2005-04-25 03:59:26 +00:00
//===- SimplifyLibCalls.cpp - Optimize specific well-known library calls --===//
2005-04-25 02:53:12 +00:00
//
// The LLVM Compiler Infrastructure
//
2005-04-25 03:59:26 +00:00
// This file was developed by Reid Spencer and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
2005-04-25 02:53:12 +00:00
//
//===----------------------------------------------------------------------===//
//
// This file implements a variety of small optimizations for calls to specific
// well-known (e.g. runtime library) function calls. For example, a call to the
// function "exit(3)" that occurs within the main() function can be transformed
2005-04-25 03:59:26 +00:00
// into a simple "return 3" instruction. Any optimization that takes this form
// (replace call to library function with simpler code that provides same
// result) belongs in this file.
2005-04-25 02:53:12 +00:00
//
//===----------------------------------------------------------------------===//
2005-04-26 23:05:17 +00:00
# define DEBUG_TYPE "simplify-libcalls"
2005-04-25 21:11:48 +00:00
# include "llvm/Constants.h"
2005-04-26 23:02:16 +00:00
# include "llvm/DerivedTypes.h"
2005-04-25 02:53:12 +00:00
# include "llvm/Instructions.h"
2005-04-26 23:02:16 +00:00
# include "llvm/Module.h"
# include "llvm/Pass.h"
2005-04-25 03:59:26 +00:00
# include "llvm/ADT/hash_map"
2005-04-26 23:02:16 +00:00
# include "llvm/ADT/Statistic.h"
# include "llvm/Support/Debug.h"
2005-04-26 19:13:17 +00:00
# include "llvm/Target/TargetData.h"
2005-04-26 23:02:16 +00:00
# include "llvm/Transforms/IPO.h"
2005-04-25 21:11:48 +00:00
# include <iostream>
2005-04-25 02:53:12 +00:00
using namespace llvm ;
namespace {
2005-04-27 00:05:45 +00:00
2005-04-27 07:54:40 +00:00
/// This statistic keeps track of the total number of library calls that have
/// been simplified regardless of which call it is.
Statistic < > SimplifiedLibCalls ( " simplify-libcalls " ,
" Number of well-known library calls simplified " ) ;
/// @brief The list of optimizations deriving from LibCallOptimization
class LibCallOptimization ;
class SimplifyLibCalls ;
hash_map < std : : string , LibCallOptimization * > optlist ;
/// This class is the abstract base class for the set of optimizations that
/// corresponds to one library call. The SimplifyLibCall pass will call the
/// ValidateCalledFunction method to ask the optimization if a given Function
/// is the kind that the optimization can handle. It will also call the
/// OptimizeCall method to perform, or attempt to perform, the optimization(s)
/// for the library call. Subclasses of this class are located toward the
/// end of this file.
/// @brief Base class for library call optimizations
struct LibCallOptimization
{
/// @brief Constructor that registers the optimization. The \p fname argument
/// must be the name of the library function being optimized by the subclass.
LibCallOptimization ( const char * fname )
2005-04-25 03:59:26 +00:00
: func_name ( fname )
2005-04-27 00:05:45 +00:00
# ifndef NDEBUG
2005-04-27 00:20:23 +00:00
, stat_name ( std : : string ( " simplify-libcalls: " ) + fname )
2005-04-27 07:54:40 +00:00
, occurrences ( stat_name . c_str ( ) , " Number of calls simplified " )
2005-04-27 00:05:45 +00:00
# endif
2005-04-25 02:53:12 +00:00
{
// Register this call optimizer
2005-04-25 03:59:26 +00:00
optlist [ func_name ] = this ;
2005-04-25 02:53:12 +00:00
}
2005-04-27 07:54:40 +00:00
/// @brief Destructor
virtual ~ LibCallOptimization ( ) { }
/// The implementation of this function in subclasses should determine if
/// \p F is suitable for the optimization. This method is called by
/// runOnModule to short circuit visiting all the call sites of such a
/// function if that function is not suitable in the first place.
/// If the called function is suitabe, this method should return true;
/// false, otherwise. This function should also perform any lazy
/// initialization that the LibCallOptimization needs to do, if its to return
/// true. This avoids doing initialization until the optimizer is actually
/// going to be called upon to do some optimization.
virtual bool ValidateCalledFunction (
const Function * F , ///< The function that is the target of call sites
SimplifyLibCalls & SLC ///< The pass object invoking us
) = 0 ;
/// The implementations of this function in subclasses is the heart of the
/// SimplifyLibCalls algorithm. Sublcasses of this class implement
/// OptimizeCall to determine if (a) the conditions are right for optimizing
/// the call and (b) to perform the optimization. If an action is taken
/// against ci, the subclass is responsible for returning true and ensuring
/// that ci is erased from its parent.
