llvm-6502/lib/Target/X86/X86InstrInfo.td

1039 lines
57 KiB
TableGen
Raw Normal View History

//===- X86InstrInfo.td - Describe the X86 Instruction Set -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the X86 instruction set, defining the instructions, and
// properties of the instructions which are needed for code generation, machine
// code emission, and analysis.
//
//===----------------------------------------------------------------------===//
// *mem - Operand definitions for the funky X86 addressing mode operands.
//
class X86MemOperand<ValueType Ty> : Operand<Ty> {
let NumMIOperands = 4;
let PrintMethod = "printMemoryOperand";
}
def i8mem : X86MemOperand<i8>;
def i16mem : X86MemOperand<i16>;
def i32mem : X86MemOperand<i32>;
def i64mem : X86MemOperand<i64>;
def f32mem : X86MemOperand<f32>;
def f64mem : X86MemOperand<f64>;
def f80mem : X86MemOperand<f80>;
// PCRelative calls need special operand formatting.
let PrintMethod = "printCallOperand" in
def calltarget : Operand<i32>;
// Format specifies the encoding used by the instruction. This is part of the
// ad-hoc solution used to emit machine instruction encodings by our machine
// code emitter.
class Format<bits<5> val> {
bits<5> Value = val;
}
def Pseudo : Format<0>; def RawFrm : Format<1>;
def AddRegFrm : Format<2>; def MRMDestReg : Format<3>;
def MRMDestMem : Format<4>; def MRMSrcReg : Format<5>;
def MRMSrcMem : Format<6>;
def MRM0r : Format<16>; def MRM1r : Format<17>; def MRM2r : Format<18>;
def MRM3r : Format<19>; def MRM4r : Format<20>; def MRM5r : Format<21>;
def MRM6r : Format<22>; def MRM7r : Format<23>;
def MRM0m : Format<24>; def MRM1m : Format<25>; def MRM2m : Format<26>;
def MRM3m : Format<27>; def MRM4m : Format<28>; def MRM5m : Format<29>;
def MRM6m : Format<30>; def MRM7m : Format<31>;
// ImmType - This specifies the immediate type used by an instruction. This is
// part of the ad-hoc solution used to emit machine instruction encodings by our
// machine code emitter.
class ImmType<bits<2> val> {
bits<2> Value = val;
}
def NoImm : ImmType<0>;
def Imm8 : ImmType<1>;
def Imm16 : ImmType<2>;
def Imm32 : ImmType<3>;
// FPFormat - This specifies what form this FP instruction has. This is used by
// the Floating-Point stackifier pass.
class FPFormat<bits<3> val> {
bits<3> Value = val;
}
def NotFP : FPFormat<0>;
def ZeroArgFP : FPFormat<1>;
def OneArgFP : FPFormat<2>;
def OneArgFPRW : FPFormat<3>;
def TwoArgFP : FPFormat<4>;
def CompareFP : FPFormat<5>;
def CondMovFP : FPFormat<6>;
def SpecialFP : FPFormat<7>;
class X86Inst<bits<8> opcod, Format f, ImmType i, dag ops, string AsmStr> : Instruction {
let Namespace = "X86";
bits<8> Opcode = opcod;
Format Form = f;
bits<5> FormBits = Form.Value;
ImmType ImmT = i;
bits<2> ImmTypeBits = ImmT.Value;
dag OperandList = ops;
string AsmString = AsmStr;
//
// Attributes specific to X86 instructions...
//
bit hasOpSizePrefix = 0; // Does this inst have a 0x66 prefix?
bits<4> Prefix = 0; // Which prefix byte does this inst have?
FPFormat FPForm; // What flavor of FP instruction is this?
bits<3> FPFormBits = 0;
}
class Imp<list<Register> uses, list<Register> defs> {
list<Register> Uses = uses;
list<Register> Defs = defs;
}
// Prefix byte classes which are used to indicate to the ad-hoc machine code
// emitter that various prefix bytes are required.
class OpSize { bit hasOpSizePrefix = 1; }
class TB { bits<4> Prefix = 1; }
class REP { bits<4> Prefix = 2; }
class D8 { bits<4> Prefix = 3; }
class D9 { bits<4> Prefix = 4; }
class DA { bits<4> Prefix = 5; }
class DB { bits<4> Prefix = 6; }
class DC { bits<4> Prefix = 7; }
class DD { bits<4> Prefix = 8; }
class DE { bits<4> Prefix = 9; }
class DF { bits<4> Prefix = 10; }
//===----------------------------------------------------------------------===//
// Instruction templates...
class I<bits<8> o, Format f, dag ops, string asm> : X86Inst<o, f, NoImm, ops, asm>;
class Ii8 <bits<8> o, Format f, dag ops, string asm> : X86Inst<o, f, Imm8 , ops, asm>;
class Ii16<bits<8> o, Format f, dag ops, string asm> : X86Inst<o, f, Imm16, ops, asm>;
class Ii32<bits<8> o, Format f, dag ops, string asm> : X86Inst<o, f, Imm32, ops, asm>;
//===----------------------------------------------------------------------===//
// Instruction list...
//
def PHI : I<0, Pseudo, (ops), "PHINODE">; // PHI node.
def NOOP : I<0x90, RawFrm, (ops), "nop">; // nop
def ADJCALLSTACKDOWN : I<0, Pseudo, (ops), "#ADJCALLSTACKDOWN">;
def ADJCALLSTACKUP : I<0, Pseudo, (ops), "#ADJCALLSTACKUP">;
def IMPLICIT_USE : I<0, Pseudo, (ops), "#IMPLICIT_USE">;
def IMPLICIT_DEF : I<0, Pseudo, (ops), "#IMPLICIT_DEF">;
let isTerminator = 1 in
let Defs = [FP0, FP1, FP2, FP3, FP4, FP5, FP6] in
def FP_REG_KILL : I<0, Pseudo, (ops), "#FP_REG_KILL">;
//===----------------------------------------------------------------------===//
// Control Flow Instructions...
//
// Return instruction...
let isTerminator = 1, isReturn = 1, isBarrier = 1 in
def RET : I<0xC3, RawFrm, (ops), "ret">;
// All branches are RawFrm, Void, Branch, and Terminators
let isBranch = 1, isTerminator = 1 in
class IBr<bits<8> opcode, dag ops, string asm> : I<opcode, RawFrm, ops, asm>;
let isBarrier = 1 in
def JMP : IBr<0xE9, (ops i32imm:$dst), "jmp $dst">;
def JB : IBr<0x82, (ops i32imm:$dst), "jb $dst">, TB;
def JAE : IBr<0x83, (ops i32imm:$dst), "jae $dst">, TB;
def JE : IBr<0x84, (ops i32imm:$dst), "je $dst">, TB;
def JNE : IBr<0x85, (ops i32imm:$dst), "jne $dst">, TB;
def JBE : IBr<0x86, (ops i32imm:$dst), "jbe $dst">, TB;
def JA : IBr<0x87, (ops i32imm:$dst), "ja $dst">, TB;
def JS : IBr<0x88, (ops i32imm:$dst), "js $dst">, TB;
def JNS : IBr<0x89, (ops i32imm:$dst), "jns $dst">, TB;
def JL : IBr<0x8C, (ops i32imm:$dst), "jl $dst">, TB;
def JGE : IBr<0x8D, (ops i32imm:$dst), "jge $dst">, TB;
def JLE : IBr<0x8E, (ops i32imm:$dst), "jle $dst">, TB;
def JG : IBr<0x8F, (ops i32imm:$dst), "jg $dst">, TB;
//===----------------------------------------------------------------------===//
// Call Instructions...
//
let isCall = 1 in
// All calls clobber the non-callee saved registers...
let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6] in {
def CALLpcrel32 : I<0xE8, RawFrm, (ops calltarget:$dst), "call $dst">;
def CALL32r : I<0xFF, MRM2r, (ops R32:$dst), "call $dst">;
def CALL32m : I<0xFF, MRM2m, (ops i32mem:$dst), "call $dst">;
}
//===----------------------------------------------------------------------===//
// Miscellaneous Instructions...
//
def LEAVE : I<0xC9, RawFrm,
(ops), "leave">, Imp<[EBP,ESP],[EBP,ESP]>;
def POP32r : I<0x58, AddRegFrm,
(ops R32:$reg), "pop $reg">, Imp<[ESP],[ESP]>;
let isTwoAddress = 1 in // R32 = bswap R32
def BSWAP32r : I<0xC8, AddRegFrm,
(ops R32:$dst, R32:$src), "bswap $dst">, TB;
def XCHG8rr : I<0x86, MRMDestReg, // xchg R8, R8
(ops R8:$src1, R8:$src2), "xchg $src1, $src2">;
def XCHG16rr : I<0x87, MRMDestReg, // xchg R16, R16
(ops R16:$src1, R16:$src2), "xchg $src1, $src2">, OpSize;
def XCHG32rr : I<0x87, MRMDestReg, // xchg R32, R32
(ops R32:$src1, R32:$src2), "xchg $src1, $src2">;
def XCHG8mr : I<0x86, MRMDestMem, (ops i8mem:$src1, R8:$src2), "xchg $src1, $src2">;
def XCHG16mr : I<0x87, MRMDestMem, (ops i16mem:$src1, R16:$src2), "xchg $src1, $src2">, OpSize;
def XCHG32mr : I<0x87, MRMDestMem, (ops i32mem:$src1, R32:$src2), "xchg $src1, $src2">;
def XCHG8rm : I<0x86, MRMSrcMem , (ops R8:$src1, i8mem:$src2), "xchg $src1, $src2">;
def XCHG16rm : I<0x87, MRMSrcMem , (ops R16:$src1, i16mem:$src2), "xchg $src1, $src2">, OpSize;
def XCHG32rm : I<0x87, MRMSrcMem , (ops R32:$src1, i32mem:$src2), "xchg $src1, $src2">;
def LEA16r : I<0x8D, MRMSrcMem, (ops R16:$dst, i32mem:$src), "lea $dst, $src">, OpSize;
def LEA32r : I<0x8D, MRMSrcMem, (ops R32:$dst, i32mem:$src), "lea $dst, $src">;
def REP_MOVSB : I<0xA4, RawFrm, (ops), "rep movsb">,
Imp<[ECX,EDI,ESI], [ECX,EDI,ESI]>, REP;
def REP_MOVSW : I<0xA5, RawFrm, (ops), "rep movsw">,
Imp<[ECX,EDI,ESI], [ECX,EDI,ESI]>, REP, OpSize;
def REP_MOVSD : I<0xA5, RawFrm, (ops), "rep movsd">,
Imp<[ECX,EDI,ESI], [ECX,EDI,ESI]>, REP;
def REP_STOSB : I<0xAA, RawFrm, (ops), "rep stosb">,
Imp<[AL,ECX,EDI], [ECX,EDI]>, REP;
def REP_STOSW : I<0xAB, RawFrm, (ops), "rep stosw">,
Imp<[AX,ECX,EDI], [ECX,EDI]>, REP, OpSize;
def REP_STOSD : I<0xAB, RawFrm, (ops), "rep stosd">,
Imp<[EAX,ECX,EDI], [ECX,EDI]>, REP;
//===----------------------------------------------------------------------===//
// Input/Output Instructions...
