llvm-6502/lib/Target/SystemZ/SystemZInstrFormats.td

988 lines
34 KiB
TableGen
Raw Normal View History

//==- SystemZInstrFormats.td - SystemZ Instruction Formats --*- tablegen -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Basic SystemZ instruction definition
//===----------------------------------------------------------------------===//
class InstSystemZ<int size, dag outs, dag ins, string asmstr,
list<dag> pattern> : Instruction {
let Namespace = "SystemZ";
dag OutOperandList = outs;
dag InOperandList = ins;
let Size = size;
let Pattern = pattern;
let AsmString = asmstr;
// Used to identify a group of related instructions, such as ST and STY.
string Function = "";
// "12" for an instruction that has a ...Y equivalent, "20" for that
// ...Y equivalent.
string PairType = "none";
// True if this instruction is a simple D(X,B) load of a register
// (with no sign or zero extension).
bit SimpleBDXLoad = 0;
// True if this instruction is a simple D(X,B) store of a register
// (with no truncation).
bit SimpleBDXStore = 0;
// True if this instruction has a 20-bit displacement field.
bit Has20BitOffset = 0;
// True if addresses in this instruction have an index register.
bit HasIndex = 0;
// True if this is a 128-bit pseudo instruction that combines two 64-bit
// operations.
bit Is128Bit = 0;
let TSFlags{0} = SimpleBDXLoad;
let TSFlags{1} = SimpleBDXStore;
let TSFlags{2} = Has20BitOffset;
let TSFlags{3} = HasIndex;
let TSFlags{4} = Is128Bit;
}
//===----------------------------------------------------------------------===//
// Mappings between instructions
//===----------------------------------------------------------------------===//
// Return the version of an instruction that has an unsigned 12-bit
// displacement.
def getDisp12Opcode : InstrMapping {
let FilterClass = "InstSystemZ";
let RowFields = ["Function"];
let ColFields = ["PairType"];
let KeyCol = ["20"];
let ValueCols = [["12"]];
}
// Return the version of an instruction that has a signed 20-bit displacement.
def getDisp20Opcode : InstrMapping {
let FilterClass = "InstSystemZ";
let RowFields = ["Function"];
let ColFields = ["PairType"];
let KeyCol = ["12"];
let ValueCols = [["20"]];
}
//===----------------------------------------------------------------------===//
// Instruction formats
//===----------------------------------------------------------------------===//
//
// Formats are specified using operand field declarations of the form:
//
// bits<4> Rn : register input or output for operand n
// bits<m> In : immediate value of width m for operand n
// bits<4> Bn : base register for address operand n
// bits<m> Dn : displacement value of width m for address operand n
// bits<4> Xn : index register for address operand n
// bits<4> Mn : mode value for operand n
//
// The operand numbers ("n" in the list above) follow the architecture manual,
// but the fields are always declared in assembly order, so there are some
// cases where operand "2" comes after operand "3". For address operands,
// the base register field is declared first, followed by the displacement,
// followed by the index (if any). This matches the bdaddr* and bdxaddr*
// orders.
