2002-11-20 22:28:10 +00:00
|
|
|
//===- BugDriver.cpp - Top-Level BugPoint class implementation ------------===//
|
|
|
|
//
|
|
|
|
// This class contains all of the shared state and information that is used by
|
|
|
|
// the BugPoint tool to track down errors in optimizations. This class is the
|
|
|
|
// main driver class that invokes all sub-functionality.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "BugDriver.h"
|
|
|
|
#include "llvm/Module.h"
|
2003-08-07 21:19:30 +00:00
|
|
|
#include "llvm/Pass.h"
|
2002-11-20 22:28:10 +00:00
|
|
|
#include "llvm/Assembly/Parser.h"
|
2003-08-07 21:19:30 +00:00
|
|
|
#include "llvm/Bytecode/Reader.h"
|
2002-11-20 22:28:10 +00:00
|
|
|
#include "llvm/Transforms/Utils/Linker.h"
|
Major addition to bugpoint: ability to debug code generators (LLC and LLI).
The C backend is assumed correct and is used to generate shared objects to be
loaded by the other two code generators.
LLC debugging should be functional now, LLI needs a few more additions to work,
the major one is renaming of external functions to call the JIT lazy function
resolver.
Bugpoint now has a command-line switch -mode with options 'compile' and
'codegen' to debug appropriate portions of tools.
ExecutionDriver.cpp: Added implementations of AbstractInterpreter for LLC and
GCC, broke out common code within other tools, and added ability to generate C
code with CBE individually, without executing the program, and the GCC tool can
generate executables shared objects or executables.
If no reference output is specified to Bugpoint, it will be generated with CBE,
because it is already assumed to be correct for the purposes of debugging using
this method. As a result, many functions now accept as an optional parameter a
shared object to be loaded in, if specified.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@7293 91177308-0d34-0410-b5e6-96231b3b80d8
2003-07-24 18:17:43 +00:00
|
|
|
#include "Support/CommandLine.h"
|
2003-08-07 21:19:30 +00:00
|
|
|
#include "Support/SystemUtils.h"
|
2002-11-20 22:28:10 +00:00
|
|
|
#include <memory>
|
|
|
|
|
Major addition to bugpoint: ability to debug code generators (LLC and LLI).
The C backend is assumed correct and is used to generate shared objects to be
loaded by the other two code generators.
LLC debugging should be functional now, LLI needs a few more additions to work,
the major one is renaming of external functions to call the JIT lazy function
resolver.
Bugpoint now has a command-line switch -mode with options 'compile' and
'codegen' to debug appropriate portions of tools.
ExecutionDriver.cpp: Added implementations of AbstractInterpreter for LLC and
GCC, broke out common code within other tools, and added ability to generate C
code with CBE individually, without executing the program, and the GCC tool can
generate executables shared objects or executables.
If no reference output is specified to Bugpoint, it will be generated with CBE,
because it is already assumed to be correct for the purposes of debugging using
this method. As a result, many functions now accept as an optional parameter a
shared object to be loaded in, if specified.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@7293 91177308-0d34-0410-b5e6-96231b3b80d8
2003-07-24 18:17:43 +00:00
|
|
|
// Anonymous namespace to define command line options for debugging.
|
|
|
|
//
|
|
|
|
namespace {
|
|
|
|
// Output - The user can specify a file containing the expected output of the
|
|
|
|
// program. If this filename is set, it is used as the reference diff source,
|
|
|
|
// otherwise the raw input run through an interpreter is used as the reference
|
|
|
|
// source.
|
|
|
|
//
|
|
|
|
cl::opt<std::string>
|
|
|
|
OutputFile("output", cl::desc("Specify a reference program output "
|
|
|
|
"(for miscompilation detection)"));
|
|
|
|
|
|
|
|
enum DebugType { DebugCompile, DebugCodegen };
|
|
|
|
cl::opt<DebugType>
|
|
|
|
DebugMode("mode", cl::desc("Debug mode for bugpoint:"), cl::Prefix,
|
|
|
|
cl::values(clEnumValN(DebugCompile, "compile", " Compilation"),
|
|
|
|
clEnumValN(DebugCodegen, "codegen", " Code generation"),
|
|
|
|
0),
|
|
|
|
cl::init(DebugCompile));
|
|
|
|
}
|
|
|
|
|
2003-04-24 17:02:17 +00:00
|
|
|
/// getPassesString - Turn a list of passes into a string which indicates the
|
|
|
|
/// command line options that must be passed to add the passes.
|
|
|
|
///
|
|
|
|
std::string getPassesString(const std::vector<const PassInfo*> &Passes) {
|
|
|
|
std::string Result;
|
|
|
|
for (unsigned i = 0, e = Passes.size(); i != e; ++i) {
|
|
|
|
if (i) Result += " ";
|
|
|
|
Result += "-";
|
|
|
|
Result += Passes[i]->getPassArgument();
|
|
|
|
}
|
|
|
|
return Result;
|
|
|
|
}
|
|
|
|
|
2003-05-03 02:16:43 +00:00
|
|
|
// DeleteFunctionBody - "Remove" the function by deleting all of its basic
|
2003-04-24 22:23:34 +00:00
|
|
|
// blocks, making it external.