//
def IN8rr : I<0xEC, RawFrm, (ops),
"in %AL, %DX">, Imp<[DX], [AL]>;
def IN16rr : I<0xED, RawFrm, (ops),
"in %AX, %DX">, Imp<[DX], [AX]>, OpSize;
def IN32rr : I<0xED, RawFrm, (ops),
"in %EAX, %DX">, Imp<[DX],[EAX]>;
def IN8ri : Ii16<0xE4, RawFrm, (ops i16imm:$port),
"in %AL, $port">, Imp<[], [AL]>;
def IN16ri : Ii16<0xE5, RawFrm, (ops i16imm:$port),
"in %AX, $port">, Imp<[], [AX]>, OpSize;
def IN32ri : Ii16<0xE5, RawFrm, (ops i16imm:$port),
"in %EAX, $port">, Imp<[],[EAX]>;
def OUT8rr : I<0xEE, RawFrm, (ops),
"out %DX, %AL">, Imp<[DX, AL], []>;
def OUT16rr : I<0xEF, RawFrm, (ops),
"out %DX, %AX">, Imp<[DX, AX], []>, OpSize;
def OUT32rr : I<0xEF, RawFrm, (ops),
"out %DX, %EAX">, Imp<[DX, EAX], []>;
def OUT8ir : Ii16<0xE6, RawFrm, (ops i16imm:$port),
"out $port, %AL">, Imp<[AL], []>;
def OUT16ir : Ii16<0xE7, RawFrm, (ops i16imm:$port),
"out $port, %AX">, Imp<[AX], []>, OpSize;
def OUT32ir : Ii16<0xE7, RawFrm, (ops i16imm:$port),
"out $port, %EAX">, Imp<[EAX], []>;
//===----------------------------------------------------------------------===//
// Move Instructions...
//
def MOV8rr : I<0x88, MRMDestReg, (ops R8 :$dst, R8 :$src), "mov $dst, $src">;
def MOV16rr : I<0x89, MRMDestReg, (ops R16:$dst, R16:$src), "mov $dst, $src">, OpSize;
def MOV32rr : I<0x89, MRMDestReg, (ops R32:$dst, R32:$src), "mov $dst, $src">;
def MOV8ri : Ii8 <0xB0, AddRegFrm, (ops R8 :$dst, i8imm :$src), "mov $dst, $src">;
def MOV16ri : Ii16<0xB8, AddRegFrm, (ops R16:$dst, i16imm:$src), "mov $dst, $src">, OpSize;
def MOV32ri : Ii32<0xB8, AddRegFrm, (ops R32:$dst, i32imm:$src), "mov $dst, $src">;
def MOV8mi : Ii8 <0xC6, MRM0m, (ops i8mem :$dst, i8imm :$src), "mov $dst, $src">;
def MOV16mi : Ii16<0xC7, MRM0m, (ops i16mem:$dst, i16imm:$src), "mov $dst, $src">, OpSize;
def MOV32mi : Ii32<0xC7, MRM0m, (ops i32mem:$dst, i32imm:$src), "mov $dst, $src">;
def MOV8rm : I<0x8A, MRMSrcMem, (ops R8 :$dst, i8mem :$src), "mov $dst, $src">;
def MOV16rm : I<0x8B, MRMSrcMem, (ops R16:$dst, i16mem:$src), "mov $dst, $src">, OpSize;
def MOV32rm : I<0x8B, MRMSrcMem, (ops R32:$dst, i32mem:$src), "mov $dst, $src">;
def MOV8mr : I<0x88, MRMDestMem, (ops i8mem :$dst, R8 :$src), "mov $dst, $src">;
def MOV16mr : I<0x89, MRMDestMem, (ops i16mem:$dst, R16:$src), "mov $dst, $src">, OpSize;
def MOV32mr : I<0x89, MRMDestMem, (ops i32mem:$dst, R32:$src), "mov $dst, $src">;
//===----------------------------------------------------------------------===//
// Fixed-Register Multiplication and Division Instructions...
//
// Extra precision multiplication
def MUL8r : I<0xF6, MRM4r, (ops R8:$src), "mul $src">,
Imp<[AL],[AX]>; // AL,AH = AL*R8
def MUL16r : I<0xF7, MRM4r, (ops R16:$src), "mul $src">,
Imp<[AX],[AX,DX]>, OpSize; // AX,DX = AX*R16
def MUL32r : I<0xF7, MRM4r, (ops R32:$src), "mul $src">,
Imp<[EAX],[EAX,EDX]>; // EAX,EDX = EAX*R32
def MUL8m : I<0xF6, MRM4m, (ops i8mem :$src),
"mul $src">, Imp<[AL],[AX]>; // AL,AH = AL*[mem8]
def MUL16m : I<0xF7, MRM4m, (ops i16mem:$src),
"mul $src">, Imp<[AX],[AX,DX]>, OpSize; // AX,DX = AX*[mem16]
def MUL32m : I<0xF7, MRM4m, (ops i32mem:$src),
"mul $src">, Imp<[EAX],[EAX,EDX]>; // EAX,EDX = EAX*[mem32]
// unsigned division/remainder
def DIV8r : I<0xF6, MRM6r, (ops R8:$src), "div $src">,
Imp<[AX],[AX]>; // AX/r8 = AL,AH
def DIV16r : I<0xF7, MRM6r, (ops R16:$src), "div $src">,
Imp<[AX,DX],[AX,DX]>, OpSize; // DX:AX/r16 = AX,DX
def DIV32r : I<0xF7, MRM6r, (ops R32:$src), "div $src">,
Imp<[EAX,EDX],[EAX,EDX]>; // EDX:EAX/r32 = EAX,EDX
def DIV8m : I<0xF6, MRM6m, (ops i8mem:$src), "div $src">, Imp<[AX],[AX]>; // AX/[mem8] = AL,AH
def DIV16m : I<0xF7, MRM6m, (ops i16mem:$src), "div $src">, Imp<[AX,DX],[AX,DX]>, OpSize; // DX:AX/[mem16] = AX,DX
def DIV32m : I<0xF7, MRM6m, (ops i32mem:$src), "div $src">, Imp<[EAX,EDX],[EAX,EDX]>; // EDX:EAX/[mem32] = EAX,EDX
// Signed division/remainder.
def IDIV8r : I<0xF6, MRM7r, (ops R8:$src), "idiv $src">,
Imp<[AX],[AX]>; // AX/r8 = AL,AH
def IDIV16r: I<0xF7, MRM7r, (ops R16:$src), "idiv $src">,
Imp<[AX,DX],[AX,DX]>, OpSize; // DX:AX/r16 = AX,DX
def IDIV32r: I<0xF7, MRM7r, (ops R32:$src), "idiv $src">,
Imp<[EAX,EDX],[EAX,EDX]>; // EDX:EAX/r32 = EAX,EDX
def IDIV8m : I<0xF6, MRM7m, (ops i8mem:$src), "idiv $src">, Imp<[AX],[AX]>; // AX/[mem8] = AL,AH
def IDIV16m: I<0xF7, MRM7m, (ops i16mem:$src), "idiv $src">, Imp<[AX,DX],[AX,DX]>, OpSize; // DX:AX/[mem16] = AX,DX
def IDIV32m: I<0xF7, MRM7m, (ops i32mem:$src), "idiv $src">, Imp<[EAX,EDX],[EAX,EDX]>; // EDX:EAX/[mem32] = EAX,EDX
// Sign-extenders for division.
def CBW : I<0x98, RawFrm, (ops), "cbw">, Imp<[AL],[AH]>; // AX = signext(AL)
def CWD : I<0x99, RawFrm, (ops), "cwd">, Imp<[AX],[DX]>; // DX:AX = signext(AX)
def CDQ : I<0x99, RawFrm, (ops), "cdq">, Imp<[EAX],[EDX]>; // EDX:EAX = signext(EAX)
//===----------------------------------------------------------------------===//
// Two address Instructions...
