinsicProperty {
int ArgNo = argNo;
}
def IntrNoReturn : IntrinsicProperty;
// IntrNoduplicate - Calls to this intrinsic cannot be duplicated.
// Parallels the noduplicate attribute on LLVM IR functions.
def IntrNoDuplicate : IntrinsicProperty;
//===----------------------------------------------------------------------===//
// Types used by intrinsics.
//===----------------------------------------------------------------------===//
class LLVMType<ValueType vt> {
ValueType VT = vt;
}
class LLVMQualPointerType<LLVMType elty, int addrspace>
: LLVMType<iPTR>{
LLVMType ElTy = elty;
int AddrSpace = addrspace;
}
class LLVMPointerType<LLVMType elty>
: LLVMQualPointerType<elty, 0>;
class LLVMAnyPointerType<LLVMType elty>
: LLVMType<iPTRAny>{
LLVMType ElTy = elty;
}
// Match the type of another intrinsic parameter. Number is an index into the
// list of overloaded types for the intrinsic, excluding all the fixed types.
// The Number value must refer to a previously listed type. For example:
// Intrinsic<[llvm_i32_ty], [llvm_i32_ty, llvm_anyfloat_ty, LLVMMatchType<0>]>
// has two overloaded types, the 2nd and 3rd arguments. LLVMMatchType<0>
// refers to the first overloaded type, which is the 2nd argument.
class LLVMMatchType<int num>
: LLVMType<OtherVT>{
int Number = num;
}
// Match the type of another intrinsic parameter that is expected to be based on
// an integral type (i.e. either iN or <N x iM>), but change the scalar size to
// be twice as wide or half as wide as the other type. This is only useful when
// the intrinsic is overloaded, so the matched type should be declared as iAny.
class LLVMExtendedType<int num> : LLVMMatchType<num>;
class LLVMTruncatedType<int num> : LLVMMatchType<num>;
class LLVMVectorSameWidth<int num, LLVMType elty>
: LLVMMatchType<num> {
ValueType ElTy = elty.VT;
}
class LLVMPointerTo<int num> : LLVMMatchType<num>;
Masked Gather and Scatter Intrinsics. Gather and Scatter are new introduced intrinsics, comming after recently implemented masked load and store. This is the first patch for Gather and Scatter intrinsics. It includes only the syntax, parsing and verification. Gather and Scatter intrinsics allow to perform multiple memory accesses (read/write) in one vector instruction. The intrinsics are not target specific and will have the following syntax: Gather: declare <16 x i32> @llvm.masked.gather.v16i32(<16 x i32*> <vector of ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x i32> <passthru>) declare <8 x float> @llvm.masked.gather.v8f32(<8 x float*><vector of ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float><passthru>) Scatter: declare void @llvm.masked.scatter.v8i32(<8 x i32><vector value to be stored> , <8 x i32*><vector of ptrs> , i32 <alignment>, <8 x i1> <mask>) declare void @llvm.masked.scatter.v16i32(<16 x i32> <vector value to be stored> , <16 x i32*> <vector of ptrs>, i32 <alignment>, <16 x i1><mask> ) Vector of ptrs - a set of source/destination addresses, to load/store the value. Mask - switches on/off vector lanes to prevent memory access for switched-off lanes vector of ptrs, value and mask should have the same vector width. These are code examples where gather / scatter should be used and will allow function vectorization ;void foo1(int * restrict A, int * restrict B, int * restrict C) { ; for (int i=0; i<SIZE; i++) { ; A[i] = B[C[i]]; ; } ;} ;void foo3(int * restrict A, int * restrict B) { ; for (int i=0; i<SIZE; i++) { ; A[B[i]] = i+5; ; } ;} Tests will come in the following patches, with CodeGen and Vectorizer. http://reviews.llvm.org/D7433 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228521 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-08 08:27:19 +00:00
class LLVMVectorOfPointersToElt<int num> : LLVMMatchType<num>;
// Match the type of another intrinsic parameter that is expected to be a
// vector type, but change the element count to be half as many