/// @param ci the call instruction under consideration
/// @param f the function that ci calls.
/// @brief Optimize a call, if possible.
virtual bool OptimizeCall (
CallInst * ci , ///< The call instruction that should be optimized.
SimplifyLibCalls & SLC ///< The pass object invoking us
) = 0 ;
/// @brief Get the name of the library call being optimized
const char * getFunctionName ( ) const { return func_name ; }
2005-04-26 03:26:15 +00:00
2005-04-27 07:54:40 +00:00
# ifndef NDEBUG
void occurred ( ) { + + occurrences ; }
# endif
2005-04-26 19:13:17 +00:00
2005-04-27 07:54:40 +00:00
private :
const char * func_name ; ///< Name of the library call we optimize
# ifndef NDEBUG
std : : string stat_name ; ///< Holder for debug statistic name
Statistic < > occurrences ; ///< debug statistic (-debug-only=simplify-libcalls)
# endif
} ;
/// This class is the base class for a set of small but important
/// optimizations of calls to well-known functions, such as those in the c
/// library.
/// This class is an LLVM Pass that applies each of the LibCallOptimization
/// instances to all the call sites in a module, relatively efficiently. The
/// purpose of this pass is to provide optimizations for calls to well-known
/// functions with well-known semantics, such as those in the c library. The
/// class provides the basic infrastructure for handling runOnModule.
/// Whenever this pass finds a function call, it asks the subclasses to
/// validate the call by calling ValidateLibraryCall. If it is validated, then
/// the OptimizeCall method is called.
/// @brief A ModulePass for optimizing well-known function calls.
struct SimplifyLibCalls : public ModulePass
2005-04-26 19:13:17 +00:00
{
2005-04-27 07:54:40 +00:00
/// We need some target data for accurate signature details that are
/// target dependent. So we require target data in our AnalysisUsage.
virtual void getAnalysisUsage ( AnalysisUsage & Info ) const
{
// Ask that the TargetData analysis be performed before us so we can use
// the target data.
Info . addRequired < TargetData > ( ) ;
}
2005-04-26 19:13:17 +00:00
2005-04-27 07:54:40 +00:00
/// For this pass, process all of the function calls in the module, calling
/// ValidateLibraryCall and OptimizeCall as appropriate.
virtual bool runOnModule ( Module & M )
{
reset ( M ) ;
2005-04-26 19:13:17 +00:00
2005-04-27 07:54:40 +00:00
bool result = false ;
2005-04-26 19:13:17 +00:00
2005-04-27 07:54:40 +00:00
// The call optimizations can be recursive. That is, the optimization might
// generate a call to another function which can also be optimized. This way
// we make the LibCallOptimization instances very specific to the case they
// handle. It also means we need to keep running over the function calls in
// the module until we don't get any more optimizations possible.
bool found_optimization = false ;
do
2005-04-26 19:13:17 +00:00
{
2005-04-27 07:54:40 +00:00
found_optimization = false ;
for ( Module : : iterator FI = M . begin ( ) , FE = M . end ( ) ; FI ! = FE ; + + FI )
2005-04-26 19:13:17 +00:00
{
2005-04-27 07:54:40 +00:00
// All the "well-known" functions are external and have external linkage
// because they live in a runtime library somewhere and were (probably)
// not compiled by LLVM. So, we only act on external functions that have
// external linkage and non-empty uses.
if ( ! FI - > isExternal ( ) | | ! FI - > hasExternalLinkage ( ) | | FI - > use_empty ( ) )
continue ;
// Get the optimization class that pertains to this function
LibCallOptimization * CO = optlist [ FI - > getName ( ) . c_str ( ) ] ;
if ( ! CO )
continue ;
// Make sure the called function is suitable for the optimization
if ( ! CO - > ValidateCalledFunction ( FI , * this ) )
continue ;
// Loop over each of the uses of the function
for ( Value : : use_iterator UI = FI - > use_begin ( ) , UE = FI - > use_end ( ) ;
UI ! = UE ; )
2005-04-26 19:13:17 +00:00
{
2005-04-27 07:54:40 +00:00
// If the use of the function is a call instruction
if ( CallInst * CI = dyn_cast < CallInst > ( * UI + + ) )
2005-04-26 19:13:17 +00:00
{
2005-04-27 07:54:40 +00:00
// Do the optimization on the LibCallOptimization.
if ( CO - > OptimizeCall ( CI , * this ) )
{
+ + SimplifiedLibCalls ;
found_optimization = result = true ;
2005-04-27 00:05:45 +00:00
# ifndef NDEBUG
2005-04-27 07:54:40 +00:00
CO - > occurred ( ) ;
2005-04-27 00:05:45 +00:00
# endif
2005-04-27 07:54:40 +00:00
}
2005-04-26 19:13:17 +00:00
}
}
}
2005-04-27 07:54:40 +00:00
} while ( found_optimization ) ;
return result ;
}
2005-04-26 19:13:17 +00:00
2005-04-27 07:54:40 +00:00
/// @brief Return the *current* module we're working on.