//
let isTwoAddress = 1 in {
// Conditional moves
def CMOVB16rr : I<0x42, MRMSrcReg, (ops R16:$dst, R16:$src1, R16:$src2),
"cmovb $dst, $src2">, TB, OpSize; // if <u, R16 = R16
def CMOVB16rm : I<0x42, MRMSrcMem, (ops R16:$dst, R16:$src1, i16mem:$src2),
"cmovb $dst, $src2">, TB, OpSize; // if <u, R16 = [mem16]
def CMOVB32rr : I<0x42, MRMSrcReg, (ops R32:$dst, R32:$src1, R32:$src2),
"cmovb $dst, $src2">, TB; // if <u, R32 = R32
def CMOVB32rm : I<0x42, MRMSrcMem, (ops R32:$dst, R32:$src1, i32mem:$src2),
"cmovb $dst, $src2">, TB; // if <u, R32 = [mem32]
def CMOVAE16rr: I<0x43, MRMSrcReg, (ops R16:$dst, R16:$src1, R16:$src2),
"cmovae $dst, $src2">, TB, OpSize; // if >=u, R16 = R16
def CMOVAE16rm: I<0x43, MRMSrcMem, (ops R16:$dst, R16:$src1, i16mem:$src2),
"cmovae $dst, $src2">, TB, OpSize; // if >=u, R16 = [mem16]
def CMOVAE32rr: I<0x43, MRMSrcReg, (ops R32:$dst, R32:$src1, R32:$src2),
"cmovae $dst, $src2">, TB; // if >=u, R32 = R32
def CMOVAE32rm: I<0x43, MRMSrcMem, (ops R32:$dst, R32:$src1, i32mem:$src2),
"cmovae $dst, $src2">, TB; // if >=u, R32 = [mem32]
def CMOVE16rr : I<0x44, MRMSrcReg, (ops R16:$dst, R16:$src1, R16:$src2),
"cmove $dst, $src2">, TB, OpSize; // if ==, R16 = R16
def CMOVE16rm : I<0x44, MRMSrcMem, (ops R16:$dst, R16:$src1, i16mem:$src2),
"cmove $dst, $src2">, TB, OpSize; // if ==, R16 = [mem16]
def CMOVE32rr : I<0x44, MRMSrcReg, (ops R32:$dst, R32:$src1, R32:$src2),
"cmove $dst, $src2">, TB; // if ==, R32 = R32
def CMOVE32rm : I<0x44, MRMSrcMem, (ops R32:$dst, R32:$src1, i32mem:$src2),
"cmove $dst, $src2">, TB; // if ==, R32 = [mem32]
def CMOVNE16rr: I<0x45, MRMSrcReg, (ops R16:$dst, R16:$src1, R16:$src2),
"cmovne $dst, $src2">, TB, OpSize; // if !=, R16 = R16
def CMOVNE16rm: I<0x45, MRMSrcMem, (ops R16:$dst, R16:$src1, i16mem:$src2),
"cmovne $dst, $src2">, TB, OpSize; // if !=, R16 = [mem16]
def CMOVNE32rr: I<0x45, MRMSrcReg, (ops R32:$dst, R32:$src1, R32:$src2),
"cmovne $dst, $src2">, TB; // if !=, R32 = R32
def CMOVNE32rm: I<0x45, MRMSrcMem, (ops R32:$dst, R32:$src1, i32mem:$src2),
"cmovne $dst, $src2">, TB; // if !=, R32 = [mem32]
def CMOVBE16rr: I<0x46, MRMSrcReg, (ops R16:$dst, R16:$src1, R16:$src2),
"cmovbe $dst, $src2">, TB, OpSize; // if <=u, R16 = R16
def CMOVBE16rm: I<0x46, MRMSrcMem, (ops R16:$dst, R16:$src1, i16mem:$src2),
"cmovbe $dst, $src2">, TB, OpSize; // if <=u, R16 = [mem16]
def CMOVBE32rr: I<0x46, MRMSrcReg, (ops R32:$dst, R32:$src1, R32:$src2),
"cmovbe $dst, $src2">, TB; // if <=u, R32 = R32
def CMOVBE32rm: I<0x46, MRMSrcMem, (ops R32:$dst, R32:$src1, i32mem:$src2),
"cmovbe $dst, $src2">, TB; // if <=u, R32 = [mem32]
def CMOVA16rr : I<0x47, MRMSrcReg, (ops R16:$dst, R16:$src1, R16:$src2),
"cmova $dst, $src2">, TB, OpSize; // if >u, R16 = R16
def CMOVA16rm : I<0x47, MRMSrcMem, (ops R16:$dst, R16:$src1, i16mem:$src2),
"cmova $dst, $src2">, TB, OpSize; // if >u, R16 = [mem16]
def CMOVA32rr : I<0x47, MRMSrcReg, (ops R32:$dst, R32:$src1, R32:$src2),
"cmova $dst, $src2">, TB; // if >u, R32 = R32
def CMOVA32rm : I<0x47, MRMSrcMem, (ops R32:$dst, R32:$src1, i32mem:$src2),
"cmova $dst, $src2">, TB; // if >u, R32 = [mem32]
def CMOVS16rr : I<0x48, MRMSrcReg, (ops R16:$dst, R16:$src1, R16:$src2),
"cmovs $dst, $src2">, TB, OpSize; // if signed, R16 = R16
def CMOVS16rm : I<0x48, MRMSrcMem, (ops R16:$dst, R16:$src1, i16mem:$src2),
"cmovs $dst, $src2">, TB, OpSize; // if signed, R16 = [mem16]
def CMOVS32rr : I<0x48, MRMSrcReg, (ops R32:$dst, R32:$src1, R32:$src2),
"cmovs $dst, $src2">, TB; // if signed, R32 = R32
def CMOVS32rm : I<0x48, MRMSrcMem, (ops R32:$dst, R32:$src1, i32mem:$src2),
"cmovs $dst, $src2">, TB; // if signed, R32 = [mem32]
def CMOVNS16rr: I<0x49, MRMSrcReg, (ops R16:$dst, R16:$src1, R16:$src2),
"cmovns $dst, $src2">, TB, OpSize; // if !signed, R16 = R16
def CMOVNS16rm: I<0x49, MRMSrcMem, (ops R16:$dst, R16:$src1, i16mem:$src2),
"cmovns $dst, $src2">, TB, OpSize; // if !signed, R16 = [mem16]
def CMOVNS32rr: I<0x49, MRMSrcReg, (ops R32:$dst, R32:$src1, R32:$src2),
"cmovns $dst, $src2">, TB; // if !signed, R32 = R32
def CMOVNS32rm: I<0x49, MRMSrcMem, (ops R32:$dst, R32:$src1, i32mem:$src2),
"cmovns $dst, $src2">, TB; // if !signed, R32 = [mem32]
def CMOVL16rr : I<0x4C, MRMSrcReg, (ops R16:$dst, R16:$src1, R16:$src2),
"cmovl $dst, $src2">, TB, OpSize; // if <s, R16 = R16
def CMOVL16rm : I<0x4C, MRMSrcMem, (ops R16:$dst, R16:$src1, i16mem:$src2),
"cmovl $dst, $src2">, TB, OpSize; // if <s, R16 = [mem16]
def CMOVL32rr : I<0x4C, MRMSrcReg, (ops R32:$dst, R32:$src1, R32:$src2),
"cmovl $dst, $src2">, TB; // if <s, R32 = R32
def CMOVL32rm : I<0x4C, MRMSrcMem, (ops R32:$dst, R32:$src1, i32mem:$src2),
"cmovl $dst, $src2">, TB; // if <s, R32 = [mem32]
def CMOVGE16rr: I<0x4D, MRMSrcReg, (ops R16:$dst, R16:$src1, R16:$src2),
"cmovge $dst, $src2">, TB, OpSize; // if >=s, R16 = R16
def CMOVGE16rm: I<0x4D, MRMSrcMem, (ops R16:$dst, R16:$src1, i16mem:$src2),
"cmovge $dst, $src2">, TB, OpSize; // if >=s, R16 = [mem16]
def CMOVGE32rr: I<0x4D, MRMSrcReg, (ops R32:$dst, R32:$src1, R32:$src2),
"cmovge $dst, $src2">, TB; // if >=s, R32 = R32
def CMOVGE32rm: I<0x4D, MRMSrcMem, (ops R32:$dst, R32:$src1, i32mem:$src2),
"cmovge $dst, $src2">, TB; // if >=s, R32 = [mem32]
def CMOVLE16rr: I<0x4E, MRMSrcReg, (ops R16:$dst, R16:$src1, R16:$src2),
"cmovle $dst, $src2">, TB, OpSize; // if <=s, R16 = R16
def CMOVLE16rm: I<0x4E, MRMSrcMem, (ops R16:$dst, R16:$src1, i16mem:$src2),
"cmovle $dst, $src2">, TB, OpSize; // if <=s, R16 = [mem16]
def CMOVLE32rr: I<0x4E, MRMSrcReg, (ops R32:$dst, R32:$src1, R32:$src2),
"cmovle $dst, $src2">, TB; // if <=s, R32 = R32
def CMOVLE32rm: I<0x4E, MRMSrcMem, (ops R32:$dst, R32:$src1, i32mem:$src2),
"cmovle $dst, $src2">, TB; // if <=s, R32 = [mem32]
def CMOVG16rr : I<0x4F, MRMSrcReg, (ops R16:$dst, R16:$src1, R16:$src2),
"cmovg $dst, $src2">, TB, OpSize; // if >s, R16 = R16
def CMOVG16rm : I<0x4F, MRMSrcMem, (ops R16:$dst, R16:$src1, i16mem:$src2),
"cmovg $dst, $src2">, TB, OpSize; // if >s, R16 = [mem16]
def CMOVG32rr : I<0x4F, MRMSrcReg, (ops R32:$dst, R32:$src1, R32:$src2),
"cmovg $dst, $src2">, TB; // if >s, R32 = R32
def CMOVG32rm : I<0x4F, MRMSrcMem, (ops R32:$dst, R32:$src1, i32mem:$src2),
"cmovg $dst, $src2">, TB; // if >s, R32 = [mem32]
// unary instructions
def NEG8r : I<0xF6, MRM3r, (ops R8 :$dst, R8 :$src), "neg $dst">;
def NEG16r : I<0xF7, MRM3r, (ops R16:$dst, R16:$src), "neg $dst">, OpSize;
def NEG32r : I<0xF7, MRM3r, (ops R32:$dst, R32:$src), "neg $dst">;
let isTwoAddress = 0 in {
def NEG8m : I<0xF6, MRM3m, (ops i8mem :$dst), "neg $dst">;
def NEG16m : I<0xF7, MRM3m, (ops i16mem:$dst), "neg $dst">, OpSize;
def NEG32m : I<0xF7, MRM3m, (ops i32mem:$dst), "neg $dst">;
}
def NOT8r : I<0xF6, MRM2r, (ops R8 :$dst, R8 :$src), "not $dst">;
def NOT16r : I<0xF7, MRM2r, (ops R16:$dst, R16:$src), "not $dst">, OpSize;
def NOT32r : I<0xF7, MRM2r, (ops R32:$dst, R32:$src), "not $dst">;
let isTwoAddress = 0 in {
def NOT8m : I<0xF6, MRM2m, (ops i8mem :$dst), "not $dst">;
def NOT16m : I<0xF7, MRM2m, (ops i16mem:$dst), "not $dst">, OpSize;
def NOT32m : I<0xF7, MRM2m, (ops i32mem:$dst), "not $dst">;
}
def INC8r : I<0xFE, MRM0r, (ops R8 :$dst, R8 :$src), "inc $dst">;
def INC16r : I<0xFF, MRM0r, (ops R16:$dst, R16:$src), "inc $dst">, OpSize;
def INC32r : I<0xFF, MRM0r, (ops R32:$dst, R32:$src), "inc $dst">;
let isTwoAddress = 0 in {
def INC8m : I<0xFE, MRM0m, (ops i8mem :$dst), "inc $dst">;
def INC16m : I<0xFF, MRM0m, (ops i16mem:$dst), "inc $dst">, OpSize;
def INC32m : I<0xFF, MRM0m, (ops i32mem:$dst), "inc $dst">;
}
def DEC8r : I<0xFE, MRM1r, (ops R8 :$dst, R8 :$src), "dec $dst">;
def DEC16r : I<0xFF, MRM1r, (ops R16:$dst, R16:$src), "dec $dst">, OpSize;
def DEC32r : I<0xFF, MRM1r, (ops R32:$dst, R32:$src), "dec $dst">;
let isTwoAddress = 0 in {
def DEC8m : I<0xFE, MRM1m, (ops i8mem :$dst), "dec $dst">;
def DEC16m : I<0xFF, MRM1m, (ops i16mem:$dst), "dec $dst">, OpSize;
def DEC32m : I<0xFF, MRM1m, (ops i32mem:$dst), "dec $dst">;
}
// Logical operators...
