llvm-6502/lib/Target/X86/X86ATTAsmPrinter.cpp

1081 lines
36 KiB
C++
Raw Normal View History

//===-- X86ATTAsmPrinter.cpp - Convert X86 LLVM code to AT&T assembly -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to AT&T format assembly
// language. This printer is the output mechanism used by `llc'.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "asm-printer"
#include "X86ATTAsmPrinter.h"
#include "X86.h"
#include "X86COFF.h"
#include "X86MachineFunctionInfo.h"
#include "X86TargetMachine.h"
#include "X86TargetAsmInfo.h"
#include "llvm/CallingConv.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Type.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/Support/Mangler.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm;
STATISTIC(EmittedInsts, "Number of machine instrs printed");
static std::string getPICLabelString(unsigned FnNum,
const TargetAsmInfo *TAI,
const X86Subtarget* Subtarget) {
std::string label;
if (Subtarget->isTargetDarwin())
label = "\"L" + utostr_32(FnNum) + "$pb\"";
else if (Subtarget->isTargetELF())
label = ".Lllvm$" + utostr_32(FnNum) + "." "$piclabel";
else
assert(0 && "Don't know how to print PIC label!\n");
return label;
}
static X86MachineFunctionInfo calculateFunctionInfo(const Function *F,
const TargetData *TD) {
X86MachineFunctionInfo Info;
uint64_t Size = 0;
switch (F->getCallingConv()) {
case CallingConv::X86_StdCall:
Info.setDecorationStyle(StdCall);
break;
case CallingConv::X86_FastCall:
Info.setDecorationStyle(FastCall);
break;
default:
return Info;
}
unsigned argNum = 1;
for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
AI != AE; ++AI, ++argNum) {
const Type* Ty = AI->getType();
// 'Dereference' type in case of byval parameter attribute
if (F->paramHasAttr(argNum, ParamAttr::ByVal))
Ty = cast<PointerType>(Ty)->getElementType();
// Size should be aligned to DWORD boundary
Size += ((TD->getABITypeSize(Ty) + 3)/4)*4;
}
// We're not supporting tooooo huge arguments :)
Info.setBytesToPopOnReturn((unsigned int)Size);
return Info;
}
/// PrintUnmangledNameSafely - Print out the printable characters in the name.
/// Don't print things like \n or \0.
static void PrintUnmangledNameSafely(const Value *V, std::ostream &OS) {
for (const char *Name = V->getNameStart(), *E = Name+V->getNameLen();
Name != E; ++Name)
if (isprint(*Name))
OS << *Name;
}
/// decorateName - Query FunctionInfoMap and use this information for various
/// name decoration.
void X86ATTAsmPrinter::decorateName(std::string &Name,
const GlobalValue *GV) {
const Function *F = dyn_cast<Function>(GV);
if (!F) return;
// We don't want to decorate non-stdcall or non-fastcall functions right now
unsigned CC = F->getCallingConv();
if (CC != CallingConv::X86_StdCall && CC != CallingConv::X86_FastCall)
return;
// Decorate names only when we're targeting Cygwin/Mingw32 targets
if (!Subtarget->isTargetCygMing())
return;
FMFInfoMap::const_iterator info_item = FunctionInfoMap.find(F);
const X86MachineFunctionInfo *Info;
if (info_item == FunctionInfoMap.end()) {
// Calculate apropriate function info and populate map
FunctionInfoMap[F] = calculateFunctionInfo(F, TM.getTargetData());
Info = &FunctionInfoMap[F];
} else {
Info = &info_item->second;
}
const FunctionType *FT = F->getFunctionType();
switch (Info->getDecorationStyle()) {
case None:
break;
case StdCall:
// "Pure" variadic functions do not receive @0 suffix.
if (!FT->isVarArg() || (FT->getNumParams() == 0) ||
(FT->getNumParams() == 1 && F->hasStructRetAttr()))
Name += '@' + utostr_32(Info->getBytesToPopOnReturn());
break;
case FastCall:
// "Pure" variadic functions do not receive @0 suffix.
if (!FT->isVarArg() || (FT->getNumParams() == 0) ||
(FT->getNumParams() == 1 && F->hasStructRetAttr()))
Name += '@' + utostr_32(Info->getBytesToPopOnReturn());
if (Name[0] == '_') {
Name[0] = '@';
} else {
Name = '@' + Name;
}
break;
default:
assert(0 && "Unsupported DecorationStyle");
}
}
/// getSectionForFunction - Return the section that we should emit the
/// specified function body into.
std::string X86ATTAsmPrinter::getSectionForFunction(const Function &F) const {
switch (F.getLinkage()) {
default: assert(0 && "Unknown linkage type!");
case Function::InternalLinkage:
case Function::DLLExportLinkage:
case Function::ExternalLinkage:
return TAI->getTextSection();
case Function::WeakLinkage:
case Function::LinkOnceLinkage:
if (Subtarget->isTargetDarwin()) {
return ".section __TEXT,__textcoal_nt,coalesced,pure_instructions";
} else if (Subtarget->isTargetCygMing()) {
return "\t.section\t.text$linkonce." + CurrentFnName + ",\"ax\"";
} else {
return "\t.section\t.llvm.linkonce.t." + CurrentFnName +
",\"ax\",@progbits";
}
}
}
void X86ATTAsmPrinter::emitFunctionHeader(const MachineFunction &MF) {
const Function *F = MF.getFunction();
decorateName(CurrentFnName, F);
SwitchToTextSection(getSectionForFunction(*F).c_str(), F);
unsigned FnAlign = OptimizeForSize ? 1 : 4;
switch (F->getLinkage()) {
default: assert(0 && "Unknown linkage type!");
case Function::InternalLinkage: // Symbols default to internal.