class LLVMHalfElementsVectorType<int num> : LLVMMatchType<num>;
def llvm_void_ty : LLVMType<isVoid>;
def llvm_any_ty : LLVMType<Any>;
def llvm_anyint_ty : LLVMType<iAny>;
def llvm_anyfloat_ty : LLVMType<fAny>;
def llvm_anyvector_ty : LLVMType<vAny>;
def llvm_i1_ty : LLVMType<i1>;
def llvm_i8_ty : LLVMType<i8>;
def llvm_i16_ty : LLVMType<i16>;
def llvm_i32_ty : LLVMType<i32>;
def llvm_i64_ty : LLVMType<i64>;
def llvm_half_ty : LLVMType<f16>;
def llvm_float_ty : LLVMType<f32>;
def llvm_double_ty : LLVMType<f64>;
def llvm_f80_ty : LLVMType<f80>;
def llvm_f128_ty : LLVMType<f128>;
def llvm_ppcf128_ty : LLVMType<ppcf128>;
def llvm_ptr_ty : LLVMPointerType<llvm_i8_ty>; // i8*
def llvm_ptrptr_ty : LLVMPointerType<llvm_ptr_ty>; // i8**
def llvm_anyptr_ty : LLVMAnyPointerType<llvm_i8_ty>; // (space)i8*
def llvm_empty_ty : LLVMType<OtherVT>; // { }
def llvm_descriptor_ty : LLVMPointerType<llvm_empty_ty>; // { }*
def llvm_metadata_ty : LLVMType<MetadataVT>; // !{...}
def llvm_x86mmx_ty : LLVMType<x86mmx>;
def llvm_ptrx86mmx_ty : LLVMPointerType<llvm_x86mmx_ty>; // <1 x i64>*
def llvm_v2i1_ty : LLVMType<v2i1>; // 2 x i1
def llvm_v4i1_ty : LLVMType<v4i1>; // 4 x i1
def llvm_v8i1_ty : LLVMType<v8i1>; // 8 x i1
def llvm_v16i1_ty : LLVMType<v16i1>; // 16 x i1
def llvm_v32i1_ty : LLVMType<v32i1>; // 32 x i1
def llvm_v64i1_ty : LLVMType<v64i1>; // 64 x i1
def llvm_v1i8_ty : LLVMType<v1i8>; // 1 x i8
def llvm_v2i8_ty : LLVMType<v2i8>; // 2 x i8
def llvm_v4i8_ty : LLVMType<v4i8>; // 4 x i8
def llvm_v8i8_ty : LLVMType<v8i8>; // 8 x i8
def llvm_v16i8_ty : LLVMType<v16i8>; // 16 x i8
def llvm_v32i8_ty : LLVMType<v32i8>; // 32 x i8
def llvm_v64i8_ty : LLVMType<v64i8>; // 64 x i8
def llvm_v1i16_ty : LLVMType<v1i16>; // 1 x i16
def llvm_v2i16_ty : LLVMType<v2i16>; // 2 x i16
def llvm_v4i16_ty : LLVMType<v4i16>; // 4 x i16
def llvm_v8i16_ty : LLVMType<v8i16>; // 8 x i16
def llvm_v16i16_ty : LLVMType<v16i16>; // 16 x i16
def llvm_v32i16_ty : LLVMType<v32i16>; // 32 x i16
def llvm_v1i32_ty : LLVMType<v1i32>; // 1 x i32
def llvm_v2i32_ty : LLVMType<v2i32>; // 2 x i32
def llvm_v4i32_ty : LLVMType<v4i32>; // 4 x i32
def llvm_v8i32_ty : LLVMType<v8i32>; // 8 x i32
def llvm_v16i32_ty : LLVMType<v16i32>; // 16 x i32
def llvm_v1i64_ty : LLVMType<v1i64>; // 1 x i64
def llvm_v2i64_ty : LLVMType<v2i64>; // 2 x i64
def llvm_v4i64_ty : LLVMType<v4i64>; // 4 x i64
def llvm_v8i64_ty : LLVMType<v8i64>; // 8 x i64
def llvm_v16i64_ty : LLVMType<v16i64>; // 16 x i64
def llvm_v2f16_ty : LLVMType<v2f16>; // 2 x half (__fp16)
def llvm_v4f16_ty : LLVMType<v4f16>; // 4 x half (__fp16)
def llvm_v8f16_ty : LLVMType<v8f16>; // 8 x half (__fp16)
def llvm_v1f32_ty : LLVMType<v1f32>; // 1 x float
def llvm_v2f32_ty : LLVMType<v2f32>; // 2 x float
def llvm_v4f32_ty : LLVMType<v4f32>; // 4 x float
def llvm_v8f32_ty : LLVMType<v8f32>; // 8 x float
def llvm_v16f32_ty : LLVMType<v16f32>; // 16 x float
def llvm_v1f64_ty : LLVMType<v1f64>; // 1 x double
def llvm_v2f64_ty : LLVMType<v2f64>; // 2 x double
def llvm_v4f64_ty : LLVMType<v4f64>; // 4 x double
def llvm_v8f64_ty : LLVMType<v8f64>; // 8 x double
def llvm_vararg_ty : LLVMType<isVoid>; // this means vararg here
//===----------------------------------------------------------------------===//
// Intrinsic Definitions.
//===----------------------------------------------------------------------===//
// Intrinsic class - This is used to define one LLVM intrinsic. The name of the
// intrinsic definition should start with "int_", then match the LLVM intrinsic
// name with the "llvm." prefix removed, and all "."s turned into "_"s. For
// example, llvm.bswap.i16 -> int_bswap_i16.
//
// * RetTypes is a list containing the return types expected for the
// intrinsic.
// * ParamTypes is a list containing the parameter types expected for the
// intrinsic.
// * Properties can be set to describe the behavior of the intrinsic.