def AND8rr : I<0x20, MRMDestReg, (ops R8 :$dst, R8 :$src1, R8 :$src2), "and $dst, $src2">;
def AND16rr : I<0x21, MRMDestReg, (ops R16:$dst, R16:$src1, R16:$src2), "and $dst, $src2">, OpSize;
def AND32rr : I<0x21, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2), "and $dst, $src2">;
def AND8rm : I<0x22, MRMSrcMem , (ops R8 :$dst, R8 :$src1, i8mem :$src2), "and $dst, $src2">;
def AND16rm : I<0x23, MRMSrcMem , (ops R16:$dst, R16:$src1, i16mem:$src2), "and $dst, $src2">, OpSize;
def AND32rm : I<0x23, MRMSrcMem , (ops R32:$dst, R32:$src1, i32mem:$src2), "and $dst, $src2">;
def AND8ri : Ii8 <0x80, MRM4r, (ops R8 :$dst, R8 :$src1, i8imm :$src2),
"and $dst, $src2">;
def AND16ri : Ii16<0x81, MRM4r, (ops R16:$dst, R16:$src1, i16imm:$src2),
"and $dst, $src2">, OpSize;
def AND32ri : Ii32<0x81, MRM4r, (ops R32:$dst, R32:$src1, i32imm:$src2),
"and $dst, $src2">;
def AND16ri8 : Ii8<0x83, MRM4r, (ops R16:$dst, R16:$src1, i8imm:$src2),
"and $dst, $src2" >, OpSize;
def AND32ri8 : Ii8<0x83, MRM4r, (ops R32:$dst, R32:$src1, i8imm:$src2),
"and $dst, $src2">;
let isTwoAddress = 0 in {
def AND8mr : I<0x20, MRMDestMem, (ops i8mem :$dst, R8 :$src), "and $dst, $src">;
def AND16mr : I<0x21, MRMDestMem, (ops i16mem:$dst, R16:$src), "and $dst, $src">, OpSize;
def AND32mr : I<0x21, MRMDestMem, (ops i32mem:$dst, R32:$src), "and $dst, $src">;
def AND8mi : Ii8 <0x80, MRM4m, (ops i8mem :$dst, i8imm :$src), "and $dst, $src">;
def AND16mi : Ii16<0x81, MRM4m, (ops i16mem:$dst, i16imm:$src), "and $dst, $src">, OpSize;
def AND32mi : Ii32<0x81, MRM4m, (ops i32mem:$dst, i32imm:$src), "and $dst, $src">;
def AND16mi8 : Ii8 <0x83, MRM4m, (ops i16mem:$dst, i8imm :$src), "and $dst, $src">, OpSize;
def AND32mi8 : Ii8 <0x83, MRM4m, (ops i32mem:$dst, i8imm :$src), "and $dst, $src">;
}
def OR8rr : I<0x08, MRMDestReg, (ops R8 :$dst, R8 :$src1, R8 :$src2),
"or $dst, $src2">;
def OR16rr : I<0x09, MRMDestReg, (ops R16:$dst, R16:$src1, R16:$src2),
"or $dst, $src2">, OpSize;
def OR32rr : I<0x09, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2),
"or $dst, $src2">;
def OR8rm : I<0x0A, MRMSrcMem , (ops R8 :$dst, R8 :$src1, i8mem :$src2),
"or $dst, $src2">;
def OR16rm : I<0x0B, MRMSrcMem , (ops R16:$dst, R16:$src1, i16mem:$src2),
"or $dst, $src2">, OpSize;
def OR32rm : I<0x0B, MRMSrcMem , (ops R32:$dst, R32:$src1, i32mem:$src2),
"or $dst, $src2">;
def OR8ri : Ii8 <0x80, MRM1r, (ops R8 :$dst, R8 :$src1, i8imm:$src2),
"or $dst, $src2">;
def OR16ri : Ii16<0x81, MRM1r, (ops R16:$dst, R16:$src1, i16imm:$src2),
"or $dst, $src2">, OpSize;
def OR32ri : Ii32<0x81, MRM1r, (ops R32:$dst, R32:$src1, i32imm:$src2),
"or $dst, $src2">;
def OR16ri8 : Ii8<0x83, MRM1r, (ops R8 :$dst, R8 :$src1, i8imm:$src2),
"or $dst, $src2">, OpSize;
def OR32ri8 : Ii8<0x83, MRM1r, (ops R32:$dst, R32:$src1, i8imm:$src2),
"or $dst, $src2">;
let isTwoAddress = 0 in {
def OR8mr : I<0x08, MRMDestMem, (ops i8mem:$dst, R8:$src),
"or $dst, $src">;
def OR16mr : I<0x09, MRMDestMem, (ops i16mem:$dst, R16:$src),
"or $dst, $src">, OpSize;
def OR32mr : I<0x09, MRMDestMem, (ops i32mem:$dst, R32:$src),
"or $dst, $src">;
def OR8mi : Ii8<0x80, MRM1m, (ops i8mem :$dst, i8imm:$src),
"or $dst, $src">;
def OR16mi : Ii16<0x81, MRM1m, (ops i16mem:$dst, i16imm:$src),
"or $dst, $src">, OpSize;
def OR32mi : Ii32<0x81, MRM1m, (ops i32mem:$dst, i32imm:$src),
"or $dst, $src">;
def OR16mi8 : Ii8<0x83, MRM1m, (ops i16mem:$dst, i8imm:$src),
"or $dst, $src">, OpSize;
def OR32mi8 : Ii8<0x83, MRM1m, (ops i32mem:$dst, i8imm:$src),
"or $dst, $src">;
}
def XOR8rr : I<0x30, MRMDestReg, (ops R8 :$dst, R8 :$src1, R8 :$src2), "xor $dst, $src2">;
def XOR16rr : I<0x31, MRMDestReg, (ops R16:$dst, R16:$src1, R16:$src2), "xor $dst, $src2">, OpSize;
def XOR32rr : I<0x31, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2), "xor $dst, $src2">;
def XOR8rm : I<0x32, MRMSrcMem , (ops R8 :$dst, R8:$src1, i8mem :$src2), "xor $dst, $src2">;
def XOR16rm : I<0x33, MRMSrcMem , (ops R16:$dst, R8:$src1, i16mem:$src2), "xor $dst, $src2">, OpSize;
def XOR32rm : I<0x33, MRMSrcMem , (ops R32:$dst, R8:$src1, i32mem:$src2), "xor $dst, $src2">;
def XOR8ri : Ii8 <0x80, MRM6r, (ops R8:$dst, R8:$src1, i8imm:$src2), "xor $dst, $src2">;
def XOR16ri : Ii16 <0x81, MRM6r, (ops R16:$dst, R16:$src1, i16imm:$src2), "xor $dst, $src2">, OpSize;
def XOR32ri : Ii32 <0x81, MRM6r, (ops R32:$dst, R32:$src1, i32imm:$src2), "xor $dst, $src2">;
def XOR16ri8 : Ii8<0x83, MRM6r, (ops R16:$dst, R16:$src1, i8imm:$src2),
"xor $dst, $src2">, OpSize;
def XOR32ri8 : Ii8<0x83, MRM6r, (ops R32:$dst, R32:$src1, i8imm:$src2),
"xor $dst, $src2">;
let isTwoAddress = 0 in {
def XOR8mr : I<0x30, MRMDestMem, (ops i8mem :$dst, R8 :$src), "xor $dst, $src">;
def XOR16mr : I<0x31, MRMDestMem, (ops i16mem:$dst, R16:$src), "xor $dst, $src">, OpSize;
def XOR32mr : I<0x31, MRMDestMem, (ops i32mem:$dst, R32:$src), "xor $dst, $src">;
def XOR8mi : Ii8 <0x80, MRM6m, (ops i8mem :$dst, i8imm :$src), "xor $dst, $src">;
def XOR16mi : Ii16<0x81, MRM6m, (ops i16mem:$dst, i16imm:$src), "xor $dst, $src">, OpSize;
def XOR32mi : Ii32<0x81, MRM6m, (ops i32mem:$dst, i32imm:$src), "xor $dst, $src">;
def XOR16mi8 : Ii8 <0x83, MRM6m, (ops i16mem:$dst, i8imm :$src), "xor $dst, $src">, OpSize;
def XOR32mi8 : Ii8 <0x83, MRM6m, (ops i32mem:$dst, i8imm :$src), "xor $dst, $src">;
}
// Shift instructions
// FIXME: provide shorter instructions when imm8 == 1
def SHL8rCL : I<0xD2, MRM4r, (ops R8 :$dst, R8 :$src), "shl $dst, %CL">, Imp<[CL],[]>;
def SHL16rCL : I<0xD3, MRM4r, (ops R16:$dst, R16:$src), "shl $dst, %CL">, Imp<[CL],[]>, OpSize;
def SHL32rCL : I<0xD3, MRM4r, (ops R32:$dst, R32:$src), "shl $dst, %CL">, Imp<[CL],[]>;
def SHL8ri : Ii8<0xC0, MRM4r, (ops R8 :$dst, R8 :$src1, i8imm:$src2),
"shl $dst, $src2">;
def SHL16ri : Ii8<0xC1, MRM4r, (ops R16:$dst, R16:$src1, i8imm:$src2),
"shl $dst, $src2">, OpSize;
def SHL32ri : Ii8<0xC1, MRM4r, (ops R32:$dst, R32:$src1, i8imm:$src2),
"shl $dst, $src2">;