//
//===----------------------------------------------------------------------===//
class InstRI<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
bits<4> R1;
bits<16> I2;
let Inst{31-24} = op{11-4};
let Inst{23-20} = R1;
let Inst{19-16} = op{3-0};
let Inst{15-0} = I2;
}
class InstRIEf<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
bits<4> R1;
bits<4> R2;
bits<8> I3;
bits<8> I4;
bits<8> I5;
let Inst{47-40} = op{15-8};
let Inst{39-36} = R1;
let Inst{35-32} = R2;
let Inst{31-24} = I3;
let Inst{23-16} = I4;
let Inst{15-8} = I5;
let Inst{7-0} = op{7-0};
}
class InstRIL<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
bits<4> R1;
bits<32> I2;
let Inst{47-40} = op{11-4};
let Inst{39-36} = R1;
let Inst{35-32} = op{3-0};
let Inst{31-0} = I2;
}
class InstRR<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<2, outs, ins, asmstr, pattern> {
field bits<16> Inst;
bits<4> R1;
bits<4> R2;
let Inst{15-8} = op;
let Inst{7-4} = R1;
let Inst{3-0} = R2;
}
class InstRRD<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
bits<4> R1;
bits<4> R3;
bits<4> R2;
let Inst{31-16} = op;
let Inst{15-12} = R1;
let Inst{11-8} = 0;
let Inst{7-4} = R3;
let Inst{3-0} = R2;
}
class InstRRE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
bits<4> R1;
bits<4> R2;
let Inst{31-16} = op;
let Inst{15-8} = 0;
let Inst{7-4} = R1;
let Inst{3-0} = R2;
}
class InstRRF<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
bits<4> R1;
bits<4> R2;
bits<4> R3;
let Inst{31-16} = op;
let Inst{15-12} = R3;
let Inst{11-8} = 0;
let Inst{7-4} = R1;
let Inst{3-0} = R2;
}
class InstRX<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
bits<4> R1;
bits<4> B2;
bits<12> D2;
bits<4> X2;
let Inst{31-24} = op;
let Inst{23-20} = R1;
let Inst{19-16} = X2;
let Inst{15-12} = B2;
let Inst{11-0} = D2;
let HasIndex = 1;
}
class InstRXE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
bits<4> R1;
bits<4> B2;
bits<12> D2;
bits<4> X2;
let Inst{47-40} = op{15-8};
let Inst{39-36} = R1;
let Inst{35-32} = X2;
let Inst{31-28} = B2;
let Inst{27-16} = D2;
let Inst{15-8} = 0;
let Inst{7-0} = op{7-0};
let HasIndex = 1;
}
class InstRXF<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
bits<4> R1;
bits<4> R3;
bits<4> B2;
bits<12> D2;
bits<4> X2;
let Inst{47-40} = op{15-8};
let Inst{39-36} = R3;
let Inst{35-32} = X2;
let Inst{31-28} = B2;
let Inst{27-16} = D2;
let Inst{15-12} = R1;
let Inst{11-8} = 0;
let Inst{7-0} = op{7-0};
let HasIndex = 1;
}
class InstRXY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
bits<4> R1;
bits<4> B2;
bits<20> D2;
bits<4> X2;
let Inst{47-40} = op{15-8};
let Inst{39-36} = R1;
let Inst{35-32} = X2;
let Inst{31-28} = B2;
let Inst{27-16} = D2{11-0};
let Inst{15-8} = D2{19-12};
let Inst{7-0} = op{7-0};
let Has20BitOffset = 1;
let HasIndex = 1;
}
class InstRS<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
bits<4> R1;
bits<4> R3;
bits<4> B2;
bits<12> D2;
let Inst{31-24} = op;
let Inst{23-20} = R1;
let Inst{19-16} = R3;
let Inst{15-12} = B2;
let Inst{11-0} = D2;
}
class InstRSY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
bits<4> R1;
bits<4> R3;
bits<4> B2;
bits<20> D2;
let Inst{47-40} = op{15-8};
let Inst{39-36} = R1;
let Inst{35-32} = R3;
let Inst{31-28} = B2;
let Inst{27-16} = D2{11-0};
let Inst{15-8} = D2{19-12};
let Inst{7-0} = op{7-0};
let Has20BitOffset = 1;
}
class InstSI<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
bits<4> B1;
bits<12> D1;
bits<8> I2;
let Inst{31-24} = op;
let Inst{23-16} = I2;
let Inst{15-12} = B1;
let Inst{11-0} = D1;
}
class InstSIL<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
bits<4> B1;
bits<12> D1;
bits<16> I2;
let Inst{47-32} = op;
let Inst{31-28} = B1;
let Inst{27-16} = D1;
let Inst{15-0} = I2;
}
class InstSIY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
bits<4> B1;
bits<20> D1;
bits<8> I2;
let Inst{47-40} = op{15-8};
let Inst{39-32} = I2;
let Inst{31-28} = B1;
let Inst{27-16} = D1{11-0};
let Inst{15-8} = D1{19-12};
let Inst{7-0} = op{7-0};
let Has20BitOffset = 1;
}
//===----------------------------------------------------------------------===//
// Instruction definitions with semantics
//===----------------------------------------------------------------------===//
//
// These classes have the form <Category><Format>, where <Format> is one
// of the formats defined above and where <Category> describes the inputs
// and outputs. <Category> can be one of:
//
// Inherent:
// One register output operand and no input operands.