//
class SDPatternOperator;
class Intrinsic<list<LLVMType> ret_types,
list<LLVMType> param_types = [],
list<IntrinsicProperty> properties = [],
string name = ""> : SDPatternOperator {
string LLVMName = name;
string TargetPrefix = ""; // Set to a prefix for target-specific intrinsics.
list<LLVMType> RetTypes = ret_types;
list<LLVMType> ParamTypes = param_types;
list<IntrinsicProperty> Properties = properties;
bit isTarget = 0;
}
/// GCCBuiltin - If this intrinsic exactly corresponds to a GCC builtin, this
/// specifies the name of the builtin. This provides automatic CBE and CFE
/// support.
class GCCBuiltin<string name> {
string GCCBuiltinName = name;
}
class MSBuiltin<string name> {
string MSBuiltinName = name;
}
//===--------------- Variable Argument Handling Intrinsics ----------------===//
//
def int_vastart : Intrinsic<[], [llvm_ptr_ty], [], "llvm.va_start">;
def int_vacopy : Intrinsic<[], [llvm_ptr_ty, llvm_ptr_ty], [],
"llvm.va_copy">;
def int_vaend : Intrinsic<[], [llvm_ptr_ty], [], "llvm.va_end">;
//===------------------- Garbage Collection Intrinsics --------------------===//
//
def int_gcroot : Intrinsic<[],
[llvm_ptrptr_ty, llvm_ptr_ty]>;
def int_gcread : Intrinsic<[llvm_ptr_ty],
[llvm_ptr_ty, llvm_ptrptr_ty],
[IntrReadArgMem]>;
def int_gcwrite : Intrinsic<[],
[llvm_ptr_ty, llvm_ptr_ty, llvm_ptrptr_ty],
[IntrReadWriteArgMem, NoCapture<1>, NoCapture<2>]>;
//===--------------------- Code Generator Intrinsics ----------------------===//
//
def int_returnaddress : Intrinsic<[llvm_ptr_ty], [llvm_i32_ty], [IntrNoMem]>;
def int_frameaddress : Intrinsic<[llvm_ptr_ty], [llvm_i32_ty], [IntrNoMem]>;
def int_frameallocate : Intrinsic<[llvm_ptr_ty], [llvm_i32_ty]>;
def int_framerecover : Intrinsic<[llvm_ptr_ty],
[llvm_ptr_ty, llvm_ptr_ty],
[IntrNoMem]>;
def int_read_register : Intrinsic<[llvm_anyint_ty], [llvm_metadata_ty],
[IntrNoMem], "llvm.read_register">;
def int_write_register : Intrinsic<[], [llvm_metadata_ty, llvm_anyint_ty],
[], "llvm.write_register">;
// Note: we treat stacksave/stackrestore as writemem because we don't otherwise
// model their dependencies on allocas.
def int_stacksave : Intrinsic<[llvm_ptr_ty]>,
GCCBuiltin<"__builtin_stack_save">;
def int_stackrestore : Intrinsic<[], [llvm_ptr_ty]>,
GCCBuiltin<"__builtin_stack_restore">;
// IntrReadWriteArgMem is more pessimistic than strictly necessary for prefetch,
// however it does conveniently prevent the prefetch from being reordered
// with respect to nearby accesses to the same memory.
def int_prefetch : Intrinsic<[],
[llvm_ptr_ty, llvm_i32_ty, llvm_i32_ty,
llvm_i32_ty],
[IntrReadWriteArgMem, NoCapture<0>]>;
def int_pcmarker : Intrinsic<[], [llvm_i32_ty]>;
def int_readcyclecounter : Intrinsic<[llvm_i64_ty]>;
// The assume intrinsic is marked as arbitrarily writing so that proper
// control dependencies will be maintained.
def int_assume : Intrinsic<[], [llvm_i1_ty], []>;
// Stack Protector Intrinsic - The stackprotector intrinsic writes the stack
// guard to the correct place on the stack frame.
def int_stackprotector : Intrinsic<[], [llvm_ptr_ty, llvm_ptrptr_ty], []>;
def int_stackprotectorcheck : Intrinsic<[], [llvm_ptrptr_ty],
[IntrReadWriteArgMem]>;
// A counter increment for instrumentation based profiling.
def int_instrprof_increment : Intrinsic<[],
[llvm_ptr_ty, llvm_i64_ty,
llvm_i32_ty, llvm_i32_ty],
[]>;
//===------------------- Standard C Library Intrinsics --------------------===//
//
def int_memcpy : Intrinsic<[],
[llvm_anyptr_ty, llvm_anyptr_ty, llvm_anyint_ty,
llvm_i32_ty, llvm_i1_ty],
[IntrReadWriteArgMem, NoCapture<0>, NoCapture<1>,
ReadOnly<1>]>;
def int_memmove : Intrinsic<[],
[llvm_anyptr_ty, llvm_anyptr_ty, llvm_anyint_ty,
llvm_i32_ty, llvm_i1_ty],
[IntrReadWriteArgMem, NoCapture<0>, NoCapture<1>,
ReadOnly<1>]>;
def int_memset : Intrinsic<[],
[llvm_anyptr_ty, llvm_i8_ty, llvm_anyint_ty,
llvm_i32_ty, llvm_i1_ty],
[IntrReadWriteArgMem, NoCapture<0>]>;
let Properties = [IntrNoMem] in {
def int_fma : Intrinsic<[llvm_anyfloat_ty],
[LLVMMatchType<0>, LLVMMatchType<0>,
LLVMMatchType<0>]>;
def int_fmuladd : Intrinsic<[llvm_anyfloat_ty],
[LLVMMatchType<0>, LLVMMatchType<0>,
LLVMMatchType<0>]>;
// These functions do not read memory, but are sensitive to the
// rounding mode. LLVM purposely does not model changes to the FP
// environment so they can be treated as readnone.