let isTwoAddress = 0 in {
def SHL8mCL : I<0xD2, MRM4m, (ops i8mem :$dst), "shl $dst, %CL">, Imp<[CL],[]>;
def SHL16mCL : I<0xD3, MRM4m, (ops i16mem:$dst), "shl $dst, %CL">, Imp<[CL],[]>, OpSize;
def SHL32mCL : I<0xD3, MRM4m, (ops i32mem:$dst), "shl $dst, %CL">, Imp<[CL],[]>;
def SHL8mi : Ii8<0xC0, MRM4m, (ops i8mem :$dst, i8imm:$src), "shl $dst, $src">;
def SHL16mi : Ii8<0xC1, MRM4m, (ops i16mem:$dst, i8imm:$src), "shl $dst, $src">, OpSize;
def SHL32mi : Ii8<0xC1, MRM4m, (ops i32mem:$dst, i8imm:$src), "shl $dst, $src">;
}
def SHR8rCL : I<0xD2, MRM5r, (ops R8 :$dst, R8 :$src), "shr $dst, %CL">, Imp<[CL],[]>;
def SHR16rCL : I<0xD3, MRM5r, (ops R16:$dst, R16:$src), "shr $dst, %CL">, Imp<[CL],[]>, OpSize;
def SHR32rCL : I<0xD3, MRM5r, (ops R32:$dst, R32:$src), "shr $dst, %CL">, Imp<[CL],[]>;
def SHR8ri : Ii8 <0xC0, MRM5r, (ops R8:$dst, R8:$src1, i8imm:$src2), "shr $dst, $src2">;
def SHR16ri : Ii8 <0xC1, MRM5r, (ops R16:$dst, R16:$src1, i8imm:$src2), "shr $dst, $src2">, OpSize;
def SHR32ri : Ii8 <0xC1, MRM5r, (ops R32:$dst, R32:$src1, i8imm:$src2), "shr $dst, $src2">;
let isTwoAddress = 0 in {
def SHR8mCL : I<0xD2, MRM5m, (ops i8mem :$dst), "shr $dst, %CL">, Imp<[CL],[]>;
def SHR16mCL : I<0xD3, MRM5m, (ops i16mem:$dst), "shr $dst, %CL">, Imp<[CL],[]>, OpSize;
def SHR32mCL : I<0xD3, MRM5m, (ops i32mem:$dst), "shr $dst, %CL">, Imp<[CL],[]>;
def SHR8mi : Ii8<0xC0, MRM5m, (ops i8mem :$dst, i8imm:$src), "shr $dst, $src">;
def SHR16mi : Ii8<0xC1, MRM5m, (ops i16mem:$dst, i8imm:$src), "shr $dst, $src">, OpSize;
def SHR32mi : Ii8<0xC1, MRM5m, (ops i32mem:$dst, i8imm:$src), "shr $dst, $src">;
}
def SAR8rCL : I<0xD2, MRM7r, (ops R8 :$dst, R8 :$src), "sar $dst, %CL">, Imp<[CL],[]>;
def SAR16rCL : I<0xD3, MRM7r, (ops R16:$dst, R16:$src), "sar $dst, %CL">, Imp<[CL],[]>, OpSize;
def SAR32rCL : I<0xD3, MRM7r, (ops R32:$dst, R32:$src), "sar $dst, %CL">, Imp<[CL],[]>;
def SAR8ri : Ii8<0xC0, MRM7r, (ops R8 :$dst, R8 :$src1, i8imm:$src2),
"sar $dst, $src2">;
def SAR16ri : Ii8<0xC1, MRM7r, (ops R16:$dst, R16:$src1, i8imm:$src2),
"sar $dst, $src2">, OpSize;
def SAR32ri : Ii8<0xC1, MRM7r, (ops R32:$dst, R32:$src1, i8imm:$src2),
"sar $dst, $src2">;
let isTwoAddress = 0 in {
def SAR8mCL : I<0xD2, MRM7m, (ops i8mem :$dst), "sar $dst, %CL">, Imp<[CL],[]>;
def SAR16mCL : I<0xD3, MRM7m, (ops i16mem:$dst), "sar $dst, %CL">, Imp<[CL],[]>, OpSize;
def SAR32mCL : I<0xD3, MRM7m, (ops i32mem:$dst), "sar $dst, %CL">, Imp<[CL],[]>;
def SAR8mi : Ii8<0xC0, MRM7m, (ops i8mem :$dst, i8imm:$src), "sar $dst, $src">;
def SAR16mi : Ii8<0xC1, MRM7m, (ops i16mem:$dst, i8imm:$src), "sar $dst, $src">, OpSize;
def SAR32mi : Ii8<0xC1, MRM7m, (ops i32mem:$dst, i8imm:$src), "sar $dst, $src">;
}
def SHLD32rrCL : I<0xA5, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2),
"shld $dst, $src2, %CL">, Imp<[CL],[]>, TB;
def SHRD32rrCL : I<0xAD, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2),
"shrd $dst, $src2, %CL">, Imp<[CL],[]>, TB;
def SHLD32rri8 : Ii8<0xA4, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2, i8imm:$src3),
"shld $dst, $src2, $src3">, TB;
def SHRD32rri8 : Ii8<0xAC, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2, i8imm:$src3),
"shrd $dst, $src2, $src3">, TB;
let isTwoAddress = 0 in {
def SHLD32mrCL : I<0xA5, MRMDestMem, (ops i32mem:$dst, R32:$src2),
"shld $dst, $src2, %CL">, Imp<[CL],[]>, TB;
def SHRD32mrCL : I<0xAD, MRMDestMem, (ops i32mem:$dst, R32:$src2),
"shrd $dst, $src2, %CL">, Imp<[CL],[]>, TB;
def SHLD32mri8 : Ii8<0xA4, MRMDestMem, (ops i32mem:$dst, R32:$src2, i8imm:$src3),
"shld $dst, $src2, $src3">, TB;
def SHRD32mri8 : Ii8<0xAC, MRMDestMem, (ops i32mem:$dst, R32:$src2, i8imm:$src3),
"shrd $dst, $src2, $src3">, TB;
}
// Arithmetic...
def ADD8rr : I<0x00, MRMDestReg, (ops R8 :$dst, R8 :$src1, R8 :$src2), "add $dst, $src2">;
def ADD16rr : I<0x01, MRMDestReg, (ops R16:$dst, R16:$src1, R16:$src2), "add $dst, $src2">, OpSize;
def ADD32rr : I<0x01, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2), "add $dst, $src2">;
def ADD8rm : I<0x02, MRMSrcMem, (ops R8 :$dst, R8 :$src1, i8mem :$src2), "add $dst, $src2">;
def ADD16rm : I<0x03, MRMSrcMem, (ops R16:$dst, R16:$src1, i16mem:$src2), "add $dst, $src2">, OpSize;
def ADD32rm : I<0x03, MRMSrcMem, (ops R32:$dst, R32:$src1, i32mem:$src2), "add $dst, $src2">;
def ADD8ri : Ii8 <0x80, MRM0r, (ops R8:$dst, R8:$src1, i8imm:$src2), "add $dst, $src2">;
def ADD16ri : Ii16 <0x81, MRM0r, (ops R16:$dst, R16:$src1, i16imm:$src2), "add $dst, $src2">, OpSize;
def ADD32ri : Ii32 <0x81, MRM0r, (ops R32:$dst, R32:$src1, i32imm:$src2), "add $dst, $src2">;
def ADD16ri8 : Ii8 <0x83, MRM0r, (ops R16:$dst, R16:$src1, i8imm:$src2), "add $dst, $src2">, OpSize;
def ADD32ri8 : Ii8 <0x83, MRM0r, (ops R32:$dst, R32:$src1, i8imm:$src2), "add $dst, $src2">;
let isTwoAddress = 0 in {
def ADD8mr : I<0x00, MRMDestMem, (ops i8mem :$dst, R8 :$src2), "add $dst, $src2">;
def ADD16mr : I<0x01, MRMDestMem, (ops i16mem:$dst, R16:$src2), "add $dst, $src2">, OpSize;
def ADD32mr : I<0x01, MRMDestMem, (ops i32mem:$dst, R32:$src2), "add $dst, $src2">;
def ADD8mi : Ii8 <0x80, MRM0m, (ops i8mem :$dst, i8imm :$src2), "add $dst, $src2">;
def ADD16mi : Ii16<0x81, MRM0m, (ops i16mem:$dst, i16imm:$src2), "add $dst, $src2">, OpSize;
def ADD32mi : Ii32<0x81, MRM0m, (ops i32mem:$dst, i32imm:$src2), "add $dst, $src2">;
def ADD16mi8 : Ii8 <0x83, MRM0m, (ops i16mem:$dst, i8imm :$src2), "add $dst, $src2">, OpSize;
def ADD32mi8 : Ii8 <0x83, MRM0m, (ops i32mem:$dst, i8imm :$src2), "add $dst, $src2">;
}
def ADC32rr : I<0x11, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2), "adc $dst, $src2">;
def ADC32rm : I<0x13, MRMSrcMem , (ops R32:$dst, R32:$src1, i32mem:$src2), "adc $dst, $src2">;
def ADC32ri : Ii32<0x81, MRM2r, (ops R32:$dst, R32:$src1, i32imm:$src2), "adc $dst, $src2">;
def ADC32ri8 : Ii8 <0x83, MRM2r, (ops R32:$dst, R32:$src1, i8imm:$src2), "adc $dst, $src2">;
let isTwoAddress = 0 in {