//
// Store:
// One register or immediate input operand and one address input operand.
// The instruction stores the first operand to the address.
//
// This category is used for both pure and truncating stores.
//
// LoadMultiple:
// One address input operand and two explicit output operands.
// The instruction loads a range of registers from the address,
// with the explicit operands giving the first and last register
// to load. Other loaded registers are added as implicit definitions.
//
// StoreMultiple:
// Two explicit input register operands and an address operand.
// The instruction stores a range of registers to the address,
// with the explicit operands giving the first and last register
// to store. Other stored registers are added as implicit uses.
//
// Unary:
// One register output operand and one input operand. The input
// operand may be a register, immediate or memory.
//
// Binary:
// One register output operand and two input operands. The first
// input operand is always a register and he second may be a register,
// immediate or memory.
//
// Shift:
// One register output operand and two input operands. The first
// input operand is a register and the second has the same form as
// an address (although it isn't actually used to address memory).
//
// Compare:
// Two input operands. The first operand is always a register,
// the second may be a register, immediate or memory.
//
// Ternary:
// One register output operand and three register input operands.
//
// CmpSwap:
// One output operand and three input operands. The first two
// operands are registers and the third is an address. The instruction
// both reads from and writes to the address.
//
// RotateSelect:
// One output operand and five input operands. The first two operands
// are registers and the other three are immediates.
//
// The format determines which input operands are tied to output operands,
// and also determines the shape of any address operand.
//
// Multiclasses of the form <Category><Format>Pair define two instructions,
// one with <Category><Format> and one with <Category><Format>Y. The name
// of the first instruction has no suffix, the name of the second has
// an extra "y".
//
//===----------------------------------------------------------------------===//
class InherentRRE<string mnemonic, bits<16> opcode, RegisterOperand cls,
dag src>
: InstRRE<opcode, (outs cls:$dst), (ins),
mnemonic#"\t$dst",
[(set cls:$dst, src)]> {
let R2 = 0;
}
class LoadMultipleRSY<string mnemonic, bits<16> opcode, RegisterOperand cls>
: InstRSY<opcode, (outs cls:$dst1, cls:$dst2), (ins bdaddr20only:$addr),
mnemonic#"\t$dst1, $dst2, $addr", []> {
let mayLoad = 1;
}
class StoreRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
RegisterOperand cls>
: InstRIL<opcode, (outs), (ins cls:$src, pcrel32:$addr),
mnemonic#"\t$src, $addr",
[(operator cls:$src, pcrel32:$addr)]> {
let mayStore = 1;
// We want PC-relative addresses to be tried ahead of BD and BDX addresses.
// However, BDXs have two extra operands and are therefore 6 units more
// complex.
let AddedComplexity = 7;
}
class StoreRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
RegisterOperand cls, AddressingMode mode = bdxaddr12only>
: InstRX<opcode, (outs), (ins cls:$src, mode:$addr),
mnemonic#"\t$src, $addr",
[(operator cls:$src, mode:$addr)]> {
let mayStore = 1;
}
class StoreRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, AddressingMode mode = bdxaddr20only>
: InstRXY<opcode, (outs), (ins cls:$src, mode:$addr),
mnemonic#"\t$src, $addr",
[(operator cls:$src, mode:$addr)]> {
let mayStore = 1;
}
multiclass StoreRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
SDPatternOperator operator, RegisterOperand cls> {
let Function = mnemonic ## #cls in {
let PairType = "12" in
def "" : StoreRX<mnemonic, rxOpcode, operator, cls, bdxaddr12pair>;
let PairType = "20" in
def Y : StoreRXY<mnemonic#"y", rxyOpcode, operator, cls, bdxaddr20pair>;
}
}
class StoreMultipleRSY<string mnemonic, bits<16> opcode, RegisterOperand cls>
: InstRSY<opcode, (outs), (ins cls:$from, cls:$to, bdaddr20only:$addr),
mnemonic#"\t$from, $to, $addr", []> {
let mayStore = 1;
}
class StoreSI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
Immediate imm, AddressingMode mode = bdaddr12only>
