llvm-6502/lib/Target/Mips/MipsAsmPrinter.cpp

433 lines
13 KiB
C++
Raw Normal View History

//===-- MipsAsmPrinter.cpp - Mips LLVM assembly writer --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Bruno Cardoso Lopes and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to GAS-format MIPS assembly language.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "mips-asm-printer"
#include "Mips.h"
#include "MipsInstrInfo.h"
#include "MipsTargetMachine.h"
#include "MipsMachineFunction.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Mangler.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/MathExtras.h"
#include <cctype>
using namespace llvm;
STATISTIC(EmittedInsts, "Number of machine instrs printed");
namespace {
struct VISIBILITY_HIDDEN MipsAsmPrinter : public AsmPrinter {
MipsAsmPrinter(std::ostream &O, MipsTargetMachine &TM,
const TargetAsmInfo *T):
AsmPrinter(O, TM, T) {}
virtual const char *getPassName() const {
return "Mips Assembly Printer";
}
enum SetDirectiveFlags {
REORDER, // enables instruction reordering.
NOREORDER, // disables instruction reordering.
MACRO, // enables GAS macros.
NOMACRO // disables GAS macros.
};
void printOperand(const MachineInstr *MI, int opNum);
void printMemOperand(const MachineInstr *MI, int opNum,
const char *Modifier = 0);
void printHex32(unsigned int Value);
void emitFunctionStart(MachineFunction &MF);
void emitFunctionEnd();
void emitFrameDirective(MachineFunction &MF);
void emitMaskDirective(MachineFunction &MF);
void emitFMaskDirective();
void emitSetDirective(SetDirectiveFlags Flag);
bool printInstruction(const MachineInstr *MI); // autogenerated.
bool runOnMachineFunction(MachineFunction &F);
bool doInitialization(Module &M);
bool doFinalization(Module &M);
};
} // end of anonymous namespace
#include "MipsGenAsmWriter.inc"
/// createMipsCodePrinterPass - Returns a pass that prints the MIPS
/// assembly code for a MachineFunction to the given output stream,
/// using the given target machine description. This should work
/// regardless of whether the function is in SSA form.
FunctionPass *llvm::createMipsCodePrinterPass(std::ostream &o,
MipsTargetMachine &tm)
{
return new MipsAsmPrinter(o, tm, tm.getTargetAsmInfo());
}
/// This pattern will be emitted :
/// .frame reg1, size, reg2
/// It describes the stack frame.
/// reg1 - stack pointer
/// size - stack size allocated for the function
/// reg2 - return address register
void MipsAsmPrinter::
emitFrameDirective(MachineFunction &MF)
{
const MRegisterInfo &RI = *TM.getRegisterInfo();
unsigned stackReg = RI.getFrameRegister(MF);
unsigned returnReg = RI.getRARegister();
unsigned stackSize = MF.getFrameInfo()->getStackSize();
O << "\t.frame\t" << "$" << LowercaseString(RI.get(stackReg).Name)
<< "," << stackSize << ","
<< "$" << LowercaseString(RI.get(returnReg).Name)
<< "\n";
}
/// This pattern will be emitted :
/// .mask bitmask, offset
/// Tells the assembler (and possibly linker) which registers are saved and where.
/// bitmask - mask of all GPRs (little endian)
/// offset - negative value. offset+stackSize should give where on the stack
/// the first GPR is saved.
/// TODO: consider calle saved GPR regs here, not hardcode register numbers.
void MipsAsmPrinter::
emitMaskDirective(MachineFunction &MF)
{
const MRegisterInfo &RI = *TM.getRegisterInfo();
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
bool hasFP = RI.hasFP(MF);
bool saveRA = MF.getFrameInfo()->hasCalls();
int offset;
if (!MipsFI->getTopSavedRegOffset())
offset = 0;
else
offset = -(MF.getFrameInfo()->getStackSize()
-MipsFI->getTopSavedRegOffset());
#ifndef NDEBUG
DOUT << "<--ASM PRINTER--emitMaskDirective-->" << "\n";
DOUT << "StackSize : " << MF.getFrameInfo()->getStackSize() << "\n";
DOUT << "getTopSavedRegOffset() : " << MipsFI->getTopSavedRegOffset() << "\n";
DOUT << "offset : " << offset << "\n\n";
#endif
unsigned int bitmask = 0;
if (hasFP)
bitmask |= (1 << 30);
if (saveRA)
bitmask |= (1 << 31);
O << "\t.mask\t";
printHex32(bitmask);
O << "," << offset << "\n";
}
/// This pattern will be emitted :
/// .fmask bitmask, offset
/// Tells the assembler (and possibly linker) which float registers are saved.
