llvm-6502/lib/Bytecode/Reader/ReaderInternals.h

234 lines
8.2 KiB
C
Raw Normal View History

//===-- ReaderInternals.h - Definitions internal to the reader ---*- C++ -*--=//
//
// This header file defines various stuff that is used by the bytecode reader.
//
//===----------------------------------------------------------------------===//
#ifndef READER_INTERNALS_H
#define READER_INTERNALS_H
#include "llvm/Bytecode/Primitives.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Constant.h"
#include <utility>
#include <map>
// Enable to trace to figure out what the heck is going on when parsing fails
//#define TRACE_LEVEL 10
#if TRACE_LEVEL // ByteCodeReading_TRACEer
#define BCR_TRACE(n, X) \
if (n < TRACE_LEVEL) std::cerr << std::string(n*2, ' ') << X
#else
#define BCR_TRACE(n, X)
#endif
struct RawInst { // The raw fields out of the bytecode stream...
unsigned NumOperands;
unsigned Opcode;
const Type *Ty;
unsigned Arg1, Arg2;
union {
unsigned Arg3;
std::vector<unsigned> *VarArgs; // Contains arg #3,4,5... if NumOperands > 3
};
};
class BytecodeParser : public AbstractTypeUser {
std::string Error; // Error message string goes here...
BytecodeParser(const BytecodeParser &); // DO NOT IMPLEMENT
void operator=(const BytecodeParser &); // DO NOT IMPLEMENT
public:
BytecodeParser() {
// Define this in case we don't see a ModuleGlobalInfo block.
FirstDerivedTyID = Type::FirstDerivedTyID;
}
~BytecodeParser() {
freeState();
}
void freeState() {
freeTable(Values);
freeTable(LateResolveValues);
freeTable(ModuleValues);
}
Module *ParseBytecode(const unsigned char *Buf, const unsigned char *EndBuf,
const std::string &ModuleID);
std::string getError() const { return Error; }
void dump() const {
std::cerr << "BytecodeParser instance!\n";
}
private: // All of this data is transient across calls to ParseBytecode
struct ValueList : public User {
ValueList() : User(Type::TypeTy, Value::TypeVal) {
}
~ValueList() {}
// vector compatibility methods
unsigned size() const { return getNumOperands(); }
void push_back(Value *V) { Operands.push_back(Use(V, this)); }
Value *back() const { return Operands.back(); }
void pop_back() { Operands.pop_back(); }
bool empty() const { return Operands.empty(); }
virtual void print(std::ostream& OS) const {
OS << "Bytecode Reader UseHandle!";
}
};
Module *TheModule; // Current Module being read into...
// Information about the module, extracted from the bytecode revision number.
unsigned char RevisionNum; // The rev # itself
unsigned char FirstDerivedTyID; // First variable index to use for type
bool HasImplicitZeroInitializer; // Is entry 0 of every slot implicity zeros?
bool hasInternalMarkerOnly; // Only types of linkage are intern/external
typedef std::vector<ValueList*> ValueTable;
ValueTable Values, LateResolveValues;
ValueTable ModuleValues;
// GlobalRefs - This maintains a mapping between <Type, Slot #>'s and forward
// references to global values or constants. Such values may be referenced
// before they are defined, and if so, the temporary object that they
// represent is held here.
//
typedef std::map<std::pair<const Type *, unsigned>, Value*> GlobalRefsType;
GlobalRefsType GlobalRefs;
// TypesLoaded - This vector mirrors the Values[TypeTyID] plane. It is used
// to deal with forward references to types.
//
typedef std::vector<PATypeHandle> TypeValuesListTy;
TypeValuesListTy ModuleTypeValues;
TypeValuesListTy FunctionTypeValues;
// When the ModuleGlobalInfo section is read, we create a function object for
// each function in the module. When the function is loaded, this function is
// filled in.
//
std::vector<std::pair<Function*, unsigned> > FunctionSignatureList;
// Constant values are read in after global variables. Because of this, we
// must defer setting the initializers on global variables until after module
// level constants have been read. In the mean time, this list keeps track of
// what we must do.