: InstSI<opcode, (outs), (ins mode:$addr, imm:$src),
mnemonic#"\t$addr, $src",
[(operator imm:$src, mode:$addr)]> {
let mayStore = 1;
}
class StoreSIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
Immediate imm, AddressingMode mode = bdaddr20only>
: InstSIY<opcode, (outs), (ins mode:$addr, imm:$src),
mnemonic#"\t$addr, $src",
[(operator imm:$src, mode:$addr)]> {
let mayStore = 1;
}
class StoreSIL<string mnemonic, bits<16> opcode, SDPatternOperator operator,
Immediate imm>
: InstSIL<opcode, (outs), (ins bdaddr12only:$addr, imm:$src),
mnemonic#"\t$addr, $src",
[(operator imm:$src, bdaddr12only:$addr)]> {
let mayStore = 1;
}
multiclass StoreSIPair<string mnemonic, bits<8> siOpcode, bits<16> siyOpcode,
SDPatternOperator operator, Immediate imm> {
let Function = mnemonic in {
let PairType = "12" in
def "" : StoreSI<mnemonic, siOpcode, operator, imm, bdaddr12pair>;
let PairType = "20" in
def Y : StoreSIY<mnemonic#"y", siyOpcode, operator, imm, bdaddr20pair>;
}
}
class UnaryRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
RegisterOperand cls1, RegisterOperand cls2>
: InstRR<opcode, (outs cls1:$dst), (ins cls2:$src),
mnemonic#"\t$dst, $src",
[(set cls1:$dst, (operator cls2:$src))]>;
class UnaryRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls1, RegisterOperand cls2>
: InstRRE<opcode, (outs cls1:$dst), (ins cls2:$src),
mnemonic#"\t$dst, $src",
[(set cls1:$dst, (operator cls2:$src))]>;
class UnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
RegisterOperand cls2>
: InstRRF<opcode, (outs cls1:$dst), (ins cls2:$src, uimm8zx4:$mode),
mnemonic#"\t$dst, $mode, $src", []>;
class UnaryRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
RegisterOperand cls, Immediate imm>
: InstRI<opcode, (outs cls:$dst), (ins imm:$src),
mnemonic#"\t$dst, $src",
[(set cls:$dst, (operator imm:$src))]>;
class UnaryRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
RegisterOperand cls, Immediate imm>
: InstRIL<opcode, (outs cls:$dst), (ins imm:$src),
mnemonic#"\t$dst, $src",
[(set cls:$dst, (operator imm:$src))]>;
class UnaryRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
RegisterOperand cls>
: InstRIL<opcode, (outs cls:$dst), (ins pcrel32:$addr),
mnemonic#"\t$dst, $addr",
[(set cls:$dst, (operator pcrel32:$addr))]> {
let mayLoad = 1;
// We want PC-relative addresses to be tried ahead of BD and BDX addresses.
// However, BDXs have two extra operands and are therefore 6 units more
// complex.
let AddedComplexity = 7;
}
class UnaryRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
RegisterOperand cls, AddressingMode mode = bdxaddr12only>
: InstRX<opcode, (outs cls:$dst), (ins mode:$addr),
mnemonic#"\t$dst, $addr",
[(set cls:$dst, (operator mode:$addr))]> {
let mayLoad = 1;
}
class UnaryRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls>
: InstRXE<opcode, (outs cls:$dst), (ins bdxaddr12only:$addr),
mnemonic#"\t$dst, $addr",
[(set cls:$dst, (operator bdxaddr12only:$addr))]> {
let mayLoad = 1;
}
class UnaryRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, AddressingMode mode = bdxaddr20only>
: InstRXY<opcode, (outs cls:$dst), (ins mode:$addr),
mnemonic#"\t$dst, $addr",
[(set cls:$dst, (operator mode:$addr))]> {
let mayLoad = 1;
}
multiclass UnaryRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
SDPatternOperator operator, RegisterOperand cls> {
let Function = mnemonic ## #cls in {
let PairType = "12" in
def "" : UnaryRX<mnemonic, rxOpcode, operator, cls, bdxaddr12pair>;
let PairType = "20" in
def Y : UnaryRXY<mnemonic#"y", rxyOpcode, operator, cls, bdxaddr20pair>;
}
}
class BinaryRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
RegisterOperand cls1, RegisterOperand cls2>
: InstRR<opcode, (outs cls1:$dst), (ins cls1:$src1, cls2:$src2),
mnemonic#"\t$dst, $src2",
[(set cls1:$dst, (operator cls1:$src1, cls2:$src2))]> {
let Constraints = "$src1 = $dst";
let DisableEncoding = "$src1";
}
class BinaryRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls1, RegisterOperand cls2>
: InstRRE<opcode, (outs cls1:$dst), (ins cls1:$src1, cls2:$src2),
mnemonic#"\t$dst, $src2",
[(set cls1:$dst, (operator cls1:$src1, cls2:$src2))]> {
let Constraints = "$src1 = $dst";
let DisableEncoding = "$src1";
}
// Here the assembly and dag operands are in natural order,
// but the first input operand maps to R3 and the second to R2.