Module * getModule ( ) { return M ; }
/// @brief Return the *current* target data for the module we're working on.
TargetData * getTargetData ( ) { return TD ; }
2005-04-26 19:13:17 +00:00
2005-04-27 07:54:40 +00:00
/// @brief Return a Function* for the strlen libcall
Function * get_strlen ( )
2005-04-26 03:26:15 +00:00
{
2005-04-27 07:54:40 +00:00
if ( ! strlen_func )
2005-04-26 03:26:15 +00:00
{
std : : vector < const Type * > args ;
args . push_back ( PointerType : : get ( Type : : SByteTy ) ) ;
2005-04-27 07:54:40 +00:00
FunctionType * strlen_type =
FunctionType : : get ( TD - > getIntPtrType ( ) , args , false ) ;
strlen_func = M - > getOrInsertFunction ( " strlen " , strlen_type ) ;
2005-04-26 03:26:15 +00:00
}
2005-04-27 07:54:40 +00:00
return strlen_func ;
2005-04-26 03:26:15 +00:00
}
2005-04-27 07:54:40 +00:00
/// @brief Return a Function* for the memcpy libcall
Function * get_memcpy ( )
2005-04-26 03:26:15 +00:00
{
2005-04-27 07:54:40 +00:00
if ( ! memcpy_func )
2005-04-26 03:26:15 +00:00
{
// Note: this is for llvm.memcpy intrinsic
std : : vector < const Type * > args ;
args . push_back ( PointerType : : get ( Type : : SByteTy ) ) ;
args . push_back ( PointerType : : get ( Type : : SByteTy ) ) ;
args . push_back ( Type : : IntTy ) ;
args . push_back ( Type : : IntTy ) ;
2005-04-27 07:54:40 +00:00
FunctionType * memcpy_type = FunctionType : : get ( Type : : VoidTy , args , false ) ;
memcpy_func = M - > getOrInsertFunction ( " llvm.memcpy " , memcpy_type ) ;
2005-04-26 03:26:15 +00:00
}
2005-04-27 07:54:40 +00:00
return memcpy_func ;
2005-04-26 03:26:15 +00:00
}
2005-04-26 05:24:00 +00:00
2005-04-27 07:54:40 +00:00
/// @brief Compute length of constant string
bool getConstantStringLength ( Value * V , uint64_t & len ) ;
2005-04-26 05:24:00 +00:00
2005-04-27 07:54:40 +00:00
private :
void reset ( Module & mod )
{
M = & mod ;
TD = & getAnalysis < TargetData > ( ) ;
memcpy_func = 0 ;
strlen_func = 0 ;
}
2005-04-26 05:24:00 +00:00
2005-04-27 07:54:40 +00:00
private :
Function * memcpy_func ;
Function * strlen_func ;
Module * M ;
TargetData * TD ;
} ;
2005-04-26 05:24:00 +00:00
2005-04-27 07:54:40 +00:00
// Register the pass
RegisterOpt < SimplifyLibCalls >
X ( " simplify-libcalls " , " Simplify well-known library calls " ) ;
2005-04-26 07:45:18 +00:00
2005-04-27 07:54:40 +00:00
} // anonymous namespace
2005-04-26 07:45:18 +00:00
2005-04-27 07:54:40 +00:00
// The only public symbol in this file which just instantiates the pass object
ModulePass * llvm : : createSimplifyLibCallsPass ( )
{
return new SimplifyLibCalls ( ) ;
}
2005-04-26 07:45:18 +00:00
2005-04-27 07:54:40 +00:00
// Classes below here, in the anonymous namespace, are all subclasses of the
// LibCallOptimization class, each implementing all optimizations possible for a
// single well-known library call. Each has a static singleton instance that
// auto registers it into the "optlist" global above.
namespace {
2005-04-26 07:45:18 +00:00
2005-04-27 07:54:40 +00:00
bool getConstantStringLength ( Value * V , uint64_t & len ) ;
2005-04-25 02:53:12 +00:00
2005-04-27 07:54:40 +00:00
/// This LibCallOptimization will find instances of a call to "exit" that occurs
2005-04-25 02:53:12 +00:00
/// within the "main" function and change it to a simple "ret" instruction with
/// the same value as passed to the exit function. It assumes that the
/// instructions after the call to exit(3) can be deleted since they are
/// unreachable anyway.