def int_sqrt : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>;
def int_powi : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>, llvm_i32_ty]>;
def int_sin : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>;
def int_cos : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>;
def int_pow : Intrinsic<[llvm_anyfloat_ty],
[LLVMMatchType<0>, LLVMMatchType<0>]>;
def int_log : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>;
def int_log10: Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>;
def int_log2 : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>;
def int_exp : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>;
def int_exp2 : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>;
def int_fabs : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>;
def int_minnum : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>, LLVMMatchType<0>]>;
def int_maxnum : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>, LLVMMatchType<0>]>;
def int_copysign : Intrinsic<[llvm_anyfloat_ty],
[LLVMMatchType<0>, LLVMMatchType<0>]>;
def int_floor : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>;
def int_ceil : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>;
def int_trunc : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>;
def int_rint : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>;
def int_nearbyint : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>;
def int_round : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>;
}
// NOTE: these are internal interfaces.
def int_setjmp : Intrinsic<[llvm_i32_ty], [llvm_ptr_ty]>;
def int_longjmp : Intrinsic<[], [llvm_ptr_ty, llvm_i32_ty], [IntrNoReturn]>;
def int_sigsetjmp : Intrinsic<[llvm_i32_ty] , [llvm_ptr_ty, llvm_i32_ty]>;
def int_siglongjmp : Intrinsic<[], [llvm_ptr_ty, llvm_i32_ty], [IntrNoReturn]>;
// Internal interface for object size checking
def int_objectsize : Intrinsic<[llvm_anyint_ty], [llvm_anyptr_ty, llvm_i1_ty],
[IntrNoMem]>,
GCCBuiltin<"__builtin_object_size">;
//===------------------------- Expect Intrinsics --------------------------===//
//
def int_expect : Intrinsic<[llvm_anyint_ty], [LLVMMatchType<0>,
LLVMMatchType<0>], [IntrNoMem]>;
//===-------------------- Bit Manipulation Intrinsics ---------------------===//
//
// None of these intrinsics accesses memory at all.
let Properties = [IntrNoMem] in {
def int_bswap: Intrinsic<[llvm_anyint_ty], [LLVMMatchType<0>]>;
def int_ctpop: Intrinsic<[llvm_anyint_ty], [LLVMMatchType<0>]>;
def int_ctlz : Intrinsic<[llvm_anyint_ty], [LLVMMatchType<0>, llvm_i1_ty]>;
def int_cttz : Intrinsic<[llvm_anyint_ty], [LLVMMatchType<0>, llvm_i1_ty]>;
}
//===------------------------ Debugger Intrinsics -------------------------===//
//
// None of these intrinsics accesses memory at all...but that doesn't mean the
// optimizers can change them aggressively. Special handling needed in a few
// places.
let Properties = [IntrNoMem] in {
def int_dbg_declare : Intrinsic<[],
Move the complex address expression out of DIVariable and into an extra argument of the llvm.dbg.declare/llvm.dbg.value intrinsics. Previously, DIVariable was a variable-length field that has an optional reference to a Metadata array consisting of a variable number of complex address expressions. In the case of OpPiece expressions this is wasting a lot of storage in IR, because when an aggregate type is, e.g., SROA'd into all of its n individual members, the IR will contain n copies of the DIVariable, all alike, only differing in the complex address reference at the end. By making the complex address into an extra argument of the dbg.value/dbg.declare intrinsics, all of the pieces can reference the same variable and the complex address expressions can be uniqued across the CU, too. Down the road, this will allow us to move other flags, such as "indirection" out of the DIVariable, too. The new intrinsics look like this: declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr) declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr) This patch adds a new LLVM-local tag to DIExpressions, so we can detect and pretty-print DIExpression metadata nodes. What this patch doesn't do: This patch does not touch the "Indirect" field in DIVariable; but moving that into the expression would be a natural next step. http://reviews.llvm.org/D4919 rdar://problem/17994491 Thanks to dblaikie and dexonsmith for reviewing this patch! Note: I accidentally committed a bogus older version of this patch previously. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218787 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-01 18:55:02 +00:00
[llvm_metadata_ty,
llvm_metadata_ty,
llvm_metadata_ty]>;
def int_dbg_value : Intrinsic<[],
[llvm_metadata_ty, llvm_i64_ty,
Move the complex address expression out of DIVariable and into an extra argument of the llvm.dbg.declare/llvm.dbg.value intrinsics. Previously, DIVariable was a variable-length field that has an optional reference to a Metadata array consisting of a variable number of complex address expressions. In the case of OpPiece expressions this is wasting a lot of storage in IR, because when an aggregate type is, e.g., SROA'd into all of its n individual members, the IR will contain n copies of the DIVariable, all alike, only differing in the complex address reference at the end. By making the complex address into an extra argument of the dbg.value/dbg.declare intrinsics, all of the pieces can reference the same variable and the complex address expressions can be uniqued across the CU, too. Down the road, this will allow us to move other flags, such as "indirection" out of the DIVariable, too. The new intrinsics look like this: declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr) declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr) This patch adds a new LLVM-local tag to DIExpressions, so we can detect and pretty-print DIExpression metadata nodes. What this patch doesn't do: This patch does not touch the "Indirect" field in DIVariable; but moving that into the expression would be a natural next step. http://reviews.llvm.org/D4919 rdar://problem/17994491 Thanks to dblaikie and dexonsmith for reviewing this patch! Note: I accidentally committed a bogus older version of this patch previously. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218787 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-01 18:55:02 +00:00
llvm_metadata_ty,
llvm_metadata_ty]>;
}
//===------------------ Exception Handling Intrinsics----------------------===//
//
// The result of eh.typeid.for depends on the enclosing function, but inside a
// given function it is 'const' and may be CSE'd etc.
