llvm-6502/include/llvm/PassSupport.h

351 lines
13 KiB
C
Raw Normal View History

//===- llvm/PassSupport.h - Pass Support code -------------------*- C++ -*-===//
//
// This file defines stuff that is used to define and "use" Passes. This file
// is automatically #included by Pass.h, so:
//
// NO .CPP FILES SHOULD INCLUDE THIS FILE DIRECTLY
//
// Instead, #include Pass.h.
//
// This file defines Pass registration code and classes used for it.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_PASS_SUPPORT_H
#define LLVM_PASS_SUPPORT_H
// No need to include Pass.h, we are being included by it!
class TargetData;
class TargetMachine;
//===---------------------------------------------------------------------------
// PassInfo class - An instance of this class exists for every pass known by the
// system, and can be obtained from a live Pass by calling its getPassInfo()
// method. These objects are set up by the RegisterPass<> template, defined
// below.
//
class PassInfo {
const char *PassName; // Nice name for Pass
const char *PassArgument; // Command Line argument to run this pass
const std::type_info &TypeInfo; // type_info object for this Pass class
unsigned char PassType; // Set of enums values below...
Pass *(*NormalCtor)(); // No argument ctor
Pass *(*DataCtor)(const TargetData&);// Ctor taking TargetData object...
public:
// PassType - Define symbolic constants that can be used to test to see if
// this pass should be listed by analyze or opt. Passes can use none, one or
// many of these flags or'd together. It is not legal to combine the
// AnalysisGroup flag with others.
//
enum {
Analysis = 1, Optimization = 2, LLC = 4, AnalysisGroup = 8
};
// PassInfo ctor - Do not call this directly, this should only be invoked
// through RegisterPass.
PassInfo(const char *name, const char *arg, const std::type_info &ti,
unsigned pt, Pass *(*normal)(), Pass *(*data)(const TargetData &))
: PassName(name), PassArgument(arg), TypeInfo(ti), PassType(pt),
NormalCtor(normal), DataCtor(data) {
}
// getPassName - Return the friendly name for the pass, never returns null
const char *getPassName() const { return PassName; }
void setPassName(const char *Name) { PassName = Name; }
// getPassArgument - Return the command line option that may be passed to
// 'opt' that will cause this pass to be run. This will return null if there
// is no argument.
//
const char *getPassArgument() const { return PassArgument; }
// getTypeInfo - Return the type_info object for the pass...
const std::type_info &getTypeInfo() const { return TypeInfo; }
// getPassType - Return the PassType of a pass. Note that this can be several
// different types or'd together. This is _strictly_ for use by opt, analyze
// and llc for deciding which passes to use as command line options.
//
unsigned getPassType() const { return PassType; }
// getNormalCtor - Return a pointer to a function, that when called, creates
// an instance of the pass and returns it. This pointer may be null if there
// is no default constructor for the pass.
Pass *(*getNormalCtor() const)() {
return NormalCtor;
}
void setNormalCtor(Pass *(*Ctor)()) {
NormalCtor = Ctor;
}
// createPass() - Use this
Pass *createPass() const {
assert((PassType != AnalysisGroup || NormalCtor) &&
"No default implementation found for analysis group!");
assert(NormalCtor &&
"Cannot call createPass on PassInfo without default ctor!");
return NormalCtor();
}
// getDataCtor - Return a pointer to a function that creates an instance of
// the pass and returns it. This returns a constructor for a version of the
// pass that takes a TArgetData object as a parameter.
//
Pass *(*getDataCtor() const)(const TargetData &) {
return DataCtor;
}
};
//===---------------------------------------------------------------------------
// RegisterPass<t> template - This template class is used to notify the system
// that a Pass is available for use, and registers it into the internal database
// maintained by the PassManager. Unless this template is used, opt, for
// example will not be able to see the pass and attempts to create the pass will
// fail. This template is used in the follow manner (at global scope, in your
// .cpp file):
//
// static RegisterPass<YourPassClassName> tmp("passopt", "My Pass Name");
//
// This statement will cause your pass to be created by calling the default
// constructor exposed by the pass. If you have a different constructor that
// must be called, create a global constructor function (which takes the
// arguments you need and returns a Pass*) and register your pass like this:
//
// Pass *createMyPass(foo &opt) { return new MyPass(opt); }
// static RegisterPass<PassClassName> tmp("passopt", "My Name", createMyPass);
//
struct RegisterPassBase {
// getPassInfo - Get the pass info for the registered class...