/// @brief Replace calls to exit in main with a simple return
2005-04-27 07:54:40 +00:00
struct ExitInMainOptimization : public LibCallOptimization
2005-04-25 02:53:12 +00:00
{
2005-04-27 07:54:40 +00:00
ExitInMainOptimization ( ) : LibCallOptimization ( " exit " ) { }
2005-04-25 03:59:26 +00:00
virtual ~ ExitInMainOptimization ( ) { }
2005-04-25 21:11:48 +00:00
// Make sure the called function looks like exit (int argument, int return
// type, external linkage, not varargs).
2005-04-27 07:54:40 +00:00
virtual bool ValidateCalledFunction ( const Function * f , SimplifyLibCalls & SLC )
2005-04-25 21:11:48 +00:00
{
2005-04-26 07:45:18 +00:00
if ( f - > arg_size ( ) > = 1 )
if ( f - > arg_begin ( ) - > getType ( ) - > isInteger ( ) )
return true ;
2005-04-25 21:11:48 +00:00
return false ;
}
2005-04-27 07:54:40 +00:00
virtual bool OptimizeCall ( CallInst * ci , SimplifyLibCalls & SLC )
2005-04-25 03:59:26 +00:00
{
2005-04-25 21:11:48 +00:00
// To be careful, we check that the call to exit is coming from "main", that
// main has external linkage, and the return type of main and the argument
// to exit have the same type.
Function * from = ci - > getParent ( ) - > getParent ( ) ;
if ( from - > hasExternalLinkage ( ) )
if ( from - > getReturnType ( ) = = ci - > getOperand ( 1 ) - > getType ( ) )
if ( from - > getName ( ) = = " main " )
{
// Okay, time to actually do the optimization. First, get the basic
// block of the call instruction
BasicBlock * bb = ci - > getParent ( ) ;
2005-04-25 03:59:26 +00:00
2005-04-25 21:11:48 +00:00
// Create a return instruction that we'll replace the call with.
// Note that the argument of the return is the argument of the call
// instruction.
ReturnInst * ri = new ReturnInst ( ci - > getOperand ( 1 ) , ci ) ;
2005-04-25 03:59:26 +00:00
2005-04-25 21:11:48 +00:00
// Split the block at the call instruction which places it in a new
// basic block.
2005-04-26 03:26:15 +00:00
bb - > splitBasicBlock ( ci ) ;
2005-04-25 03:59:26 +00:00
2005-04-25 21:11:48 +00:00
// The block split caused a branch instruction to be inserted into
// the end of the original block, right after the return instruction
// that we put there. That's not a valid block, so delete the branch
// instruction.
2005-04-26 03:26:15 +00:00
bb - > getInstList ( ) . pop_back ( ) ;
2005-04-25 03:59:26 +00:00
2005-04-25 21:11:48 +00:00
// Now we can finally get rid of the call instruction which now lives
// in the new basic block.
ci - > eraseFromParent ( ) ;
// Optimization succeeded, return true.
return true ;
}
// We didn't pass the criteria for this optimization so return false
return false ;
2005-04-25 03:59:26 +00:00
}
} ExitInMainOptimizer ;
2005-04-27 07:54:40 +00:00
/// This LibCallOptimization will simplify a call to the strcat library
/// function. The simplification is possible only if the string being
/// concatenated is a constant array or a constant expression that results in
/// a constant array. In this case, if the array is small, we can generate a
/// series of inline store instructions to effect the concatenation without
/// calling strcat.
2005-04-25 21:11:48 +00:00
/// @brief Simplify the strcat library function.
2005-04-27 07:54:40 +00:00
struct StrCatOptimization : public LibCallOptimization
2005-04-25 02:53:12 +00:00
{
2005-04-26 03:26:15 +00:00
public :
2005-04-27 07:54:40 +00:00
StrCatOptimization ( ) : LibCallOptimization ( " strcat " ) { }
2005-04-25 21:11:48 +00:00
2005-04-27 07:54:40 +00:00
public :
virtual ~ StrCatOptimization ( ) { }
2005-04-26 03:26:15 +00:00
2005-04-25 21:11:48 +00:00
/// @brief Make sure that the "strcat" function has the right prototype
2005-04-27 07:54:40 +00:00
virtual bool ValidateCalledFunction ( const Function * f , SimplifyLibCalls & SLC )
2005-04-25 21:11:48 +00:00
{
if ( f - > getReturnType ( ) = = PointerType : : get ( Type : : SByteTy ) )
if ( f - > arg_size ( ) = = 2 )
{
Function : : const_arg_iterator AI = f - > arg_begin ( ) ;
if ( AI + + - > getType ( ) = = PointerType : : get ( Type : : SByteTy ) )
if ( AI - > getType ( ) = = PointerType : : get ( Type : : SByteTy ) )
2005-04-26 03:26:15 +00:00
{
// Indicate this is a suitable call type.