def int_eh_typeid_for : Intrinsic<[llvm_i32_ty], [llvm_ptr_ty], [IntrNoMem]>;
def int_eh_return_i32 : Intrinsic<[], [llvm_i32_ty, llvm_ptr_ty]>;
def int_eh_return_i64 : Intrinsic<[], [llvm_i64_ty, llvm_ptr_ty]>;
// eh.begincatch takes a pointer returned by a landingpad instruction and
// copies the exception object into the memory pointed to by the second
// parameter. If the second parameter is null, no copy occurs.
def int_eh_begincatch : Intrinsic<[], [llvm_ptr_ty, llvm_ptr_ty],
[NoCapture<0>, NoCapture<1>]>;
def int_eh_endcatch : Intrinsic<[], []>;
// __builtin_unwind_init is an undocumented GCC intrinsic that causes all
// callee-saved registers to be saved and restored (regardless of whether they
// are used) in the calling function. It is used by libgcc_eh.
def int_eh_unwind_init: Intrinsic<[]>,
GCCBuiltin<"__builtin_unwind_init">;
def int_eh_dwarf_cfa : Intrinsic<[llvm_ptr_ty], [llvm_i32_ty]>;
let Properties = [IntrNoMem] in {
def int_eh_sjlj_lsda : Intrinsic<[llvm_ptr_ty]>;
def int_eh_sjlj_callsite : Intrinsic<[], [llvm_i32_ty]>;
}
def int_eh_sjlj_functioncontext : Intrinsic<[], [llvm_ptr_ty]>;
def int_eh_sjlj_setjmp : Intrinsic<[llvm_i32_ty], [llvm_ptr_ty]>;
def int_eh_sjlj_longjmp : Intrinsic<[], [llvm_ptr_ty], [IntrNoReturn]>;
//===---------------- Generic Variable Attribute Intrinsics----------------===//
//
def int_var_annotation : Intrinsic<[],
[llvm_ptr_ty, llvm_ptr_ty,
llvm_ptr_ty, llvm_i32_ty],
[], "llvm.var.annotation">;
def int_ptr_annotation : Intrinsic<[LLVMAnyPointerType<llvm_anyint_ty>],
[LLVMMatchType<0>, llvm_ptr_ty, llvm_ptr_ty,
llvm_i32_ty],
[], "llvm.ptr.annotation">;
def int_annotation : Intrinsic<[llvm_anyint_ty],
[LLVMMatchType<0>, llvm_ptr_ty,
llvm_ptr_ty, llvm_i32_ty],
[], "llvm.annotation">;
//===------------------------ Trampoline Intrinsics -----------------------===//
//
def int_init_trampoline : Intrinsic<[],
[llvm_ptr_ty, llvm_ptr_ty, llvm_ptr_ty],
[IntrReadWriteArgMem, NoCapture<0>]>,
GCCBuiltin<"__builtin_init_trampoline">;
def int_adjust_trampoline : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty],
[IntrReadArgMem]>,
GCCBuiltin<"__builtin_adjust_trampoline">;
//===------------------------ Overflow Intrinsics -------------------------===//
//
// Expose the carry flag from add operations on two integrals.