def ADC32mr : I<0x11, MRMDestMem, (ops i32mem:$dst, R32:$src2), "adc $dst, $src2">;
def ADC32mi : Ii32<0x81, MRM2m, (ops i32mem:$dst, i32imm:$src2), "adc $dst, $src2">;
def ADC32mi8 : Ii8 <0x83, MRM2m, (ops i32mem:$dst, i8imm :$src2), "adc $dst, $src2">;
}
def SUB8rr : I<0x28, MRMDestReg, (ops R8 :$dst, R8 :$src1, R8 :$src2), "sub $dst, $src2">;
def SUB16rr : I<0x29, MRMDestReg, (ops R16:$dst, R16:$src1, R16:$src2), "sub $dst, $src2">, OpSize;
def SUB32rr : I<0x29, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2), "sub $dst, $src2">;
def SUB8rm : I<0x2A, MRMSrcMem, (ops R8 :$dst, R8 :$src1, i8mem :$src2), "sub $dst, $src2">;
def SUB16rm : I<0x2B, MRMSrcMem, (ops R16:$dst, R16:$src1, i16mem:$src2), "sub $dst, $src2">, OpSize;
def SUB32rm : I<0x2B, MRMSrcMem, (ops R32:$dst, R32:$src1, i32mem:$src2), "sub $dst, $src2">;
def SUB8ri : Ii8 <0x80, MRM5r, (ops R8:$dst, R8:$src1, i8imm:$src2),
"sub $dst, $src2">;
def SUB16ri : Ii16<0x81, MRM5r, (ops R16:$dst, R16:$src1, i16imm:$src2),
"sub $dst, $src2">, OpSize;
def SUB32ri : Ii32<0x81, MRM5r, (ops R32:$dst, R32:$src1, i32imm:$src2),
"sub $dst, $src2">;
def SUB16ri8 : Ii8<0x83, MRM5r, (ops R16:$dst, R16:$src1, i8imm:$src2),
"sub $dst, $src2">, OpSize;
def SUB32ri8 : Ii8<0x83, MRM5r, (ops R32:$dst, R32:$src1, i8imm:$src2),
"sub $dst, $src2">;
let isTwoAddress = 0 in {
def SUB8mr : I<0x28, MRMDestMem, (ops i8mem :$dst, R8 :$src2), "sub $dst, $src2">;
def SUB16mr : I<0x29, MRMDestMem, (ops i16mem:$dst, R16:$src2), "sub $dst, $src2">, OpSize;
def SUB32mr : I<0x29, MRMDestMem, (ops i32mem:$dst, R32:$src2), "sub $dst, $src2">;
def SUB8mi : Ii8 <0x80, MRM5m, (ops i8mem :$dst, i8imm:$src2), "sub $dst, $src2">;
def SUB16mi : Ii16<0x81, MRM5m, (ops i16mem:$dst, i16imm:$src2), "sub $dst, $src2">, OpSize;
def SUB32mi : Ii32<0x81, MRM5m, (ops i32mem:$dst, i32imm:$src2), "sub $dst, $src2">;
def SUB16mi8 : Ii8 <0x83, MRM5m, (ops i16mem:$dst, i8imm :$src2), "sub $dst, $src2">, OpSize;
def SUB32mi8 : Ii8 <0x83, MRM5m, (ops i32mem:$dst, i8imm :$src2), "sub $dst, $src2">;
}
def SBB32rr : I<0x19, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2),
"adc $dst, $src2">;
let isTwoAddress = 0 in {
def SBB32mr : I<0x19, MRMDestMem, (ops i32mem:$dst, R32:$src2), "sbb $dst, $src2">;
def SBB32mi : Ii32<0x81, MRM3m, (ops i32mem:$dst, i32imm:$src2), "sbb $dst, $src2">;
def SBB32mi8 : Ii8 <0x83, MRM3m, (ops i32mem:$dst, i8imm :$src2), "sbb $dst, $src2">;
}
def SBB32rm : I<0x1B, MRMSrcMem, (ops R32:$dst, R32:$src1, i32mem:$src2),
"sbb $dst, $src2">;
def SBB32ri : Ii32<0x81, MRM3r, (ops R32:$dst, R32:$src1, i32imm:$src2),
"sbb $dst, $src2">;
def SBB32ri8 : Ii8<0x83, MRM3r, (ops R32:$dst, R32:$src1, i8imm:$src2),
"sbb $dst, $src2">;
def IMUL16rr : I<0xAF, MRMSrcReg, (ops R16:$dst, R16:$src1, R16:$src2), "imul $dst, $src2">, TB, OpSize;
def IMUL32rr : I<0xAF, MRMSrcReg, (ops R32:$dst, R32:$src1, R32:$src2), "imul $dst, $src2">, TB;
def IMUL16rm : I<0xAF, MRMSrcMem, (ops R16:$dst, R16:$src1, i16mem:$src2), "imul $dst, $src2">, TB, OpSize;
def IMUL32rm : I<0xAF, MRMSrcMem, (ops R32:$dst, R32:$src1, i32mem:$src2), "imul $dst, $src2">, TB ;
} // end Two Address instructions
// Suprisingly enough, these are not two address instructions!
def IMUL16rri : Ii16<0x69, MRMSrcReg, (ops R16:$dst, R16:$src1, i16imm:$src2),
"imul $dst, $src1, $src2">, OpSize; // R16 = R16*I16
def IMUL32rri : Ii32<0x69, MRMSrcReg, (ops R32:$dst, R32:$src1, i32imm:$src2),
"imul $dst, $src1, $src2">; // R32 = R32*I32
def IMUL16rri8 : Ii8<0x6B, MRMSrcReg, (ops R16:$dst, R16:$src1, i8imm:$src2),
"imul $dst, $src1, $src2">, OpSize; // R16 = R16*I8
def IMUL32rri8 : Ii8<0x6B, MRMSrcReg, (ops R32:$dst, R32:$src1, i8imm:$src2),
"imul $dst, $src1, $src2">; // R32 = R32*I8
def IMUL16rmi : Ii16<0x69, MRMSrcMem, (ops R32:$dst, i16mem:$src1, i16imm:$src2),
"imul $dst, $src1, $src2">, OpSize; // R16 = [mem16]*I16
def IMUL32rmi : Ii32<0x69, MRMSrcMem, (ops R32:$dst, i32mem:$src1, i32imm:$src2),
"imul $dst, $src1, $src2">; // R32 = [mem32]*I32
def IMUL16rmi8 : Ii8<0x6B, MRMSrcMem, (ops R32:$dst, i16mem:$src1, i8imm :$src2),
"imul $dst, $src1, $src2">, OpSize; // R16 = [mem16]*I8
def IMUL32rmi8 : Ii8<0x6B, MRMSrcMem, (ops R32:$dst, i32mem:$src1, i8imm: $src2),
"imul $dst, $src1, $src2">; // R32 = [mem32]*I8
//===----------------------------------------------------------------------===//
// Test instructions are just like AND, except they don't generate a result.
def TEST8rr : I<0x84, MRMDestReg, (ops R8:$src1, R8:$src2),
"test $src1, $src2">;
def TEST16rr : I<0x85, MRMDestReg, (ops R16:$src1, R16:$src2),
"test $src1, $src2">, OpSize;
def TEST32rr : I<0x85, MRMDestReg, (ops R32:$src1, R32:$src2),
"test $src1, $src2">;
def TEST8mr : I<0x84, MRMDestMem, (ops i8mem :$src1, R8 :$src2),
"test $src1, $src2">;
def TEST16mr : I<0x85, MRMDestMem, (ops i16mem:$src1, R16:$src2),
"test $src1, $src2">, OpSize;
def TEST32mr : I<0x85, MRMDestMem, (ops i32mem:$src1, R32:$src2),
"test $src1, $src2">;
def TEST8rm : I<0x84, MRMSrcMem, (ops R8 :$src1, i8mem :$src2),
"test $src1, $src2">;
def TEST16rm : I<0x85, MRMSrcMem, (ops R16:$src1, i16mem:$src2),
"test $src1, $src2">, OpSize;
def TEST32rm : I<0x85, MRMSrcMem, (ops R32:$src1, i32mem:$src2),
"test $src1, $src2">;
def TEST8ri : Ii8 <0xF6, MRM0r, (ops R8:$dst, i8imm:$src),
"test $dst, $src">; // flags = R8 & imm8
def TEST16ri : Ii16<0xF7, MRM0r, (ops R16:$dst, i16imm:$src),
"test $dst, $src">, OpSize; // flags = R16 & imm16
def TEST32ri : Ii32<0xF7, MRM0r, (ops R32:$dst, i32imm:$src),
"test $dst, $src">; // flags = R32 & imm32
def TEST8mi : Ii8 <0xF6, MRM0m, (ops i32mem:$dst, i8imm:$src),
"test $dst, $src">; // flags = [mem8] & imm8
def TEST16mi : Ii16<0xF7, MRM0m, (ops i16mem:$dst, i16imm:$src),
"test $dst, $src">, OpSize; // flags = [mem16] & imm16
def TEST32mi : Ii32<0xF7, MRM0m, (ops i32mem:$dst, i32imm:$src),
"test $dst, $src">; // flags = [mem32] & imm32
// Condition code ops, incl. set if equal/not equal/...