2005-04-25 21:11:48 +00:00
return true ;
2005-04-26 03:26:15 +00:00
}
2005-04-25 21:11:48 +00:00
}
return false ;
}
2005-04-27 07:54:40 +00:00
/// @brief Optimize the strcat library function
virtual bool OptimizeCall ( CallInst * ci , SimplifyLibCalls & SLC )
2005-04-25 03:59:26 +00:00
{
2005-04-26 05:24:00 +00:00
// Extract the initializer (while making numerous checks) from the
// source operand of the call to strcat. If we get null back, one of
// a variety of checks in get_GVInitializer failed
2005-04-26 07:45:18 +00:00
uint64_t len = 0 ;
if ( ! getConstantStringLength ( ci - > getOperand ( 2 ) , len ) )
2005-04-25 21:11:48 +00:00
return false ;
2005-04-26 07:45:18 +00:00
// Handle the simple, do-nothing case
if ( len = = 0 )
2005-04-26 03:26:15 +00:00
{
ci - > replaceAllUsesWith ( ci - > getOperand ( 1 ) ) ;
ci - > eraseFromParent ( ) ;
return true ;
2005-04-25 21:11:48 +00:00
}
2005-04-26 07:45:18 +00:00
// Increment the length because we actually want to memcpy the null
// terminator as well.
len + + ;
// Extract some information from the instruction
Module * M = ci - > getParent ( ) - > getParent ( ) - > getParent ( ) ;
// We need to find the end of the destination string. That's where the
// memory is to be moved to. We just generate a call to strlen (further
2005-04-27 07:54:40 +00:00
// optimized in another pass). Note that the SLC.get_strlen() call
2005-04-26 07:45:18 +00:00
// caches the Function* for us.
CallInst * strlen_inst =
2005-04-27 07:54:40 +00:00
new CallInst ( SLC . get_strlen ( ) , ci - > getOperand ( 1 ) , " " , ci ) ;
2005-04-26 07:45:18 +00:00
// Now that we have the destination's length, we must index into the
// destination's pointer to get the actual memcpy destination (end of
// the string .. we're concatenating).
std : : vector < Value * > idx ;
idx . push_back ( strlen_inst ) ;
GetElementPtrInst * gep =
new GetElementPtrInst ( ci - > getOperand ( 1 ) , idx , " " , ci ) ;
// We have enough information to now generate the memcpy call to
// do the concatenation for us.
std : : vector < Value * > vals ;
vals . push_back ( gep ) ; // destination
vals . push_back ( ci - > getOperand ( 2 ) ) ; // source
vals . push_back ( ConstantSInt : : get ( Type : : IntTy , len ) ) ; // length
vals . push_back ( ConstantSInt : : get ( Type : : IntTy , 1 ) ) ; // alignment
2005-04-27 07:54:40 +00:00
CallInst * memcpy_inst = new CallInst ( SLC . get_memcpy ( ) , vals , " " , ci ) ;
2005-04-26 07:45:18 +00:00
// Finally, substitute the first operand of the strcat call for the
// strcat call itself since strcat returns its first operand; and,
// kill the strcat CallInst.
ci - > replaceAllUsesWith ( ci - > getOperand ( 1 ) ) ;
ci - > eraseFromParent ( ) ;
return true ;
2005-04-25 03:59:26 +00:00
}
} StrCatOptimizer ;
2005-04-25 02:53:12 +00:00
2005-04-27 07:54:40 +00:00
/// This LibCallOptimization will simplify a call to the strcpy library function.
/// Several optimizations are possible:
/// (1) If src and dest are the same and not volatile, just return dest
/// (2) If the src is a constant then we can convert to llvm.memmove
/// @brief Simplify the strcpy library function.
struct StrCpyOptimization : public LibCallOptimization
{
public :
StrCpyOptimization ( ) : LibCallOptimization ( " strcpy " ) { }
virtual ~ StrCpyOptimization ( ) { }
/// @brief Make sure that the "strcpy" function has the right prototype
virtual bool ValidateCalledFunction ( const Function * f , SimplifyLibCalls & SLC )
{
if ( f - > getReturnType ( ) = = PointerType : : get ( Type : : SByteTy ) )
if ( f - > arg_size ( ) = = 2 )
{
Function : : const_arg_iterator AI = f - > arg_begin ( ) ;
if ( AI + + - > getType ( ) = = PointerType : : get ( Type : : SByteTy ) )
if ( AI - > getType ( ) = = PointerType : : get ( Type : : SByteTy ) )
{
// Indicate this is a suitable call type.