def int_sadd_with_overflow : Intrinsic<[llvm_anyint_ty, llvm_i1_ty],
[LLVMMatchType<0>, LLVMMatchType<0>],
[IntrNoMem]>;
def int_uadd_with_overflow : Intrinsic<[llvm_anyint_ty, llvm_i1_ty],
[LLVMMatchType<0>, LLVMMatchType<0>],
[IntrNoMem]>;
def int_ssub_with_overflow : Intrinsic<[llvm_anyint_ty, llvm_i1_ty],
[LLVMMatchType<0>, LLVMMatchType<0>],
[IntrNoMem]>;
def int_usub_with_overflow : Intrinsic<[llvm_anyint_ty, llvm_i1_ty],
[LLVMMatchType<0>, LLVMMatchType<0>],
[IntrNoMem]>;
def int_smul_with_overflow : Intrinsic<[llvm_anyint_ty, llvm_i1_ty],
[LLVMMatchType<0>, LLVMMatchType<0>],
[IntrNoMem]>;
def int_umul_with_overflow : Intrinsic<[llvm_anyint_ty, llvm_i1_ty],
[LLVMMatchType<0>, LLVMMatchType<0>],
[IntrNoMem]>;
//===------------------------- Memory Use Markers -------------------------===//
//
def int_lifetime_start : Intrinsic<[],
[llvm_i64_ty, llvm_ptr_ty],
[IntrReadWriteArgMem, NoCapture<1>]>;
def int_lifetime_end : Intrinsic<[],
[llvm_i64_ty, llvm_ptr_ty],
[IntrReadWriteArgMem, NoCapture<1>]>;
def int_invariant_start : Intrinsic<[llvm_descriptor_ty],
[llvm_i64_ty, llvm_ptr_ty],
[IntrReadWriteArgMem, NoCapture<1>]>;
def int_invariant_end : Intrinsic<[],
[llvm_descriptor_ty, llvm_i64_ty,
llvm_ptr_ty],
[IntrReadWriteArgMem, NoCapture<2>]>;
//===------------------------ Stackmap Intrinsics -------------------------===//
//
def int_experimental_stackmap : Intrinsic<[],
[llvm_i64_ty, llvm_i32_ty, llvm_vararg_ty],
[Throws]>;
def int_experimental_patchpoint_void : Intrinsic<[],
[llvm_i64_ty, llvm_i32_ty,
llvm_ptr_ty, llvm_i32_ty,
llvm_vararg_ty],
[Throws]>;
def int_experimental_patchpoint_i64 : Intrinsic<[llvm_i64_ty],
[llvm_i64_ty, llvm_i32_ty,
llvm_ptr_ty, llvm_i32_ty,
llvm_vararg_ty],
[Throws]>;
[Statepoints 1/4] Statepoint infrastructure for garbage collection: IR Intrinsics The statepoint intrinsics are intended to enable precise root tracking through the compiler as to support garbage collectors of all types. The addition of the statepoint intrinsics to LLVM should have no impact on the compilation of any program which does not contain them. There are no side tables created, no extra metadata, and no inhibited optimizations. A statepoint works by transforming a call site (or safepoint poll site) into an explicit relocation operation. It is the frontend's responsibility (or eventually the safepoint insertion pass we've developed, but that's not part of this patch series) to ensure that any live pointer to a GC object is correctly added to the statepoint and explicitly relocated. The relocated value is just a normal SSA value (as seen by the optimizer), so merges of relocated and unrelocated values are just normal phis. The explicit relocation operation, the fact the statepoint is assumed to clobber all memory, and the optimizers standard semantics ensure that the relocations flow through IR optimizations correctly. This is the first patch in a small series. This patch contains only the IR parts; the documentation and backend support will be following separately. The entire series can be seen as one combined whole in http://reviews.llvm.org/D5683. Reviewed by: atrick, ributzka git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223078 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-01 21:18:12 +00:00
//===------------------------ Garbage Collection Intrinsics ---------------===//
// These are documented in docs/Statepoint.rst
def int_experimental_gc_statepoint : Intrinsic<[llvm_i32_ty],
[llvm_anyptr_ty, llvm_i32_ty,
llvm_i32_ty, llvm_vararg_ty]>;
def int_experimental_gc_result : Intrinsic<[llvm_any_ty], [llvm_i32_ty]>;
def int_experimental_gc_relocate : Intrinsic<[llvm_anyptr_ty],
[llvm_i32_ty, llvm_i32_ty, llvm_i32_ty]>;
// Deprecated: will be removed in a couple of weeks
[Statepoints 1/4] Statepoint infrastructure for garbage collection: IR Intrinsics The statepoint intrinsics are intended to enable precise root tracking through the compiler as to support garbage collectors of all types. The addition of the statepoint intrinsics to LLVM should have no impact on the compilation of any program which does not contain them. There are no side tables created, no extra metadata, and no inhibited optimizations. A statepoint works by transforming a call site (or safepoint poll site) into an explicit relocation operation. It is the frontend's responsibility (or eventually the safepoint insertion pass we've developed, but that's not part of this patch series) to ensure that any live pointer to a GC object is correctly added to the statepoint and explicitly relocated. The relocated value is just a normal SSA value (as seen by the optimizer), so merges of relocated and unrelocated values are just normal phis. The explicit relocation operation, the fact the statepoint is assumed to clobber all memory, and the optimizers standard semantics ensure that the relocations flow through IR optimizations correctly. This is the first patch in a small series. This patch contains only the IR parts; the documentation and backend support will be following separately. The entire series can be seen as one combined whole in http://reviews.llvm.org/D5683. Reviewed by: atrick, ributzka git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223078 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-01 21:18:12 +00:00
def int_experimental_gc_result_int : Intrinsic<[llvm_anyint_ty], [llvm_i32_ty]>;
def int_experimental_gc_result_float : Intrinsic<[llvm_anyfloat_ty],
[Statepoints 1/4] Statepoint infrastructure for garbage collection: IR Intrinsics The statepoint intrinsics are intended to enable precise root tracking through the compiler as to support garbage collectors of all types. The addition of the statepoint intrinsics to LLVM should have no impact on the compilation of any program which does not contain them. There are no side tables created, no extra metadata, and no inhibited optimizations. A statepoint works by transforming a call site (or safepoint poll site) into an explicit relocation operation. It is the frontend's responsibility (or eventually the safepoint insertion pass we've developed, but that's not part of this patch series) to ensure that any live pointer to a GC object is correctly added to the statepoint and explicitly relocated. The relocated value is just a normal SSA value (as seen by the optimizer), so merges of relocated and unrelocated values are just normal phis. The explicit relocation operation, the fact the statepoint is assumed to clobber all memory, and the optimizers standard semantics ensure that the relocations flow through IR optimizations correctly. This is the first patch in a small series. This patch contains only the IR parts; the documentation and backend support will be following separately. The entire series can be seen as one combined whole in http://reviews.llvm.org/D5683. Reviewed by: atrick, ributzka git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223078 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-01 21:18:12 +00:00
[llvm_i32_ty]>;
def int_experimental_gc_result_ptr : Intrinsic<[llvm_anyptr_ty], [llvm_i32_ty]>;
//===-------------------------- Other Intrinsics --------------------------===//
//
def int_flt_rounds : Intrinsic<[llvm_i32_ty]>,
GCCBuiltin<"__builtin_flt_rounds">;
def int_trap : Intrinsic<[], [], [IntrNoReturn]>,
GCCBuiltin<"__builtin_trap">;
def int_debugtrap : Intrinsic<[]>,
GCCBuiltin<"__builtin_debugtrap">;
// NOP: calls/invokes to this intrinsic are removed by codegen
def int_donothing : Intrinsic<[], [], [IntrNoMem]>;
// Intrisics to support half precision floating point format
let Properties = [IntrNoMem] in {
def int_convert_to_fp16 : Intrinsic<[llvm_i16_ty], [llvm_anyfloat_ty]>;
def int_convert_from_fp16 : Intrinsic<[llvm_anyfloat_ty], [llvm_i16_ty]>;
}
// These convert intrinsics are to support various conversions between
// various types with rounding and saturation. NOTE: avoid using these
// intrinsics as they might be removed sometime in the future and
// most targets don't support them.