|
|
|
|
//
|
|
|
|
void DeleteFunctionBody(Function *F) {
|
|
|
|
// First, break circular use/def chain references...
|
|
|
|
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
|
|
|
|
I->dropAllReferences();
|
|
|
|
|
|
|
|
// Next, delete all of the basic blocks.
|
|
|
|
F->getBasicBlockList().clear();
|
2003-04-24 22:53:01 +00:00
|
|
|
F->setLinkage(GlobalValue::ExternalLinkage);
|
2003-04-24 22:23:34 +00:00
|
|
|
assert(F->isExternal() && "This didn't make the function external!");
|
|
|
|
}
|
2003-04-24 17:02:17 +00:00
|
|
|
|
Major addition to bugpoint: ability to debug code generators (LLC and LLI).
The C backend is assumed correct and is used to generate shared objects to be
loaded by the other two code generators.
LLC debugging should be functional now, LLI needs a few more additions to work,
the major one is renaming of external functions to call the JIT lazy function
resolver.
Bugpoint now has a command-line switch -mode with options 'compile' and
'codegen' to debug appropriate portions of tools.
ExecutionDriver.cpp: Added implementations of AbstractInterpreter for LLC and
GCC, broke out common code within other tools, and added ability to generate C
code with CBE individually, without executing the program, and the GCC tool can
generate executables shared objects or executables.
If no reference output is specified to Bugpoint, it will be generated with CBE,
because it is already assumed to be correct for the purposes of debugging using
this method. As a result, many functions now accept as an optional parameter a
shared object to be loaded in, if specified.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@7293 91177308-0d34-0410-b5e6-96231b3b80d8
2003-07-24 18:17:43 +00:00
|
|
|
BugDriver::BugDriver(const char *toolname)
|
|
|
|
: ToolName(toolname), ReferenceOutputFile(OutputFile),
|
2003-07-24 21:59:10 +00:00
|
|
|
Program(0), Interpreter(0), cbe(0), gcc(0) {}
|
Major addition to bugpoint: ability to debug code generators (LLC and LLI).
The C backend is assumed correct and is used to generate shared objects to be
loaded by the other two code generators.
LLC debugging should be functional now, LLI needs a few more additions to work,
the major one is renaming of external functions to call the JIT lazy function
resolver.
Bugpoint now has a command-line switch -mode with options 'compile' and
'codegen' to debug appropriate portions of tools.
ExecutionDriver.cpp: Added implementations of AbstractInterpreter for LLC and
GCC, broke out common code within other tools, and added ability to generate C
code with CBE individually, without executing the program, and the GCC tool can
generate executables shared objects or executables.
If no reference output is specified to Bugpoint, it will be generated with CBE,
because it is already assumed to be correct for the purposes of debugging using
this method. As a result, many functions now accept as an optional parameter a
shared object to be loaded in, if specified.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@7293 91177308-0d34-0410-b5e6-96231b3b80d8
2003-07-24 18:17:43 +00:00
|
|
|
|
|
|
|
|
2002-11-20 22:28:10 +00:00
|
|
|
/// ParseInputFile - Given a bytecode or assembly input filename, parse and
|
|
|
|
/// return it, or return null if not possible.
|
|
|
|
///
|
|
|
|
Module *BugDriver::ParseInputFile(const std::string &InputFilename) const {
|
|
|
|
Module *Result = 0;
|
|
|
|
try {
|
|
|
|
Result = ParseBytecodeFile(InputFilename);
|
|
|
|
if (!Result && !(Result = ParseAssemblyFile(InputFilename))){
|
|
|
|
std::cerr << ToolName << ": could not read input file '"
|
|
|
|
<< InputFilename << "'!\n";
|
|
|
|
}
|
|
|
|
} catch (const ParseException &E) {
|
|
|
|
std::cerr << ToolName << ": " << E.getMessage() << "\n";
|
|
|
|
Result = 0;
|
|
|
|
}
|
|
|
|
return Result;
|
|
|
|
}
|
|
|
|
|
|
|
|
// This method takes the specified list of LLVM input files, attempts to load
|
2003-05-23 05:34:32 +00:00
|
|
|
// them, either as assembly or bytecode, then link them together. It returns
|
|
|
|
// true on failure (if, for example, an input bytecode file could not be
|
|
|
|
// parsed), and false on success.
|
2002-11-20 22:28:10 +00:00
|
|
|
//
|
|
|
|
bool BugDriver::addSources(const std::vector<std::string> &Filenames) {
|
|
|
|
assert(Program == 0 && "Cannot call addSources multiple times!");
|
|
|
|
assert(!Filenames.empty() && "Must specify at least on input filename!");
|
|
|
|
|
|
|
|
// Load the first input file...
