llvm-6502/lib/DebugInfo/DWARFDebugAranges.cpp

211 lines
6.8 KiB
C++
Raw Normal View History

//===-- DWARFDebugAranges.cpp -----------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "DWARFDebugAranges.h"
#include "DWARFCompileUnit.h"
#include "DWARFContext.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
using namespace llvm;
// Compare function DWARFDebugAranges::Range structures
static bool RangeLessThan(const DWARFDebugAranges::Range &range1,
const DWARFDebugAranges::Range &range2) {
return range1.LoPC < range2.LoPC;
}
namespace {
class CountArangeDescriptors {
public:
CountArangeDescriptors(uint32_t &count_ref) : Count(count_ref) {}
void operator()(const DWARFDebugArangeSet &set) {
Count += set.getNumDescriptors();
}
uint32_t &Count;
};
class AddArangeDescriptors {
public:
AddArangeDescriptors(DWARFDebugAranges::RangeColl &ranges)
: RangeCollection(ranges) {}
void operator()(const DWARFDebugArangeSet& set) {
const DWARFDebugArangeSet::Descriptor* arange_desc_ptr;
DWARFDebugAranges::Range range;
range.Offset = set.getCompileUnitDIEOffset();
for (uint32_t i=0; (arange_desc_ptr = set.getDescriptor(i)) != NULL; ++i){
range.LoPC = arange_desc_ptr->Address;
range.Length = arange_desc_ptr->Length;
// Insert each item in increasing address order so binary searching
// can later be done!
DWARFDebugAranges::RangeColl::iterator insert_pos =
std::lower_bound(RangeCollection.begin(), RangeCollection.end(),
range, RangeLessThan);
RangeCollection.insert(insert_pos, range);
}
}
DWARFDebugAranges::RangeColl& RangeCollection;
};
}
bool DWARFDebugAranges::extract(DataExtractor debug_aranges_data) {
if (debug_aranges_data.isValidOffset(0)) {
uint32_t offset = 0;
typedef std::vector<DWARFDebugArangeSet> SetCollection;
typedef SetCollection::const_iterator SetCollectionIter;
SetCollection sets;
DWARFDebugArangeSet set;
Range range;
while (set.extract(debug_aranges_data, &offset))
sets.push_back(set);
uint32_t count = 0;
std::for_each(sets.begin(), sets.end(), CountArangeDescriptors(count));
if (count > 0) {
Aranges.reserve(count);
AddArangeDescriptors range_adder(Aranges);
std::for_each(sets.begin(), sets.end(), range_adder);
}
}
return false;
}
void DWARFDebugAranges::dump(raw_ostream &OS) const {
const uint32_t num_ranges = getNumRanges();
for (uint32_t i = 0; i < num_ranges; ++i) {
const Range &range = Aranges[i];
OS << format("0x%8.8x: [0x%8.8llx - 0x%8.8llx)", range.Offset,
(uint64_t)range.LoPC, (uint64_t)range.HiPC());
}
}
void DWARFDebugAranges::Range::dump(raw_ostream &OS) const {
OS << format("{0x%8.8x}: [0x%8.8llx - 0x%8.8llx)\n", Offset, LoPC, HiPC());
}
void DWARFDebugAranges::appendRange(uint32_t offset, uint64_t low_pc,
uint64_t high_pc) {
if (!Aranges.empty()) {
if (Aranges.back().Offset == offset && Aranges.back().HiPC() == low_pc) {
Aranges.back().setHiPC(high_pc);
return;
}
}
Aranges.push_back(Range(low_pc, high_pc, offset));
}
void DWARFDebugAranges::sort(bool minimize, uint32_t n) {
const size_t orig_arange_size = Aranges.size();
// Size of one? If so, no sorting is needed
if (orig_arange_size <= 1)
return;
// Sort our address range entries
std::stable_sort(Aranges.begin(), Aranges.end(), RangeLessThan);
if (!minimize)
return;
// Most address ranges are contiguous from function to function
// so our new ranges will likely be smaller. We calculate the size
// of the new ranges since although std::vector objects can be resized,
// the will never reduce their allocated block size and free any excesss
// memory, so we might as well start a brand new collection so it is as
// small as possible.
// First calculate the size of the new minimal arange vector
// so we don't have to do a bunch of re-allocations as we
// copy the new minimal stuff over to the new collection.
size_t minimal_size = 1;
for (size_t i = 1; i < orig_arange_size; ++i) {
if (!Range::SortedOverlapCheck(Aranges[i-1], Aranges[i], n))
++minimal_size;
}
// If the sizes are the same, then no consecutive aranges can be
// combined, we are done.
if (minimal_size == orig_arange_size)
return;
// Else, make a new RangeColl that _only_ contains what we need.
RangeColl minimal_aranges;
minimal_aranges.resize(minimal_size);
uint32_t j = 0;
minimal_aranges[j] = Aranges[0];
for (size_t i = 1; i < orig_arange_size; ++i) {
if(Range::SortedOverlapCheck (minimal_aranges[j], Aranges[i], n)) {
minimal_aranges[j].setHiPC (Aranges[i].HiPC());
} else {
// Only increment j if we aren't merging
minimal_aranges[++j] = Aranges[i];
}
}
assert (j+1 == minimal_size);
// Now swap our new minimal aranges into place. The local
// minimal_aranges will then contian the old big collection
// which will get freed.
minimal_aranges.swap(Aranges);
}
uint32_t DWARFDebugAranges::findAddress(uint64_t address) const {
if (!Aranges.empty()) {
Range range(address);
RangeCollIterator begin = Aranges.begin();
RangeCollIterator end = Aranges.end();
RangeCollIterator pos = lower_bound(begin, end, range, RangeLessThan);
if (pos != end && pos->LoPC <= address && address < pos->HiPC()) {
return pos->Offset;
} else if (pos != begin) {
--pos;
if (pos->LoPC <= address && address < pos->HiPC())
return (*pos).Offset;
}
}
return -1U;
}
bool
DWARFDebugAranges::allRangesAreContiguous(uint64_t &LoPC, uint64_t &HiPC) const{
if (Aranges.empty())
return false;
uint64_t next_addr = 0;
RangeCollIterator begin = Aranges.begin();
for (RangeCollIterator pos = begin, end = Aranges.end(); pos != end;
++pos) {
if (pos != begin && pos->LoPC != next_addr)
return false;
next_addr = pos->HiPC();
}
// We checked for empty at the start of function so front() will be valid.
LoPC = Aranges.front().LoPC;
// We checked for empty at the start of function so back() will be valid.
HiPC = Aranges.back().HiPC();
return true;
}
bool DWARFDebugAranges::getMaxRange(uint64_t &LoPC, uint64_t &HiPC) const {
if (Aranges.empty())
return false;
// We checked for empty at the start of function so front() will be valid.
LoPC = Aranges.front().LoPC;
// We checked for empty at the start of function so back() will be valid.
HiPC = Aranges.back().HiPC();
return true;
}