def int_convertff : Intrinsic<[llvm_anyfloat_ty],
[llvm_anyfloat_ty, llvm_i32_ty, llvm_i32_ty]>;
def int_convertfsi : Intrinsic<[llvm_anyfloat_ty],
[llvm_anyint_ty, llvm_i32_ty, llvm_i32_ty]>;
def int_convertfui : Intrinsic<[llvm_anyfloat_ty],
[llvm_anyint_ty, llvm_i32_ty, llvm_i32_ty]>;
def int_convertsif : Intrinsic<[llvm_anyint_ty],
[llvm_anyfloat_ty, llvm_i32_ty, llvm_i32_ty]>;
def int_convertuif : Intrinsic<[llvm_anyint_ty],
[llvm_anyfloat_ty, llvm_i32_ty, llvm_i32_ty]>;
def int_convertss : Intrinsic<[llvm_anyint_ty],
[llvm_anyint_ty, llvm_i32_ty, llvm_i32_ty]>;
def int_convertsu : Intrinsic<[llvm_anyint_ty],
[llvm_anyint_ty, llvm_i32_ty, llvm_i32_ty]>;
def int_convertus : Intrinsic<[llvm_anyint_ty],
[llvm_anyint_ty, llvm_i32_ty, llvm_i32_ty]>;
def int_convertuu : Intrinsic<[llvm_anyint_ty],
[llvm_anyint_ty, llvm_i32_ty, llvm_i32_ty]>;
// Clear cache intrinsic, default to ignore (ie. emit nothing)
// maps to void __clear_cache() on supporting platforms
def int_clear_cache : Intrinsic<[], [llvm_ptr_ty, llvm_ptr_ty],
[], "llvm.clear_cache">;
//===-------------------------- Masked Intrinsics -------------------------===//
//
def int_masked_store : Intrinsic<[], [llvm_anyvector_ty, LLVMPointerTo<0>,
llvm_i32_ty,
LLVMVectorSameWidth<0, llvm_i1_ty>],
[IntrReadWriteArgMem]>;
def int_masked_load : Intrinsic<[llvm_anyvector_ty],
[LLVMPointerTo<0>, llvm_i32_ty,
LLVMVectorSameWidth<0, llvm_i1_ty>, LLVMMatchType<0>],
[IntrReadArgMem]>;
Masked Gather and Scatter Intrinsics. Gather and Scatter are new introduced intrinsics, comming after recently implemented masked load and store. This is the first patch for Gather and Scatter intrinsics. It includes only the syntax, parsing and verification. Gather and Scatter intrinsics allow to perform multiple memory accesses (read/write) in one vector instruction. The intrinsics are not target specific and will have the following syntax: Gather: declare <16 x i32> @llvm.masked.gather.v16i32(<16 x i32*> <vector of ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x i32> <passthru>) declare <8 x float> @llvm.masked.gather.v8f32(<8 x float*><vector of ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float><passthru>) Scatter: declare void @llvm.masked.scatter.v8i32(<8 x i32><vector value to be stored> , <8 x i32*><vector of ptrs> , i32 <alignment>, <8 x i1> <mask>) declare void @llvm.masked.scatter.v16i32(<16 x i32> <vector value to be stored> , <16 x i32*> <vector of ptrs>, i32 <alignment>, <16 x i1><mask> ) Vector of ptrs - a set of source/destination addresses, to load/store the value. Mask - switches on/off vector lanes to prevent memory access for switched-off lanes vector of ptrs, value and mask should have the same vector width. These are code examples where gather / scatter should be used and will allow function vectorization ;void foo1(int * restrict A, int * restrict B, int * restrict C) { ; for (int i=0; i<SIZE; i++) { ; A[i] = B[C[i]]; ; } ;} ;void foo3(int * restrict A, int * restrict B) { ; for (int i=0; i<SIZE; i++) { ; A[B[i]] = i+5; ; } ;} Tests will come in the following patches, with CodeGen and Vectorizer. http://reviews.llvm.org/D7433 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228521 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-08 08:27:19 +00:00
def int_masked_gather: Intrinsic<[llvm_anyvector_ty],
[LLVMVectorOfPointersToElt<0>, llvm_i32_ty,
LLVMVectorSameWidth<0, llvm_i1_ty>,
LLVMMatchType<0>],
[IntrReadArgMem]>;
def int_masked_scatter: Intrinsic<[],
[llvm_anyvector_ty,
LLVMVectorOfPointersToElt<0>, llvm_i32_ty,
LLVMVectorSameWidth<0, llvm_i1_ty>],
[IntrReadWriteArgMem]>;
// Intrinsics to support bit sets.