|
|
|
|
Program = ParseInputFile(Filenames[0]);
|
|
|
|
if (Program == 0) return true;
|
|
|
|
std::cout << "Read input file : '" << Filenames[0] << "'\n";
|
|
|
|
|
|
|
|
for (unsigned i = 1, e = Filenames.size(); i != e; ++i) {
|
|
|
|
std::auto_ptr<Module> M(ParseInputFile(Filenames[i]));
|
|
|
|
if (M.get() == 0) return true;
|
|
|
|
|
|
|
|
std::cout << "Linking in input file: '" << Filenames[i] << "'\n";
|
|
|
|
std::string ErrorMessage;
|
|
|
|
if (LinkModules(Program, M.get(), &ErrorMessage)) {
|
|
|
|
std::cerr << ToolName << ": error linking in '" << Filenames[i] << "': "
|
|
|
|
<< ErrorMessage << "\n";
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
std::cout << "*** All input ok\n";
|
|
|
|
|
|
|
|
// All input files read successfully!
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/// run - The top level method that is invoked after all of the instance
|
|
|
|
/// variables are set up from command line arguments.
|
|
|
|
///
|
|
|
|
bool BugDriver::run() {
|
|
|
|
// The first thing that we must do is determine what the problem is. Does the
|
|
|
|
// optimization series crash the compiler, or does it produce illegal code? We
|
|
|
|
// make the top-level decision by trying to run all of the passes on the the
|
|
|
|
// input program, which should generate a bytecode file. If it does generate
|
|
|
|
// a bytecode file, then we know the compiler didn't crash, so try to diagnose
|
|
|
|
// a miscompilation.
|
|
|
|
//
|
|
|
|
std::cout << "Running selected passes on program to test for crash: ";
|
|
|
|
if (runPasses(PassesToRun))
|
|
|
|
return debugCrash();
|
Major addition to bugpoint: ability to debug code generators (LLC and LLI).
The C backend is assumed correct and is used to generate shared objects to be
loaded by the other two code generators.
LLC debugging should be functional now, LLI needs a few more additions to work,
the major one is renaming of external functions to call the JIT lazy function
resolver.
Bugpoint now has a command-line switch -mode with options 'compile' and
'codegen' to debug appropriate portions of tools.
ExecutionDriver.cpp: Added implementations of AbstractInterpreter for LLC and
GCC, broke out common code within other tools, and added ability to generate C
code with CBE individually, without executing the program, and the GCC tool can
generate executables shared objects or executables.
If no reference output is specified to Bugpoint, it will be generated with CBE,
because it is already assumed to be correct for the purposes of debugging using
this method. As a result, many functions now accept as an optional parameter a
shared object to be loaded in, if specified.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@7293 91177308-0d34-0410-b5e6-96231b3b80d8
2003-07-24 18:17:43 +00:00
|
|
|
|
|
|
|
std::cout << "Checking for a miscompilation...\n";
|
|
|
|
|
|
|
|
// Set up the execution environment, selecting a method to run LLVM bytecode.
|
|
|
|
if (initializeExecutionEnvironment()) return true;
|
|
|
|
|
|
|
|
// Run the raw input to see where we are coming from. If a reference output
|
|
|
|
// was specified, make sure that the raw output matches it. If not, it's a
|
|
|
|
// problem in the front-end or the code generator.
|
|
|
|
//
|
|
|
|
bool CreatedOutput = false, Result;
|
|
|
|
if (ReferenceOutputFile.empty()) {
|
|
|
|
std::cout << "Generating reference output from raw program...";
|
|
|
|
if (DebugCodegen) {
|
|
|
|
ReferenceOutputFile = executeProgramWithCBE("bugpoint.reference.out");
|
|
|
|
} else {
|
|
|
|
ReferenceOutputFile = executeProgram("bugpoint.reference.out");
|
|
|
|
}
|
|
|
|
CreatedOutput = true;
|
|
|
|
std::cout << "Reference output is: " << ReferenceOutputFile << "\n";
|
|
|
|
}
|
|
|
|
|
|
|
|
if (DebugMode == DebugCompile) {
|
|
|
|
std::cout << "\n*** Debugging miscompilation!\n";
|
|
|
|
Result = debugMiscompilation();
|
|
|
|
} else if (DebugMode == DebugCodegen) {
|
|
|
|
std::cout << "Debugging code generator problem!\n";
|
|
|
|
Result = debugCodeGenerator();
|
|
|
|
}
|
|
|
|
|
|
|
|
if (CreatedOutput) removeFile(ReferenceOutputFile);
|
|
|
|
return Result;
|
|
|
|
}
|
|
|
|
|
|
|
|
void BugDriver::PrintFunctionList(const std::vector<Function*> &Funcs)
|
|
|
|
{
|
|
|
|
for (unsigned i = 0, e = Funcs.size(); i != e; ++i) {
|
|
|
|
if (i) std::cout << ", ";
|
|
|
|
std::cout << Funcs[i]->getName();
|
|
|
|
}
|
2002-11-20 22:28:10 +00:00
|
|
|
}
|