//
std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
private:
void freeTable(ValueTable &Tab) {
while (!Tab.empty()) {
delete Tab.back();
Tab.pop_back();
}
}
bool ParseModule (const unsigned char * Buf, const unsigned char *End);
bool ParseVersionInfo (const unsigned char *&Buf, const unsigned char *End);
bool ParseModuleGlobalInfo(const unsigned char *&Buf, const unsigned char *E);
bool ParseSymbolTable (const unsigned char *&Buf, const unsigned char *End,
SymbolTable *);
bool ParseFunction (const unsigned char *&Buf, const unsigned char *End);
bool ParseBasicBlock (const unsigned char *&Buf, const unsigned char *End,
BasicBlock *&);
bool ParseInstruction (const unsigned char *&Buf, const unsigned char *End,
Instruction *&, BasicBlock *BB /*HACK*/);
bool ParseRawInst (const unsigned char *&Buf, const unsigned char *End,
RawInst &);
bool ParseGlobalTypes(const unsigned char *&Buf, const unsigned char *EndBuf);
bool ParseConstantPool(const unsigned char *&Buf, const unsigned char *EndBuf,
ValueTable &Tab, TypeValuesListTy &TypeTab);
bool parseConstantValue(const unsigned char *&Buf, const unsigned char *End,
const Type *Ty, Constant *&V);
bool parseTypeConstants(const unsigned char *&Buf,
const unsigned char *EndBuf,
TypeValuesListTy &Tab, unsigned NumEntries);
const Type *parseTypeConstant(const unsigned char *&Buf,
const unsigned char *EndBuf);
Value *getValue(const Type *Ty, unsigned num, bool Create = true);
const Type *getType(unsigned ID);
Constant *getConstantValue(const Type *Ty, unsigned num);
int insertValue(Value *V, ValueTable &Table); // -1 = Failure
void setValueTo(ValueTable &D, unsigned Slot, Value *V);
bool postResolveValues(ValueTable &ValTab);
bool getTypeSlot(const Type *Ty, unsigned &Slot);
// resolve all references to the placeholder (if any) for the given value
void ResolveReferencesToValue(Value *Val, unsigned Slot);
// refineAbstractType - The callback method is invoked when one of the
// elements of TypeValues becomes more concrete...
//
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
};
template<class SuperType>
class PlaceholderDef : public SuperType {
unsigned ID;
PlaceholderDef(); // DO NOT IMPLEMENT
void operator=(const PlaceholderDef &); // DO NOT IMPLEMENT
public:
PlaceholderDef(const Type *Ty, unsigned id) : SuperType(Ty), ID(id) {}
unsigned getID() { return ID; }
};
struct InstPlaceHolderHelper : public Instruction {
InstPlaceHolderHelper(const Type *Ty) : Instruction(Ty, UserOp1, "") {}
virtual const char *getOpcodeName() const { return "placeholder"; }
virtual Instruction *clone() const { abort(); return 0; }
};
struct BBPlaceHolderHelper : public BasicBlock {
BBPlaceHolderHelper(const Type *Ty) : BasicBlock() {
assert(Ty == Type::LabelTy);
}
};
struct ConstantPlaceHolderHelper : public Constant {
ConstantPlaceHolderHelper(const Type *Ty)
: Constant(Ty) {}
virtual bool isNullValue() const { return false; }
};
typedef PlaceholderDef<InstPlaceHolderHelper> ValPHolder;
typedef PlaceholderDef<BBPlaceHolderHelper> BBPHolder;
typedef PlaceholderDef<ConstantPlaceHolderHelper> ConstPHolder;
static inline unsigned getValueIDNumberFromPlaceHolder(Value *Val) {
if (isa<Constant>(Val))
return ((ConstPHolder*)Val)->getID();
// else discriminate by type
switch (Val->getType()->getPrimitiveID()) {
case Type::LabelTyID: return ((BBPHolder*)Val)->getID();
default: return ((ValPHolder*)Val)->getID();
}
}
static inline bool readBlock(const unsigned char *&Buf,
const unsigned char *EndBuf,
unsigned &Type, unsigned &Size) {
#if DEBUG_OUTPUT
bool Result = read(Buf, EndBuf, Type) || read(Buf, EndBuf, Size);
std::cerr << "StartLoc = " << ((unsigned)Buf & 4095)
<< " Type = " << Type << " Size = " << Size << endl;
return Result;
#else
return read(Buf, EndBuf, Type) || read(Buf, EndBuf, Size);
#endif
}
#endif