def SAHF : I<0x9E, RawFrm, (ops), "sahf">, Imp<[AH],[]>; // flags = AH
def LAHF : I<0x9F, RawFrm, (ops), "lahf">, Imp<[],[AH]>; // AH = flags
def SETBr : I<0x92, MRM0r, (ops R8 :$dst), "setb $dst">, TB; // R8 = < unsign
def SETBm : I<0x92, MRM0m, (ops i8mem:$dst), "setb $dst">, TB; // [mem8] = < unsign
def SETAEr : I<0x93, MRM0r, (ops R8 :$dst), "setae $dst">, TB; // R8 = >= unsign
def SETAEm : I<0x93, MRM0m, (ops i8mem:$dst), "setae $dst">, TB; // [mem8] = >= unsign
def SETEr : I<0x94, MRM0r, (ops R8 :$dst), "sete $dst">, TB; // R8 = ==
def SETEm : I<0x94, MRM0m, (ops i8mem:$dst), "sete $dst">, TB; // [mem8] = ==
def SETNEr : I<0x95, MRM0r, (ops R8 :$dst), "setne $dst">, TB; // R8 = !=
def SETNEm : I<0x95, MRM0m, (ops i8mem:$dst), "setne $dst">, TB; // [mem8] = !=
def SETBEr : I<0x96, MRM0r, (ops R8 :$dst), "setbe $dst">, TB; // R8 = <= unsign
def SETBEm : I<0x96, MRM0m, (ops i8mem:$dst), "setbe $dst">, TB; // [mem8] = <= unsign
def SETAr : I<0x97, MRM0r, (ops R8 :$dst), "seta $dst">, TB; // R8 = > signed
def SETAm : I<0x97, MRM0m, (ops i8mem:$dst), "seta $dst">, TB; // [mem8] = > signed
def SETSr : I<0x98, MRM0r, (ops R8 :$dst), "sets $dst">, TB; // R8 = <sign bit>
def SETSm : I<0x98, MRM0m, (ops i8mem:$dst), "sets $dst">, TB; // [mem8] = <sign bit>
def SETNSr : I<0x99, MRM0r, (ops R8 :$dst), "setns $dst">, TB; // R8 = !<sign bit>
def SETNSm : I<0x99, MRM0m, (ops i8mem:$dst), "setns $dst">, TB; // [mem8] = !<sign bit>
def SETPr : I<0x9A, MRM0r, (ops R8 :$dst), "setp $dst">, TB; // R8 = parity
def SETPm : I<0x9A, MRM0m, (ops i8mem:$dst), "setp $dst">, TB; // [mem8] = parity
def SETLr : I<0x9C, MRM0r, (ops R8 :$dst), "setl $dst">, TB; // R8 = < signed
def SETLm : I<0x9C, MRM0m, (ops i8mem:$dst), "setl $dst">, TB; // [mem8] = < signed
def SETGEr : I<0x9D, MRM0r, (ops R8 :$dst), "setge $dst">, TB; // R8 = >= signed
def SETGEm : I<0x9D, MRM0m, (ops i8mem:$dst), "setge $dst">, TB; // [mem8] = >= signed
def SETLEr : I<0x9E, MRM0r, (ops R8 :$dst), "setle $dst">, TB; // R8 = <= signed
def SETLEm : I<0x9E, MRM0m, (ops i8mem:$dst), "setle $dst">, TB; // [mem8] = <= signed
def SETGr : I<0x9F, MRM0r, (ops R8 :$dst), "setg $dst">, TB; // R8 = < signed
def SETGm : I<0x9F, MRM0m, (ops i8mem:$dst), "setg $dst">, TB; // [mem8] = < signed
// Integer comparisons
def CMP8rr : I<0x38, MRMDestReg, (ops R8 :$src1, R8 :$src2), "cmp $src1, $src2">;
def CMP16rr : I<0x39, MRMDestReg, (ops R16:$src1, R16:$src2), "cmp $src1, $src2">, OpSize;
def CMP32rr : I<0x39, MRMDestReg, (ops R32:$src1, R32:$src2), "cmp $src1, $src2">;
def CMP8mr : I<0x38, MRMDestMem, (ops i8mem :$src1, R8 :$src2), "cmp $src1, $src2">;
def CMP16mr : I<0x39, MRMDestMem, (ops i16mem:$src1, R16:$src2), "cmp $src1, $src2">, OpSize;
def CMP32mr : I<0x39, MRMDestMem, (ops i32mem:$src1, R32:$src2), "cmp $src1, $src2">;
def CMP8rm : I<0x3A, MRMSrcMem , (ops R8 :$src1, i8mem :$src2), "cmp $src1, $src2">;
def CMP16rm : I<0x3B, MRMSrcMem , (ops R16:$src1, i16mem:$src2), "cmp $src1, $src2">, OpSize;
def CMP32rm : I<0x3B, MRMSrcMem , (ops R32:$src1, i32mem:$src2), "cmp $src1, $src2">;
def CMP8ri : Ii8 <0x80, MRM7r, (ops R16:$dst, i8imm:$src), "cmp $dst, $src">;
def CMP16ri : Ii16<0x81, MRM7r, (ops R16:$dst, i16imm:$src), "cmp $dst, $src">, OpSize;
def CMP32ri : Ii32<0x81, MRM7r, (ops R32:$dst, i32imm:$src), "cmp $dst, $src">;
def CMP8mi : Ii8 <0x80, MRM7m, (ops i8mem :$dst, i8imm :$src), "cmp $dst, $src">;
def CMP16mi : Ii16<0x81, MRM7m, (ops i16mem:$dst, i16imm:$src), "cmp $dst, $src">, OpSize;
def CMP32mi : Ii32<0x81, MRM7m, (ops i32mem:$dst, i32imm:$src), "cmp $dst, $src">;
// Sign/Zero extenders
def MOVSX16rr8 : I<0xBE, MRMSrcReg, (ops R16:$dst, R8 :$src), "movsx $dst, $src">, TB, OpSize;
def MOVSX32rr8 : I<0xBE, MRMSrcReg, (ops R32:$dst, R8 :$src), "movsx $dst, $src">, TB;
def MOVSX32rr16: I<0xBF, MRMSrcReg, (ops R32:$dst, R16:$src), "movsx $dst, $src">, TB;
def MOVSX16rm8 : I<0xBE, MRMSrcMem, (ops R16:$dst, i8mem :$src), "movsx $dst, $src">, TB, OpSize;
def MOVSX32rm8 : I<0xBE, MRMSrcMem, (ops R32:$dst, i8mem :$src), "movsx $dst, $src">, TB;
def MOVSX32rm16: I<0xBF, MRMSrcMem, (ops R32:$dst, i16mem:$src), "movsx $dst, $src">, TB;
def MOVZX16rr8 : I<0xB6, MRMSrcReg, (ops R16:$dst, R8 :$src), "movzx $dst, $src">, TB, OpSize;
def MOVZX32rr8 : I<0xB6, MRMSrcReg, (ops R32:$dst, R8 :$src), "movzx $dst, $src">, TB;
def MOVZX32rr16: I<0xB7, MRMSrcReg, (ops R32:$dst, R16:$src), "movzx $dst, $src">, TB;
def MOVZX16rm8 : I<0xB6, MRMSrcMem, (ops R16:$dst, i8mem :$src), "movzx $dst, $src">, TB, OpSize;
def MOVZX32rm8 : I<0xB6, MRMSrcMem, (ops R32:$dst, i8mem :$src), "movzx $dst, $src">, TB;
def MOVZX32rm16: I<0xB7, MRMSrcMem, (ops R32:$dst, i16mem:$src), "movzx $dst, $src">, TB;
//===----------------------------------------------------------------------===//
// Floating point support
//===----------------------------------------------------------------------===//
// FIXME: These need to indicate mod/ref sets for FP regs... & FP 'TOP'
// Floating point instruction template
class FPI<bits<8> o, Format F, FPFormat fp, dag ops, string asm>
: X86Inst<o, F, NoImm, ops, asm> {
let FPForm = fp; let FPFormBits = FPForm.Value;
}
// Pseudo instructions for floating point. We use these pseudo instructions
// because they can be expanded by the fp spackifier into one of many different
// forms of instructions for doing these operations. Until the stackifier runs,
// we prefer to be abstract.
def FpMOV : FPI<0, Pseudo, SpecialFP, (ops RFP, RFP), "">; // f1 = fmov f2
def FpADD : FPI<0, Pseudo, TwoArgFP , (ops RFP, RFP, RFP), "">; // f1 = fadd f2, f3
def FpSUB : FPI<0, Pseudo, TwoArgFP , (ops RFP, RFP, RFP), "">; // f1 = fsub f2, f3
def FpMUL : FPI<0, Pseudo, TwoArgFP , (ops RFP, RFP, RFP), "">; // f1 = fmul f2, f3
def FpDIV : FPI<0, Pseudo, TwoArgFP , (ops RFP, RFP, RFP), "">; // f1 = fdiv f2, f3
def FpGETRESULT : FPI<0, Pseudo, SpecialFP, (ops RFP), "">; // FPR = ST(0)
def FpSETRESULT : FPI<0, Pseudo, SpecialFP, (ops RFP), "">; // ST(0) = FPR
// FADD reg, mem: Before stackification, these are represented by: R1 = FADD* R2, [mem]
def FADD32m : FPI<0xD8, MRM0m, OneArgFPRW, (ops f32mem:$src), "fadd $src">; // ST(0) = ST(0) + [mem32real]
def FADD64m : FPI<0xDC, MRM0m, OneArgFPRW, (ops f64mem:$src), "fadd $src">; // ST(0) = ST(0) + [mem64real]
/*
def FIADD16m : FPI<0xDE, MRM0m, OneArgFPRW, (ops i16mem:$src), // ST(0) = ST(0) + [mem16int]
"fiadd $src">;
def FIADD32m : FPI<0xDA, MRM0m, OneArgFPRW, (ops i32mem:$src), // ST(0) = ST(0) + [mem32int]
"fiadd $src">;
*/
// FMUL reg, mem: Before stackification, these are represented by: R1 = FMUL* R2, [mem]
def FMUL32m : FPI<0xD8, MRM1m, OneArgFPRW, (ops f32mem:$src), "fmul $src">; // ST(0) = ST(0) * [mem32real]
def FMUL64m : FPI<0xDC, MRM1m, OneArgFPRW, (ops f64mem:$src), "fmul $src">; // ST(0) = ST(0) * [mem64real]
//def FIMUL16m : FPI16m<"fimul", 0xDE, MRM1m, OneArgFPRW>; // ST(0) = ST(0) * [mem16int]
//def FIMUL32m : FPI32m<"fimul", 0xDA, MRM1m, OneArgFPRW>; // ST(0) = ST(0) * [mem32int]
// FSUB reg, mem: Before stackification, these are represented by: R1 = FSUB* R2, [mem]
def FSUB32m : FPI<0xD8, MRM4m, OneArgFPRW, (ops f32mem:$src), "fsub $src">; // ST(0) = ST(0) - [mem32real]
def FSUB64m : FPI<0xDC, MRM4m, OneArgFPRW, (ops f64mem:$src), "fsub $src">; // ST(0) = ST(0) - [mem64real]
//def FISUB16m : FPI16m<"fisub", 0xDE, MRM4m, OneArgFPRW>; // ST(0) = ST(0) - [mem16int]
//def FISUB32m : FPI32m<"fisub", 0xDA, MRM4m, OneArgFPRW>; // ST(0) = ST(0) - [mem32int]
// FSUBR reg, mem: Before stackification, these are represented by: R1 = FSUBR* R2, [mem]
// Note that the order of operands does not reflect the operation being performed.