// This is used for "CPSDR R1, R3, R2", which is equivalent to
// R1 = copysign (R3, R2).
//
// Direct uses of the instruction must pass operands in encoding order --
// R1, R2, R3 -- so they must pass the source operands in reverse order.
class BinaryRevRRF<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls1, RegisterOperand cls2>
: InstRRF<opcode, (outs cls1:$dst), (ins cls2:$src2, cls1:$src1),
mnemonic#"\t$dst, $src1, $src2",
[(set cls1:$dst, (operator cls1:$src1, cls2:$src2))]>;
class BinaryRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
RegisterOperand cls, Immediate imm>
: InstRI<opcode, (outs cls:$dst), (ins cls:$src1, imm:$src2),
mnemonic#"\t$dst, $src2",
[(set cls:$dst, (operator cls:$src1, imm:$src2))]> {
let Constraints = "$src1 = $dst";
let DisableEncoding = "$src1";
}
class BinaryRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
RegisterOperand cls, Immediate imm>
: InstRIL<opcode, (outs cls:$dst), (ins cls:$src1, imm:$src2),
mnemonic#"\t$dst, $src2",
[(set cls:$dst, (operator cls:$src1, imm:$src2))]> {
let Constraints = "$src1 = $dst";
let DisableEncoding = "$src1";
}
class BinaryRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
RegisterOperand cls, SDPatternOperator load,
AddressingMode mode = bdxaddr12only>
: InstRX<opcode, (outs cls:$dst), (ins cls:$src1, mode:$src2),
mnemonic#"\t$dst, $src2",
[(set cls:$dst, (operator cls:$src1, (load mode:$src2)))]> {
let Constraints = "$src1 = $dst";
let DisableEncoding = "$src1";
let mayLoad = 1;
}
class BinaryRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, SDPatternOperator load>
: InstRXE<opcode, (outs cls:$dst), (ins cls:$src1, bdxaddr12only:$src2),
mnemonic#"\t$dst, $src2",
[(set cls:$dst, (operator cls:$src1,
(load bdxaddr12only:$src2)))]> {
let Constraints = "$src1 = $dst";
let DisableEncoding = "$src1";
let mayLoad = 1;
}
class BinaryRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, SDPatternOperator load,
AddressingMode mode = bdxaddr20only>
: InstRXY<opcode, (outs cls:$dst), (ins cls:$src1, mode:$src2),
mnemonic#"\t$dst, $src2",
[(set cls:$dst, (operator cls:$src1, (load mode:$src2)))]> {
let Constraints = "$src1 = $dst";
let DisableEncoding = "$src1";
let mayLoad = 1;
}
multiclass BinaryRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
SDPatternOperator operator, RegisterOperand cls,
SDPatternOperator load> {
let Function = mnemonic ## #cls in {
let PairType = "12" in
def "" : BinaryRX<mnemonic, rxOpcode, operator, cls, load, bdxaddr12pair>;
let PairType = "20" in
def Y : BinaryRXY<mnemonic#"y", rxyOpcode, operator, cls, load,
bdxaddr20pair>;
}
}
class BinarySI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
Operand imm, AddressingMode mode = bdaddr12only>