const PassInfo *getPassInfo() const { return PIObj; }
RegisterPassBase() : PIObj(0) {}
~RegisterPassBase() { // Intentionally non-virtual...
if (PIObj) unregisterPass(PIObj);
}
protected:
PassInfo *PIObj; // The PassInfo object for this pass
void registerPass(PassInfo *);
void unregisterPass(PassInfo *);
// setPreservesCFG - Notice that this pass only depends on the CFG, so
// transformations that do not modify the CFG do not invalidate this pass.
//
void setPreservesCFG();
};
template<typename PassName>
Pass *callDefaultCtor() { return new PassName(); }
template<typename PassName>
struct RegisterPass : public RegisterPassBase {
// Register Pass using default constructor...
RegisterPass(const char *PassArg, const char *Name, unsigned PassTy = 0) {
registerPass(new PassInfo(Name, PassArg, typeid(PassName), PassTy,
callDefaultCtor<PassName>, 0));
}
// Register Pass using default constructor explicitly...
RegisterPass(const char *PassArg, const char *Name, unsigned PassTy,
Pass *(*ctor)()) {
registerPass(new PassInfo(Name, PassArg, typeid(PassName), PassTy, ctor,0));
}
// Register Pass using TargetData constructor...
RegisterPass(const char *PassArg, const char *Name, unsigned PassTy,
Pass *(*datactor)(const TargetData &)) {
registerPass(new PassInfo(Name, PassArg, typeid(PassName), PassTy,
0, datactor));
}
// Generic constructor version that has an unknown ctor type...
template<typename CtorType>
RegisterPass(const char *PassArg, const char *Name, unsigned PassTy,
CtorType *Fn) {
registerPass(new PassInfo(Name, PassArg, typeid(PassName), PassTy, 0, 0));
}
};
// RegisterOpt - Register something that is to show up in Opt, this is just a
// shortcut for specifying RegisterPass...
//
template<typename PassName>
struct RegisterOpt : public RegisterPassBase {
RegisterOpt(const char *PassArg, const char *Name) {
registerPass(new PassInfo(Name, PassArg, typeid(PassName),
PassInfo::Optimization,
callDefaultCtor<PassName>, 0));
}
// Register Pass using default constructor explicitly...
RegisterOpt(const char *PassArg, const char *Name, Pass *(*ctor)()) {
registerPass(new PassInfo(Name, PassArg, typeid(PassName),
PassInfo::Optimization, ctor, 0));
}
// Register Pass using TargetData constructor...
RegisterOpt(const char *PassArg, const char *Name,
Pass *(*datactor)(const TargetData &)) {
registerPass(new PassInfo(Name, PassArg, typeid(PassName),
PassInfo::Optimization, 0, datactor));
}
};
// RegisterAnalysis - Register something that is to show up in Analysis, this is
// just a shortcut for specifying RegisterPass... Analyses take a special
// argument that, when set to true, tells the system that the analysis ONLY
// depends on the shape of the CFG, so if a transformation preserves the CFG
// that the analysis is not invalidated.
//
template<typename PassName>
struct RegisterAnalysis : public RegisterPassBase {
RegisterAnalysis(const char *PassArg, const char *Name,
bool CFGOnly = false) {
registerPass(new PassInfo(Name, PassArg, typeid(PassName),
PassInfo::Analysis,
callDefaultCtor<PassName>, 0));
if (CFGOnly)
setPreservesCFG();
}
};
// RegisterLLC - Register something that is to show up in LLC, this is just a
// shortcut for specifying RegisterPass...
//
template<typename PassName>
struct RegisterLLC : public RegisterPassBase {
RegisterLLC(const char *PassArg, const char *Name) {
registerPass(new PassInfo(Name, PassArg, typeid(PassName),
PassInfo::LLC,
callDefaultCtor<PassName>, 0));
}
// Register Pass using default constructor explicitly...