def FSUBR32m : FPI<0xD8, MRM5m, OneArgFPRW, (ops f32mem:$src), "fsubr $src">; // ST(0) = [mem32real] - ST(0)
def FSUBR64m : FPI<0xDC, MRM5m, OneArgFPRW, (ops f64mem:$src), "fsubr $src">; // ST(0) = [mem64real] - ST(0)
//def FISUBR16m : FPI16m<"fisubr", 0xDE, MRM5m, OneArgFPRW>; // ST(0) = [mem16int] - ST(0)
//def FISUBR32m : FPI32m<"fisubr", 0xDA, MRM5m, OneArgFPRW>; // ST(0) = [mem32int] - ST(0)
// FDIV reg, mem: Before stackification, these are represented by: R1 = FDIV* R2, [mem]
def FDIV32m : FPI<0xD8, MRM6m, OneArgFPRW, (ops f32mem:$src), "fdiv $src">; // ST(0) = ST(0) / [mem32real]
def FDIV64m : FPI<0xDC, MRM6m, OneArgFPRW, (ops f64mem:$src), "fdiv $src">; // ST(0) = ST(0) / [mem64real]
//def FIDIV16m : FPI16m<"fidiv", 0xDE, MRM6m, OneArgFPRW>; // ST(0) = ST(0) / [mem16int]
//def FIDIV32m : FPI32m<"fidiv", 0xDA, MRM6m, OneArgFPRW>; // ST(0) = ST(0) / [mem32int]
// FDIVR reg, mem: Before stackification, these are represented by: R1 = FDIVR* R2, [mem]
// Note that the order of operands does not reflect the operation being performed.
def FDIVR32m : FPI<0xD8, MRM7m, OneArgFPRW, (ops f32mem:$src), "fdivr $src">; // ST(0) = [mem32real] / ST(0)
def FDIVR64m : FPI<0xDC, MRM7m, OneArgFPRW, (ops f64mem:$src), "fdivr $src">; // ST(0) = [mem64real] / ST(0)
//def FIDIVR16m : FPI16m<"fidivr", 0xDE, MRM7m, OneArgFPRW>; // ST(0) = [mem16int] / ST(0)
//def FIDIVR32m : FPI32m<"fidivr", 0xDA, MRM7m, OneArgFPRW>; // ST(0) = [mem32int] / ST(0)
// Floating point cmovs...
let isTwoAddress = 1, Uses = [ST0], Defs = [ST0] in {
def FCMOVB : FPI<0xC0, AddRegFrm, CondMovFP,
(ops RST:$op), "fcmovb %ST(0), $op">, DA;
def FCMOVBE : FPI<0xD0, AddRegFrm, CondMovFP,
(ops RST:$op), "fcmovbe %ST(0), $op">, DA;
def FCMOVE : FPI<0xC8, AddRegFrm, CondMovFP,
(ops RST:$op), "fcmove %ST(0), $op">, DA;
def FCMOVAE : FPI<0xC0, AddRegFrm, CondMovFP,
(ops RST:$op), "fcmovae %ST(0), $op">, DB;
def FCMOVA : FPI<0xD0, AddRegFrm, CondMovFP,
(ops RST:$op), "fcmova %ST(0), $op">, DB;
def FCMOVNE : FPI<0xC8, AddRegFrm, CondMovFP,
(ops RST:$op), "fcmovne %ST(0), $op">, DB;
}
// Floating point loads & stores...
def FLDrr : FPI<0xC0, AddRegFrm, NotFP, (ops RST:$src), "fld $src">, D9;
def FLD32m : FPI<0xD9, MRM0m, ZeroArgFP, (ops f32mem:$src), "fld $src">;
def FLD64m : FPI<0xDD, MRM0m, ZeroArgFP, (ops f64mem:$src), "fld $src">;
def FLD80m : FPI<0xDB, MRM5m, ZeroArgFP, (ops f80mem:$src), "fld $src">;
def FILD16m : FPI<0xDF, MRM0m, ZeroArgFP, (ops i16mem:$src), "fild $src">;
def FILD32m : FPI<0xDB, MRM0m, ZeroArgFP, (ops i32mem:$src), "fild $src">;
def FILD64m : FPI<0xDF, MRM5m, ZeroArgFP, (ops i64mem:$src), "fild $src">;
def FSTrr : FPI<0xD0, AddRegFrm, NotFP, (ops RST:$op), "fst $op">, DD;
def FSTPrr : FPI<0xD8, AddRegFrm, NotFP, (ops RST:$op), "fstp $op">, DD;
def FST32m : FPI<0xD9, MRM2m, OneArgFP, (ops f32mem:$op), "fst $op">;
def FST64m : FPI<0xDD, MRM2m, OneArgFP, (ops f64mem:$op), "fst $op">;
def FSTP32m : FPI<0xD9, MRM3m, OneArgFP, (ops f32mem:$op), "fstp $op">;
def FSTP64m : FPI<0xDD, MRM3m, OneArgFP, (ops f64mem:$op), "fstp $op">;
def FSTP80m : FPI<0xDB, MRM7m, OneArgFP, (ops f80mem:$op), "fstp $op">;
def FIST16m : FPI<0xDF, MRM2m , OneArgFP, (ops i16mem:$op), "fist $op">;
def FIST32m : FPI<0xDB, MRM2m , OneArgFP, (ops i32mem:$op), "fist $op">;
def FISTP16m : FPI<0xDF, MRM3m , NotFP , (ops i16mem:$op), "fistp $op">;
def FISTP32m : FPI<0xDB, MRM3m , NotFP , (ops i32mem:$op), "fistp $op">;
def FISTP64m : FPI<0xDF, MRM7m , OneArgFP, (ops i64mem:$op), "fistpll $op">;
def FXCH : FPI<0xC8, AddRegFrm, NotFP, (ops RST:$op), "fxch $op">, D9; // fxch ST(i), ST(0)
// Floating point constant loads...
def FLD0 : FPI<0xEE, RawFrm, ZeroArgFP, (ops), "fldz">, D9;
def FLD1 : FPI<0xE8, RawFrm, ZeroArgFP, (ops), "fld1">, D9;
// Unary operations...
def FCHS : FPI<0xE0, RawFrm, OneArgFPRW, (ops), "fchs">, D9; // f1 = fchs f2
def FTST : FPI<0xE4, RawFrm, OneArgFP, (ops), "ftst">, D9; // ftst ST(0)
// Binary arithmetic operations...
class FPST0rInst<bits<8> o, dag ops, string asm> : I<o, AddRegFrm, ops, asm>, D8 {
list<Register> Uses = [ST0];
list<Register> Defs = [ST0];
}
class FPrST0Inst<bits<8> o, dag ops, string asm> : I<o, AddRegFrm, ops, asm>, DC {
list<Register> Uses = [ST0];
}
class FPrST0PInst<bits<8> o, dag ops, string asm> : I<o, AddRegFrm, ops, asm>, DE {
list<Register> Uses = [ST0];
}
def FADDST0r : FPST0rInst <0xC0, (ops RST:$op), "fadd $op">;
def FADDrST0 : FPrST0Inst <0xC0, (ops RST:$op), "fadd $op, %ST(0)">;
def FADDPrST0 : FPrST0PInst<0xC0, (ops RST:$op), "faddp $op">;
def FSUBRST0r : FPST0rInst <0xE8, (ops RST:$op), "fsubr $op">;
def FSUBrST0 : FPrST0Inst <0xE8, (ops RST:$op), "fsub $op, %ST(0)">;
def FSUBPrST0 : FPrST0PInst<0xE8, (ops RST:$op), "fsubp $op">;
def FSUBST0r : FPST0rInst <0xE0, (ops RST:$op), "fsub $op">;
def FSUBRrST0 : FPrST0Inst <0xE0, (ops RST:$op), "fsubr $op, %ST(0)">;
def FSUBRPrST0 : FPrST0PInst<0xE0, (ops RST:$op), "fsubrp $op">;
def FMULST0r : FPST0rInst <0xC8, (ops RST:$op), "fmul $op">;
def FMULrST0 : FPrST0Inst <0xC8, (ops RST:$op), "fmul $op, %ST(0)">;
def FMULPrST0 : FPrST0PInst<0xC8, (ops RST:$op), "fmulp $op">;
def FDIVRST0r : FPST0rInst <0xF8, (ops RST:$op), "fdivr $op">;
def FDIVrST0 : FPrST0Inst <0xF8, (ops RST:$op), "fdiv $op, %ST(0)">;
def FDIVPrST0 : FPrST0PInst<0xF8, (ops RST:$op), "fdivp $op">;
def FDIVST0r : FPST0rInst <0xF0, (ops RST:$op), "fdiv $op">; // ST(0) = ST(0) / ST(i)
def FDIVRrST0 : FPrST0Inst <0xF0, (ops RST:$op), "fdivr $op, %ST(0)">; // ST(i) = ST(0) / ST(i)
def FDIVRPrST0 : FPrST0PInst<0xF0, (ops RST:$op), "fdivrp $op">; // ST(i) = ST(0) / ST(i), pop
// Floating point compares
def FUCOMr : FPI<0xE0, AddRegFrm, CompareFP, (ops RST:$reg),
"fucom $reg">, DD, Imp<[ST0],[]>; // FPSW = compare ST(0) with ST(i)
def FUCOMPr : I<0xE8, AddRegFrm, (ops RST:$reg),
"fucomp $reg">, DD, Imp<[ST0],[]>; // FPSW = compare ST(0) with ST(i), pop
def FUCOMPPr : I<0xE9, RawFrm, (ops),
"fucompp">, DA, Imp<[ST0],[]>; // compare ST(0) with ST(1), pop, pop
def FUCOMIr : FPI<0xE8, AddRegFrm, CompareFP, (ops RST:$reg),
"fucomi %ST(0), $reg">, DB, Imp<[ST0],[]>; // CC = compare ST(0) with ST(i)
def FUCOMIPr : I<0xE8, AddRegFrm, (ops RST:$reg),
"fucomip %ST(0), $reg">, DF, Imp<[ST0],[]>; // CC = compare ST(0) with ST(i), pop
// Floating point flag ops
def FNSTSW8r : I<0xE0, RawFrm, (ops), "fnstsw">, DF, Imp<[],[AX]>; // AX = fp flags
def FNSTCW16m : I<0xD9, MRM7m, (ops i16mem:$dst), "fnstcw $dst">; // [mem16] = X87 control world
def FLDCW16m : I<0xD9, MRM5m, (ops i16mem:$dst), "fldcw $dst">; // X87 control world = [mem16]