: InstSI<opcode, (outs), (ins mode:$addr, imm:$src),
mnemonic#"\t$addr, $src",
[(store (operator (load mode:$addr), imm:$src), mode:$addr)]> {
let mayLoad = 1;
let mayStore = 1;
}
class BinarySIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
Operand imm, AddressingMode mode = bdaddr20only>
: InstSIY<opcode, (outs), (ins mode:$addr, imm:$src),
mnemonic#"\t$addr, $src",
[(store (operator (load mode:$addr), imm:$src), mode:$addr)]> {
let mayLoad = 1;
let mayStore = 1;
}
multiclass BinarySIPair<string mnemonic, bits<8> siOpcode,
bits<16> siyOpcode, SDPatternOperator operator,
Operand imm> {
let Function = mnemonic ## #cls in {
let PairType = "12" in
def "" : BinarySI<mnemonic, siOpcode, operator, imm, bdaddr12pair>;
let PairType = "20" in
def Y : BinarySIY<mnemonic#"y", siyOpcode, operator, imm, bdaddr20pair>;
}
}
class ShiftRS<string mnemonic, bits<8> opcode, SDPatternOperator operator,
RegisterOperand cls, AddressingMode mode>
: InstRS<opcode, (outs cls:$dst), (ins cls:$src1, mode:$src2),
mnemonic#"\t$dst, $src2",
[(set cls:$dst, (operator cls:$src1, mode:$src2))]> {
let R3 = 0;
let Constraints = "$src1 = $dst";
let DisableEncoding = "$src1";
}
class ShiftRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, AddressingMode mode>
: InstRSY<opcode, (outs cls:$dst), (ins cls:$src1, mode:$src2),
mnemonic#"\t$dst, $src1, $src2",
[(set cls:$dst, (operator cls:$src1, mode:$src2))]>;
class CompareRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
RegisterOperand cls1, RegisterOperand cls2>
: InstRR<opcode, (outs), (ins cls1:$src1, cls2:$src2),
mnemonic#"\t$src1, $src2",
[(operator cls1:$src1, cls2:$src2)]>;
class CompareRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls1, RegisterOperand cls2>
: InstRRE<opcode, (outs), (ins cls1:$src1, cls2:$src2),
mnemonic#"\t$src1, $src2",
[(operator cls1:$src1, cls2:$src2)]>;
class CompareRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
RegisterOperand cls, Immediate imm>
: InstRI<opcode, (outs), (ins cls:$src1, imm:$src2),
mnemonic#"\t$src1, $src2",
[(operator cls:$src1, imm:$src2)]>;
class CompareRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
RegisterOperand cls, Immediate imm>
: InstRIL<opcode, (outs), (ins cls:$src1, imm:$src2),
mnemonic#"\t$src1, $src2",
[(operator cls:$src1, imm:$src2)]>;
class CompareRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
RegisterOperand cls, SDPatternOperator load>
: InstRIL<opcode, (outs), (ins cls:$src1, pcrel32:$src2),
mnemonic#"\t$src1, $src2",
[(operator cls:$src1, (load pcrel32:$src2))]> {
let mayLoad = 1;
// We want PC-relative addresses to be tried ahead of BD and BDX addresses.
// However, BDXs have two extra operands and are therefore 6 units more
// complex.