return true ;
}
}
return false ;
}
/// @brief Perform the strcpy optimization
virtual bool OptimizeCall ( CallInst * ci , SimplifyLibCalls & SLC )
{
// First, check to see if src and destination are the same. If they are,
// then the optimization is to replace the CallInst with the destination
// because the call is a no-op. Note that this corresponds to the
// degenerate strcpy(X,X) case which should have "undefined" results
// according to the C specification. However, it occurs sometimes and
// we optimize it as a no-op.
Value * dest = ci - > getOperand ( 1 ) ;
Value * src = ci - > getOperand ( 2 ) ;
if ( dest = = src )
{
ci - > replaceAllUsesWith ( dest ) ;
ci - > eraseFromParent ( ) ;
return true ;
}
// Get the length of the constant string referenced by the second operand,
// the "src" parameter. Fail the optimization if we can't get the length
// (note that getConstantStringLength does lots of checks to make sure this
// is valid).
uint64_t len = 0 ;
if ( ! getConstantStringLength ( ci - > getOperand ( 2 ) , len ) )
return false ;
// If the constant string's length is zero we can optimize this by just
// doing a store of 0 at the first byte of the destination
if ( len = = 0 )
{
new StoreInst ( ConstantInt : : get ( Type : : SByteTy , 0 ) , ci - > getOperand ( 1 ) , ci ) ;
ci - > replaceAllUsesWith ( dest ) ;
ci - > eraseFromParent ( ) ;
return true ;
}
// Increment the length because we actually want to memcpy the null
// terminator as well.
len + + ;
// Extract some information from the instruction
Module * M = ci - > getParent ( ) - > getParent ( ) - > getParent ( ) ;
// We have enough information to now generate the memcpy call to
// do the concatenation for us.
std : : vector < Value * > vals ;
vals . push_back ( dest ) ; // destination
vals . push_back ( src ) ; // source
vals . push_back ( ConstantSInt : : get ( Type : : IntTy , len ) ) ; // length
vals . push_back ( ConstantSInt : : get ( Type : : IntTy , 1 ) ) ; // alignment
CallInst * memcpy_inst = new CallInst ( SLC . get_memcpy ( ) , vals , " " , ci ) ;
// Finally, substitute the first operand of the strcat call for the
// strcat call itself since strcat returns its first operand; and,
// kill the strcat CallInst.
ci - > replaceAllUsesWith ( dest ) ;
ci - > eraseFromParent ( ) ;
return true ;
}
} StrCpyOptimizer ;
/// This LibCallOptimization will simplify a call to the strlen library function by
2005-04-26 05:24:00 +00:00
/// replacing it with a constant value if the string provided to it is a
/// constant array.
/// @brief Simplify the strlen library function.
2005-04-27 07:54:40 +00:00
struct StrLenOptimization : public LibCallOptimization
2005-04-26 05:24:00 +00:00
{
2005-04-27 07:54:40 +00:00
StrLenOptimization ( ) : LibCallOptimization ( " strlen " ) { }
2005-04-26 05:24:00 +00:00
virtual ~ StrLenOptimization ( ) { }
/// @brief Make sure that the "strlen" function has the right prototype
2005-04-27 07:54:40 +00:00
virtual bool ValidateCalledFunction ( const Function * f , SimplifyLibCalls & SLC )
2005-04-26 05:24:00 +00:00
{
2005-04-27 07:54:40 +00:00
if ( f - > getReturnType ( ) = = SLC . getTargetData ( ) - > getIntPtrType ( ) )
2005-04-26 05:24:00 +00:00
if ( f - > arg_size ( ) = = 1 )
if ( Function : : const_arg_iterator AI = f - > arg_begin ( ) )
if ( AI - > getType ( ) = = PointerType : : get ( Type : : SByteTy ) )
return true ;
return false ;
}
/// @brief Perform the strlen optimization
2005-04-27 07:54:40 +00:00
virtual bool OptimizeCall ( CallInst * ci , SimplifyLibCalls & SLC )
2005-04-26 05:24:00 +00:00
{
2005-04-26 07:45:18 +00:00
// Get the length of the string
uint64_t len = 0 ;
if ( ! getConstantStringLength ( ci - > getOperand ( 1 ) , len ) )
2005-04-26 05:24:00 +00:00
return false ;
2005-04-27 07:54:40 +00:00
ci - > replaceAllUsesWith (
ConstantInt : : get ( SLC . getTargetData ( ) - > getIntPtrType ( ) , len ) ) ;
2005-04-26 07:45:18 +00:00
ci - > eraseFromParent ( ) ;
return true ;
2005-04-26 05:24:00 +00:00
}
} StrLenOptimizer ;
2005-04-27 07:54:40 +00:00
/// This LibCallOptimization will simplify a call to the memcpy library function by
/// expanding it out to a single store of size 0, 1, 2, 4, or 8 bytes depending
/// on the length of the string and the alignment.