/// bitmask - mask of all Float Point registers (little endian)
/// offset - negative value. offset+stackSize should give where on the stack
/// the first Float Point register is saved.
/// TODO: implement this, dummy for now
void MipsAsmPrinter::
emitFMaskDirective()
{
O << "\t.fmask\t0x00000000,0" << "\n";
}
/// Print a 32 bit hex number filling with 0's on the left.
/// TODO: make this setfill and setw
void MipsAsmPrinter::
printHex32(unsigned int Value) {
O << "0x" << std::hex << Value << std::dec;
}
/// Emit Set directives.
void MipsAsmPrinter::
emitSetDirective(SetDirectiveFlags Flag) {
O << "\t.set\t";
switch(Flag) {
case REORDER: O << "reorder" << "\n"; break;
case NOREORDER: O << "noreorder" << "\n"; break;
case MACRO: O << "macro" << "\n"; break;
case NOMACRO: O << "nomacro" << "\n"; break;
default: break;
}
}
/// Emit the directives used by GAS on the start of functions
void MipsAsmPrinter::
emitFunctionStart(MachineFunction &MF)
{
// Print out the label for the function.
const Function *F = MF.getFunction();
SwitchToTextSection(getSectionForFunction(*F).c_str(), F);
// On Mips GAS, if .align #n is present, #n means the number of bits
// to be cleared. So, if we want 4 byte alignment, we must have .align 2
EmitAlignment(1, F);
O << "\t.globl\t" << CurrentFnName << "\n";
O << "\t.ent\t" << CurrentFnName << "\n";
O << "\t.type\t" << CurrentFnName << ", @function\n";
O << CurrentFnName << ":\n";
emitFrameDirective(MF);
emitMaskDirective(MF);
emitFMaskDirective();
emitSetDirective(NOREORDER);
emitSetDirective(NOMACRO);
}
/// Emit the directives used by GAS on the end of functions
void MipsAsmPrinter::
emitFunctionEnd() {
emitSetDirective(MACRO);
emitSetDirective(REORDER);
O << "\t.end\t" << CurrentFnName << "\n";
}
/// runOnMachineFunction - This uses the printMachineInstruction()
/// method to print assembly for each instruction.
bool MipsAsmPrinter::
runOnMachineFunction(MachineFunction &MF)
{
SetupMachineFunction(MF);
// Print out constants referenced by the function
EmitConstantPool(MF.getConstantPool());
O << "\n\n";
// What's my mangled name?
CurrentFnName = Mang->getValueName(MF.getFunction());
// Emit the function start directives
emitFunctionStart(MF);
// Print out code for the function.
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
I != E; ++I) {
// Print a label for the basic block.
if (I != MF.begin()) {
printBasicBlockLabel(I, true);
O << '\n';
}
for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
II != E; ++II) {
// Print the assembly for the instruction.
O << "\t";
printInstruction(II);
++EmittedInsts;
}
}
// Emit function end directives
emitFunctionEnd();
// We didn't modify anything.