let AddedComplexity = 7;
}
class CompareRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
RegisterOperand cls, SDPatternOperator load,
AddressingMode mode = bdxaddr12only>
: InstRX<opcode, (outs), (ins cls:$src1, mode:$src2),
mnemonic#"\t$src1, $src2",
[(operator cls:$src1, (load mode:$src2))]> {
let mayLoad = 1;
}
class CompareRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, SDPatternOperator load>
: InstRXE<opcode, (outs), (ins cls:$src1, bdxaddr12only:$src2),
mnemonic#"\t$src1, $src2",
[(operator cls:$src1, (load bdxaddr12only:$src2))]> {
let mayLoad = 1;
}
class CompareRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, SDPatternOperator load,
AddressingMode mode = bdxaddr20only>
: InstRXY<opcode, (outs), (ins cls:$src1, mode:$src2),
mnemonic#"\t$src1, $src2",
[(operator cls:$src1, (load mode:$src2))]> {
let mayLoad = 1;
}
multiclass CompareRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
SDPatternOperator operator, RegisterOperand cls,
SDPatternOperator load> {
let Function = mnemonic ## #cls in {
let PairType = "12" in
def "" : CompareRX<mnemonic, rxOpcode, operator, cls,
load, bdxaddr12pair>;
let PairType = "20" in
def Y : CompareRXY<mnemonic#"y", rxyOpcode, operator, cls,
load, bdxaddr20pair>;
}
}
class CompareSI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
SDPatternOperator load, Immediate imm,
AddressingMode mode = bdaddr12only>
: InstSI<opcode, (outs), (ins mode:$addr, imm:$src),
mnemonic#"\t$addr, $src",
[(operator (load mode:$addr), imm:$src)]> {
let mayLoad = 1;
}
class CompareSIL<string mnemonic, bits<16> opcode, SDPatternOperator operator,
SDPatternOperator load, Immediate imm>
: InstSIL<opcode, (outs), (ins bdaddr12only:$addr, imm:$src),
mnemonic#"\t$addr, $src",
[(operator (load bdaddr12only:$addr), imm:$src)]> {
let mayLoad = 1;
}
class CompareSIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
SDPatternOperator load, Immediate imm,
AddressingMode mode = bdaddr20only>
: InstSIY<opcode, (outs), (ins mode:$addr, imm:$src),
mnemonic#"\t$addr, $src",
[(operator (load mode:$addr), imm:$src)]> {
let mayLoad = 1;
}
multiclass CompareSIPair<string mnemonic, bits<8> siOpcode, bits<16> siyOpcode,
SDPatternOperator operator, SDPatternOperator load,
Immediate imm> {
let Function = mnemonic in {
let PairType = "12" in
def "" : CompareSI<mnemonic, siOpcode, operator, load, imm, bdaddr12pair>;
let PairType = "20" in
def Y : CompareSIY<mnemonic#"y", siyOpcode, operator, load, imm,
bdaddr20pair>;
}
}
class TernaryRRD<string mnemonic, bits<16> opcode,
SDPatternOperator operator, RegisterOperand cls>
: InstRRD<opcode, (outs cls:$dst), (ins cls:$src1, cls:$src2, cls:$src3),
mnemonic#"\t$dst, $src2, $src3",
[(set cls:$dst, (operator cls:$src1, cls:$src2, cls:$src3))]> {
let Constraints = "$src1 = $dst";
let DisableEncoding = "$src1";
}
class TernaryRXF<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, SDPatternOperator load>
: InstRXF<opcode, (outs cls:$dst),
(ins cls:$src1, cls:$src2, bdxaddr12only:$src3),
mnemonic#"\t$dst, $src2, $src3",
[(set cls:$dst, (operator cls:$src1, cls:$src2,
(load bdxaddr12only:$src3)))]> {
let Constraints = "$src1 = $dst";
let DisableEncoding = "$src1";
let mayLoad = 1;
}
class CmpSwapRS<string mnemonic, bits<8> opcode, SDPatternOperator operator,
RegisterOperand cls, AddressingMode mode = bdaddr12only>
: InstRS<opcode, (outs cls:$dst), (ins cls:$old, cls:$new, mode:$ptr),
mnemonic#"\t$dst, $new, $ptr",
[(set cls:$dst, (operator mode:$ptr, cls:$old, cls:$new))]> {
let Constraints = "$old = $dst";
let DisableEncoding = "$old";
let mayLoad = 1;
let mayStore = 1;
}
class CmpSwapRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, AddressingMode mode = bdaddr20only>
: InstRSY<opcode, (outs cls:$dst), (ins cls:$old, cls:$new, mode:$ptr),
mnemonic#"\t$dst, $new, $ptr",
[(set cls:$dst, (operator mode:$ptr, cls:$old, cls:$new))]> {
let Constraints = "$old = $dst";
let DisableEncoding = "$old";
let mayLoad = 1;
let mayStore = 1;
}
multiclass CmpSwapRSPair<string mnemonic, bits<8> rsOpcode, bits<16> rsyOpcode,
SDPatternOperator operator, RegisterOperand cls> {
let Function = mnemonic ## #cls in {
let PairType = "12" in
def "" : CmpSwapRS<mnemonic, rsOpcode, operator, cls, bdaddr12pair>;
let PairType = "20" in
def Y : CmpSwapRSY<mnemonic#"y", rsyOpcode, operator, cls, bdaddr20pair>;
}
}
class RotateSelectRIEf<string mnemonic, bits<16> opcode, RegisterOperand cls1,
RegisterOperand cls2>
: InstRIEf<opcode, (outs cls1:$dst),
(ins cls1:$src1, cls2:$src2,
uimm8zx6:$imm1, uimm8zx6:$imm2, uimm8zx6:$imm3),
mnemonic#"\t$dst, $src2, $imm1, $imm2, $imm3", []> {
let Constraints = "$src1 = $dst";
let DisableEncoding = "$src1";
}
//===----------------------------------------------------------------------===//
// Pseudo instructions
//===----------------------------------------------------------------------===//
//
// Convenience instructions that get lowered to real instructions
// by either SystemZTargetLowering::EmitInstrWithCustomInserter()
// or SystemZInstrInfo::expandPostRAPseudo().