2005-04-25 21:11:48 +00:00
/// @brief Simplify the memcpy library function.
2005-04-27 07:54:40 +00:00
struct MemCpyOptimization : public LibCallOptimization
2005-04-25 21:11:48 +00:00
{
2005-04-27 07:54:40 +00:00
MemCpyOptimization ( ) : LibCallOptimization ( " llvm.memcpy " ) { }
2005-04-26 19:13:17 +00:00
protected :
2005-04-27 07:54:40 +00:00
MemCpyOptimization ( const char * fname ) : LibCallOptimization ( fname ) { }
2005-04-26 19:13:17 +00:00
public :
2005-04-25 21:11:48 +00:00
virtual ~ MemCpyOptimization ( ) { }
/// @brief Make sure that the "memcpy" function has the right prototype
2005-04-27 07:54:40 +00:00
virtual bool ValidateCalledFunction ( const Function * f , SimplifyLibCalls & TD )
2005-04-25 21:11:48 +00:00
{
2005-04-26 19:13:17 +00:00
// Just make sure this has 4 arguments per LLVM spec.
2005-04-26 23:02:16 +00:00
return ( f - > arg_size ( ) = = 4 ) ;
2005-04-25 21:11:48 +00:00
}
2005-04-26 07:45:18 +00:00
/// Because of alignment and instruction information that we don't have, we
/// leave the bulk of this to the code generators. The optimization here just
/// deals with a few degenerate cases where the length of the string and the
/// alignment match the sizes of our intrinsic types so we can do a load and
/// store instead of the memcpy call.
/// @brief Perform the memcpy optimization.
2005-04-27 07:54:40 +00:00
virtual bool OptimizeCall ( CallInst * ci , SimplifyLibCalls & TD )
2005-04-25 21:11:48 +00:00
{
2005-04-26 19:55:57 +00:00
// Make sure we have constant int values to work with
ConstantInt * LEN = dyn_cast < ConstantInt > ( ci - > getOperand ( 3 ) ) ;
if ( ! LEN )
return false ;
ConstantInt * ALIGN = dyn_cast < ConstantInt > ( ci - > getOperand ( 4 ) ) ;
if ( ! ALIGN )
return false ;
// If the length is larger than the alignment, we can't optimize
uint64_t len = LEN - > getRawValue ( ) ;
uint64_t alignment = ALIGN - > getRawValue ( ) ;
2005-04-26 19:13:17 +00:00
if ( len > alignment )
2005-04-26 07:45:18 +00:00
return false ;
Value * dest = ci - > getOperand ( 1 ) ;
Value * src = ci - > getOperand ( 2 ) ;
CastInst * SrcCast = 0 ;
CastInst * DestCast = 0 ;
switch ( len )
{
2005-04-26 19:13:17 +00:00
case 0 :
2005-04-26 22:46:23 +00:00
// The memcpy is a no-op so just dump its call.
2005-04-26 19:13:17 +00:00
ci - > eraseFromParent ( ) ;
return true ;
2005-04-26 07:45:18 +00:00
case 1 :
SrcCast = new CastInst ( src , PointerType : : get ( Type : : SByteTy ) , " " , ci ) ;
DestCast = new CastInst ( dest , PointerType : : get ( Type : : SByteTy ) , " " , ci ) ;
break ;
case 2 :
SrcCast = new CastInst ( src , PointerType : : get ( Type : : ShortTy ) , " " , ci ) ;
DestCast = new CastInst ( dest , PointerType : : get ( Type : : ShortTy ) , " " , ci ) ;
break ;
case 4 :
SrcCast = new CastInst ( src , PointerType : : get ( Type : : IntTy ) , " " , ci ) ;
DestCast = new CastInst ( dest , PointerType : : get ( Type : : IntTy ) , " " , ci ) ;
break ;
case 8 :
SrcCast = new CastInst ( src , PointerType : : get ( Type : : LongTy ) , " " , ci ) ;
DestCast = new CastInst ( dest , PointerType : : get ( Type : : LongTy ) , " " , ci ) ;
break ;
default :
return false ;
}
2005-04-26 19:13:17 +00:00
LoadInst * LI = new LoadInst ( SrcCast , " " , ci ) ;
2005-04-26 07:45:18 +00:00
StoreInst * SI = new StoreInst ( LI , DestCast , ci ) ;
ci - > eraseFromParent ( ) ;
return true ;
2005-04-25 21:11:48 +00:00
}
} MemCpyOptimizer ;
2005-04-26 19:13:17 +00:00
2005-04-27 07:54:40 +00:00
/// This LibCallOptimization will simplify a call to the memmove library function. /// It is identical to MemCopyOptimization except for the name of the intrinsic.