RegisterLLC(const char *PassArg, const char *Name, Pass *(*ctor)()) {
registerPass(new PassInfo(Name, PassArg, typeid(PassName),
PassInfo::LLC, ctor, 0));
}
// Register Pass using TargetData constructor...
RegisterLLC(const char *PassArg, const char *Name,
Pass *(*datactor)(const TargetData &)) {
registerPass(new PassInfo(Name, PassArg, typeid(PassName),
PassInfo::LLC, 0, datactor));
}
// Register Pass using TargetMachine constructor...
RegisterLLC(const char *PassArg, const char *Name,
Pass *(*datactor)(TargetMachine &)) {
registerPass(new PassInfo(Name, PassArg, typeid(PassName),
PassInfo::LLC, 0, 0));
}
};
// RegisterAnalysisGroup - Register a Pass as a member of an analysis _group_.
// Analysis groups are used to define an interface (which need not derive from
// Pass) that is required by passes to do their job. Analysis Groups differ
// from normal analyses because any available implementation of the group will
// be used if it is available.
//
// If no analysis implementing the interface is available, a default
// implementation is created and added. A pass registers itself as the default
// implementation by specifying 'true' as the third template argument of this
// class.
//
// In addition to registering itself as an analysis group member, a pass must
// register itself normally as well. Passes may be members of multiple groups
// and may still be "required" specifically by name.
//
// The actual interface may also be registered as well (by not specifying the
// second template argument). The interface should be registered to associate a
// nice name with the interface.
//
class RegisterAGBase : public RegisterPassBase {
PassInfo *InterfaceInfo;
const PassInfo *ImplementationInfo;
bool isDefaultImplementation;
protected:
RegisterAGBase(const std::type_info &Interface,
const std::type_info *Pass = 0,
bool isDefault = false);
void setGroupName(const char *Name);
public:
~RegisterAGBase();
};
template<typename Interface, typename DefaultImplementationPass = void,
bool Default = false>
struct RegisterAnalysisGroup : public RegisterAGBase {
RegisterAnalysisGroup() : RegisterAGBase(typeid(Interface),
&typeid(DefaultImplementationPass),
Default) {
}
};
// Define a specialization of RegisterAnalysisGroup that is used to set the name
// for the analysis group.
//
template<typename Interface>
struct RegisterAnalysisGroup<Interface, void, false> : public RegisterAGBase {
RegisterAnalysisGroup(const char *Name)
: RegisterAGBase(typeid(Interface)) {
setGroupName(Name);
}
};
//===---------------------------------------------------------------------------
// PassRegistrationListener class - This class is meant to be derived from by
// clients that are interested in which passes get registered and unregistered
// at runtime (which can be because of the RegisterPass constructors being run
// as the program starts up, or may be because a shared object just got loaded).
// Deriving from the PassRegistationListener class automatically registers your
// object to receive callbacks indicating when passes are loaded and removed.
//
struct PassRegistrationListener {
// PassRegistrationListener ctor - Add the current object to the list of
// PassRegistrationListeners...
PassRegistrationListener();
// dtor - Remove object from list of listeners...
virtual ~PassRegistrationListener();
// Callback functions - These functions are invoked whenever a pass is loaded
// or removed from the current executable.
//
virtual void passRegistered(const PassInfo *P) {}
virtual void passUnregistered(const PassInfo *P) {}
// enumeratePasses - Iterate over the registered passes, calling the
// passEnumerate callback on each PassInfo object.
//
void enumeratePasses();
// passEnumerate - Callback function invoked when someone calls
// enumeratePasses on this PassRegistrationListener object.
//
virtual void passEnumerate(const PassInfo *P) {}
};
//===---------------------------------------------------------------------------
// IncludeFile class - This class is used as a hack to make sure that the
// implementation of a header file is included into a tool that uses the header.
// This is solely to overcome problems linking .a files and not getting the
// implementation of passes we need.
//
struct IncludeFile {
IncludeFile(void *);
};
#endif