//
//===----------------------------------------------------------------------===//
class Pseudo<dag outs, dag ins, list<dag> pattern>
: InstSystemZ<0, outs, ins, "", pattern> {
let isPseudo = 1;
let isCodeGenOnly = 1;
}
// Implements "$dst = $cc & (8 >> CC) ? $src1 : $src2", where CC is
// the value of the PSW's 2-bit condition code field.
class SelectWrapper<RegisterOperand cls>
: Pseudo<(outs cls:$dst), (ins cls:$src1, cls:$src2, i8imm:$cc),
[(set cls:$dst, (z_select_ccmask cls:$src1, cls:$src2, imm:$cc))]> {
let usesCustomInserter = 1;
// Although the instructions used by these nodes do not in themselves
// change the PSW, the insertion requires new blocks, and the PSW cannot
// be live across them.
let Defs = [PSW];
let Uses = [PSW];
}
// OPERATOR is ATOMIC_SWAP or an ATOMIC_LOAD_* operation. PAT and OPERAND
// describe the second (non-memory) operand.
class AtomicLoadBinary<SDPatternOperator operator, RegisterOperand cls,
dag pat, DAGOperand operand>
: Pseudo<(outs cls:$dst), (ins bdaddr20only:$ptr, operand:$src2),
[(set cls:$dst, (operator bdaddr20only:$ptr, pat))]> {
let Defs = [PSW];
let Has20BitOffset = 1;
let mayLoad = 1;
let mayStore = 1;
let usesCustomInserter = 1;
}
// Specializations of AtomicLoadWBinary.
class AtomicLoadBinaryReg32<SDPatternOperator operator>
: AtomicLoadBinary<operator, GR32, (i32 GR32:$src2), GR32>;
class AtomicLoadBinaryImm32<SDPatternOperator operator, Immediate imm>
: AtomicLoadBinary<operator, GR32, (i32 imm:$src2), imm>;
class AtomicLoadBinaryReg64<SDPatternOperator operator>
: AtomicLoadBinary<operator, GR64, (i64 GR64:$src2), GR64>;
class AtomicLoadBinaryImm64<SDPatternOperator operator, Immediate imm>
: AtomicLoadBinary<operator, GR64, (i64 imm:$src2), imm>;
// OPERATOR is ATOMIC_SWAPW or an ATOMIC_LOADW_* operation. PAT and OPERAND
// describe the second (non-memory) operand.
class AtomicLoadWBinary<SDPatternOperator operator, dag pat,
DAGOperand operand>
: Pseudo<(outs GR32:$dst),
(ins bdaddr20only:$ptr, operand:$src2, ADDR32:$bitshift,
ADDR32:$negbitshift, uimm32:$bitsize),
[(set GR32:$dst, (operator bdaddr20only:$ptr, pat, ADDR32:$bitshift,
ADDR32:$negbitshift, uimm32:$bitsize))]> {
let Defs = [PSW];
let Has20BitOffset = 1;
let mayLoad = 1;
let mayStore = 1;
let usesCustomInserter = 1;
}
// Specializations of AtomicLoadWBinary.
class AtomicLoadWBinaryReg<SDPatternOperator operator>
: AtomicLoadWBinary<operator, (i32 GR32:$src2), GR32>;
class AtomicLoadWBinaryImm<SDPatternOperator operator, Immediate imm>
: AtomicLoadWBinary<operator, (i32 imm:$src2), imm>;