def int_bitset_test : Intrinsic<[llvm_i1_ty], [llvm_ptr_ty, llvm_metadata_ty],
[IntrNoMem]>;
//===----------------------------------------------------------------------===//
// Target-specific intrinsics
//===----------------------------------------------------------------------===//
include "llvm/IR/IntrinsicsPowerPC.td"
include "llvm/IR/IntrinsicsX86.td"
include "llvm/IR/IntrinsicsARM.td"
include "llvm/IR/IntrinsicsAArch64.td"
include "llvm/IR/IntrinsicsXCore.td"
include "llvm/IR/IntrinsicsHexagon.td"
include "llvm/IR/IntrinsicsNVVM.td"
include "llvm/IR/IntrinsicsMips.td"
include "llvm/IR/IntrinsicsR600.td"
BPF backend Summary: V8->V9: - cleanup tests V7->V8: - addressed feedback from David: - switched to range-based 'for' loops - fixed formatting of tests V6->V7: - rebased and adjusted AsmPrinter args - CamelCased .td, fixed formatting, cleaned up names, removed unused patterns - diffstat: 3 files changed, 203 insertions(+), 227 deletions(-) V5->V6: - addressed feedback from Chandler: - reinstated full verbose standard banner in all files - fixed variables that were not in CamelCase - fixed names of #ifdef in header files - removed redundant braces in if/else chains with single statements - fixed comments - removed trailing empty line - dropped debug annotations from tests - diffstat of these changes: 46 files changed, 456 insertions(+), 469 deletions(-) V4->V5: - fix setLoadExtAction() interface - clang-formated all where it made sense V3->V4: - added CODE_OWNERS entry for BPF backend V2->V3: - fix metadata in tests V1->V2: - addressed feedback from Tom and Matt - removed top level change to configure (now everything via 'experimental-backend') - reworked error reporting via DiagnosticInfo (similar to R600) - added few more tests - added cmake build - added Triple::bpf - tested on linux and darwin V1 cover letter: --------------------- recently linux gained "universal in-kernel virtual machine" which is called eBPF or extended BPF. The name comes from "Berkeley Packet Filter", since new instruction set is based on it. This patch adds a new backend that emits extended BPF instruction set. The concept and development are covered by the following articles: http://lwn.net/Articles/599755/ http://lwn.net/Articles/575531/ http://lwn.net/Articles/603983/ http://lwn.net/Articles/606089/ http://lwn.net/Articles/612878/ One of use cases: dtrace/systemtap alternative. bpf syscall manpage: https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=b4fc1a460f3017e958e6a8ea560ea0afd91bf6fe instruction set description and differences vs classic BPF: http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/networking/filter.txt Short summary of instruction set: - 64-bit registers R0 - return value from in-kernel function, and exit value for BPF program R1 - R5 - arguments from BPF program to in-kernel function R6 - R9 - callee saved registers that in-kernel function will preserve R10 - read-only frame pointer to access stack - two-operand instructions like +, -, *, mov, load/store - implicit prologue/epilogue (invisible stack pointer) - no floating point, no simd Short history of extended BPF in kernel: interpreter in 3.15, x64 JIT in 3.16, arm64 JIT, verifier, bpf syscall in 3.18, more to come in the future. It's a very small and simple backend. There is no support for global variables, arbitrary function calls, floating point, varargs, exceptions, indirect jumps, arbitrary pointer arithmetic, alloca, etc. From C front-end point of view it's very restricted. It's done on purpose, since kernel rejects all programs that it cannot prove safe. It rejects programs with loops and with memory accesses via arbitrary pointers. When kernel accepts the program it is guaranteed that program will terminate and will not crash the kernel. This patch implements all 'must have' bits. There are several things on TODO list, so this is not the end of development. Most of the code is a boiler plate code, copy-pasted from other backends. Only odd things are lack or < and <= instructions, specialized load_byte intrinsics and 'compare and goto' as single instruction. Current instruction set is fixed, but more instructions can be added in the future. Signed-off-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> Subscribers: majnemer, chandlerc, echristo, joerg, pete, rengolin, kristof.beyls, arsenm, t.p.northover, tstellarAMD, aemerson, llvm-commits Differential Revision: http://reviews.llvm.org/D6494 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227008 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-24 17:51:26 +00:00
include "llvm/IR/IntrinsicsBPF.td"