return false;
}
void MipsAsmPrinter::
printOperand(const MachineInstr *MI, int opNum)
{
const MachineOperand &MO = MI->getOperand(opNum);
const MRegisterInfo &RI = *TM.getRegisterInfo();
bool closeP=false;
// %hi and %lo used on mips gas to break large constants
if (MI->getOpcode() == Mips::LUi && !MO.isRegister()
&& !MO.isImmediate()) {
O << "%hi(";
closeP = true;
} else if ((MI->getOpcode() == Mips::ADDiu) && !MO.isRegister()
&& !MO.isImmediate()) {
O << "%lo(";
closeP = true;
}
switch (MO.getType())
{
case MachineOperand::MO_Register:
if (MRegisterInfo::isPhysicalRegister(MO.getReg()))
O << "$" << LowercaseString (RI.get(MO.getReg()).Name);
else
O << "$" << MO.getReg();
break;
case MachineOperand::MO_Immediate:
if ((MI->getOpcode() == Mips::SLTiu) || (MI->getOpcode() == Mips::ORi) ||
(MI->getOpcode() == Mips::LUi) || (MI->getOpcode() == Mips::ANDi))
O << (unsigned short int)MO.getImmedValue();
else
O << (short int)MO.getImmedValue();
break;
case MachineOperand::MO_MachineBasicBlock:
printBasicBlockLabel(MO.getMachineBasicBlock());
return;
case MachineOperand::MO_GlobalAddress:
O << Mang->getValueName(MO.getGlobal());
break;
case MachineOperand::MO_ExternalSymbol:
O << MO.getSymbolName();
break;
case MachineOperand::MO_ConstantPoolIndex:
O << TAI->getPrivateGlobalPrefix() << "CPI"
<< getFunctionNumber() << "_" << MO.getConstantPoolIndex();
break;
default:
O << "<unknown operand type>"; abort (); break;
}
if (closeP) O << ")";
}
void MipsAsmPrinter::
printMemOperand(const MachineInstr *MI, int opNum, const char *Modifier)
{
// lw/sw $reg, MemOperand
// will turn into :
// lw/sw $reg, imm($reg)
printOperand(MI, opNum);
O << "(";
printOperand(MI, opNum+1);
O << ")";
}
bool MipsAsmPrinter::
doInitialization(Module &M)
{
Mang = new Mangler(M);
return false; // success
}
bool MipsAsmPrinter::
doFinalization(Module &M)
{
const TargetData *TD = TM.getTargetData();
// Print out module-level global variables here.
for (Module::const_global_iterator I = M.global_begin(),
E = M.global_end(); I != E; ++I)
// External global require no code
if (I->hasInitializer()) {
// Check to see if this is a special global
// used by LLVM, if so, emit it.
if (EmitSpecialLLVMGlobal(I))
continue;
O << "\n\n";
std::string name = Mang->getValueName(I);
Constant *C = I->getInitializer();
unsigned Size = TD->getTypeSize(C->getType());
unsigned Align = TD->getPrefTypeAlignment(C->getType());
if (C->isNullValue() && (I->hasLinkOnceLinkage() ||
I->hasInternalLinkage() || I->hasWeakLinkage()
/* FIXME: Verify correct */)) {
SwitchToDataSection(".data", I);
if (I->hasInternalLinkage())
O << "\t.local " << name << "\n";
O << "\t.comm " << name << ","
<< TD->getTypeSize(C->getType())
<< "," << Align << "\n";
} else {
switch (I->getLinkage())
{
case GlobalValue::LinkOnceLinkage:
case GlobalValue::WeakLinkage:
// FIXME: Verify correct for weak.
// Nonnull linkonce -> weak
O << "\t.weak " << name << "\n";
SwitchToDataSection("", I);
O << "\t.section\t\".llvm.linkonce.d." << name
<< "\",\"aw\",@progbits\n";
break;
case GlobalValue::AppendingLinkage:
// FIXME: appending linkage variables
// should go into a section of their name or
// something. For now, just emit them as external.
case GlobalValue::ExternalLinkage:
// If external or appending, declare as a global symbol
O << "\t.globl " << name << "\n";
case GlobalValue::InternalLinkage:
if (C->isNullValue())
SwitchToDataSection(".bss", I);
else
SwitchToDataSection(".data", I);
break;
case GlobalValue::GhostLinkage:
cerr << "Should not have any"
<< "unmaterialized functions!\n";
abort();
case GlobalValue::DLLImportLinkage:
cerr << "DLLImport linkage is"
<< "not supported by this target!\n";
abort();
case GlobalValue::DLLExportLinkage:
cerr << "DLLExport linkage is"
<< "not supported by this target!\n";
abort();
default:
assert(0 && "Unknown linkage type!");
}
O << "\t.align " << Align << "\n";
O << "\t.type " << name << ",@object\n";
O << "\t.size " << name << "," << Size << "\n";
O << name << ":\n";
EmitGlobalConstant(C);
}
}
return AsmPrinter::doFinalization(M);
}