2005-04-26 19:13:17 +00:00
/// @brief Simplify the memmove library function.
struct MemMoveOptimization : public MemCpyOptimization
{
MemMoveOptimization ( ) : MemCpyOptimization ( " llvm.memmove " ) { }
} MemMoveOptimizer ;
2005-04-27 07:54:40 +00:00
/// A function to compute the length of a null-terminated string of integers.
/// This function can't rely on the size of the constant array because there
/// could be a null terminator in the middle of the array. We also have to
/// bail out if we find a non-integer constant initializer of one of the
/// elements or if there is no null-terminator. The logic below checks
bool getConstantStringLength ( Value * V , uint64_t & len )
{
assert ( V ! = 0 & & " Invalid args to getConstantStringLength " ) ;
len = 0 ; // make sure we initialize this
User * GEP = 0 ;
// If the value is not a GEP instruction nor a constant expression with a
// GEP instruction, then return false because ConstantArray can't occur
// any other way
if ( GetElementPtrInst * GEPI = dyn_cast < GetElementPtrInst > ( V ) )
GEP = GEPI ;
else if ( ConstantExpr * CE = dyn_cast < ConstantExpr > ( V ) )
if ( CE - > getOpcode ( ) = = Instruction : : GetElementPtr )
GEP = CE ;
else
return false ;
else
return false ;
// Make sure the GEP has exactly three arguments.
if ( GEP - > getNumOperands ( ) ! = 3 )
return false ;
// Check to make sure that the first operand of the GEP is an integer and
// has value 0 so that we are sure we're indexing into the initializer.
if ( ConstantInt * op1 = dyn_cast < ConstantInt > ( GEP - > getOperand ( 1 ) ) )
{
if ( ! op1 - > isNullValue ( ) )
return false ;
}
else
return false ;
// Ensure that the second operand is a ConstantInt. If it isn't then this
// GEP is wonky and we're not really sure what were referencing into and
// better of not optimizing it. While we're at it, get the second index
// value. We'll need this later for indexing the ConstantArray.
uint64_t start_idx = 0 ;
if ( ConstantInt * CI = dyn_cast < ConstantInt > ( GEP - > getOperand ( 2 ) ) )
start_idx = CI - > getRawValue ( ) ;
else
return false ;
// The GEP instruction, constant or instruction, must reference a global
// variable that is a constant and is initialized. The referenced constant
// initializer is the array that we'll use for optimization.
GlobalVariable * GV = dyn_cast < GlobalVariable > ( GEP - > getOperand ( 0 ) ) ;
if ( ! GV | | ! GV - > isConstant ( ) | | ! GV - > hasInitializer ( ) )
return false ;
// Get the initializer.
Constant * INTLZR = GV - > getInitializer ( ) ;
// Handle the ConstantAggregateZero case
if ( ConstantAggregateZero * CAZ = dyn_cast < ConstantAggregateZero > ( INTLZR ) )
{
// This is a degenerate case. The initializer is constant zero so the
// length of the string must be zero.
len = 0 ;
return true ;
}
// Must be a Constant Array
ConstantArray * A = dyn_cast < ConstantArray > ( INTLZR ) ;
if ( ! A )
return false ;
// Get the number of elements in the array
uint64_t max_elems = A - > getType ( ) - > getNumElements ( ) ;
// Traverse the constant array from start_idx (derived above) which is
// the place the GEP refers to in the array.
for ( len = start_idx ; len < max_elems ; len + + )
{
if ( ConstantInt * CI = dyn_cast < ConstantInt > ( A - > getOperand ( len ) ) )
{
// Check for the null terminator
if ( CI - > isNullValue ( ) )
break ; // we found end of string
}
else
return false ; // This array isn't suitable, non-int initializer
}
if ( len > = max_elems )
return false ; // This array isn't null terminated
// Subtract out the initial value from the length
len - = start_idx ;
return true ; // success!
}
// TODO: Additional cases that we need to add to this file:
// 1. memmove -> memcpy if src is a global constant array
2005-04-25 02:53:12 +00:00
}