EmitAlignment(FnAlign, F);
break;
case Function::DLLExportLinkage:
case Function::ExternalLinkage:
EmitAlignment(FnAlign, F);
O << "\t.globl\t" << CurrentFnName << '\n';
break;
case Function::LinkOnceLinkage:
case Function::WeakLinkage:
EmitAlignment(FnAlign, F);
if (Subtarget->isTargetDarwin()) {
O << "\t.globl\t" << CurrentFnName << '\n';
O << TAI->getWeakDefDirective() << CurrentFnName << '\n';
} else if (Subtarget->isTargetCygMing()) {
O << "\t.globl\t" << CurrentFnName << "\n"
"\t.linkonce discard\n";
} else {
O << "\t.weak\t" << CurrentFnName << '\n';
}
break;
}
if (F->hasHiddenVisibility()) {
if (const char *Directive = TAI->getHiddenDirective())
O << Directive << CurrentFnName << '\n';
} else if (F->hasProtectedVisibility()) {
if (const char *Directive = TAI->getProtectedDirective())
O << Directive << CurrentFnName << '\n';
}
if (Subtarget->isTargetELF())
O << "\t.type\t" << CurrentFnName << ",@function\n";
else if (Subtarget->isTargetCygMing()) {
O << "\t.def\t " << CurrentFnName
<< ";\t.scl\t" <<
(F->getLinkage() == Function::InternalLinkage ? COFF::C_STAT : COFF::C_EXT)
<< ";\t.type\t" << (COFF::DT_FCN << COFF::N_BTSHFT)
<< ";\t.endef\n";
}
O << CurrentFnName << ":\n";
// Add some workaround for linkonce linkage on Cygwin\MinGW
if (Subtarget->isTargetCygMing() &&
(F->getLinkage() == Function::LinkOnceLinkage ||
F->getLinkage() == Function::WeakLinkage))
O << "Lllvm$workaround$fake$stub$" << CurrentFnName << ":\n";
}
/// runOnMachineFunction - This uses the printMachineInstruction()
/// method to print assembly for each instruction.
///
bool X86ATTAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
const Function *F = MF.getFunction();
unsigned CC = F->getCallingConv();
if (TAI->doesSupportDebugInformation()) {
// Let PassManager know we need debug information and relay
// the MachineModuleInfo address on to DwarfWriter.
MMI = &getAnalysis<MachineModuleInfo>();
DW.SetModuleInfo(MMI);
}
SetupMachineFunction(MF);
O << "\n\n";
// Populate function information map. Actually, We don't want to populate
// non-stdcall or non-fastcall functions' information right now.
if (CC == CallingConv::X86_StdCall || CC == CallingConv::X86_FastCall)
FunctionInfoMap[F] = *MF.getInfo<X86MachineFunctionInfo>();
// Print out constants referenced by the function
EmitConstantPool(MF.getConstantPool());
if (F->hasDLLExportLinkage())
DLLExportedFns.insert(Mang->makeNameProper(F->getName(), ""));
// Print the 'header' of function
emitFunctionHeader(MF);
// Emit pre-function debug and/or EH information.
if (TAI->doesSupportDebugInformation() || TAI->doesSupportExceptionHandling())
DW.BeginFunction(&MF);
// Print out code for the function.
bool hasAnyRealCode = false;
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
I != E; ++I) {
// Print a label for the basic block.
if (!I->pred_empty()) {
printBasicBlockLabel(I, true, true);
O << '\n';
}
for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
II != IE; ++II) {
// Print the assembly for the instruction.
if (!II->isLabel())
hasAnyRealCode = true;
printMachineInstruction(II);
}
}
if (Subtarget->isTargetDarwin() && !hasAnyRealCode) {
// If the function is empty, then we need to emit *something*. Otherwise,
// the function's label might be associated with something that it wasn't
// meant to be associated with. We emit a noop in this situation.
// We are assuming inline asms are code.
O << "\tnop\n";
}
if (TAI->hasDotTypeDotSizeDirective())
O << "\t.size\t" << CurrentFnName << ", .-" << CurrentFnName << '\n';
// Emit post-function debug information.
if (TAI->doesSupportDebugInformation())
DW.EndFunction();
// Print out jump tables referenced by the function.
EmitJumpTableInfo(MF.getJumpTableInfo(), MF);
// We didn't modify anything.
return false;
}
static inline bool shouldPrintGOT(TargetMachine &TM, const X86Subtarget* ST) {
return ST->isPICStyleGOT() && TM.getRelocationModel() == Reloc::PIC_;
}
static inline bool shouldPrintPLT(TargetMachine &TM, const X86Subtarget* ST) {
return ST->isTargetELF() && TM.getRelocationModel() == Reloc::PIC_ &&
(ST->isPICStyleRIPRel() || ST->isPICStyleGOT());
}
static inline bool shouldPrintStub(TargetMachine &TM, const X86Subtarget* ST) {
return ST->isPICStyleStub() && TM.getRelocationModel() != Reloc::Static;
}
void X86ATTAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo,
const char *Modifier, bool NotRIPRel) {
const MachineOperand &MO = MI->getOperand(OpNo);
switch (MO.getType()) {
case MachineOperand::MO_Register: {
assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
"Virtual registers should not make it this far!");
O << '%';
unsigned Reg = MO.getReg();
if (Modifier && strncmp(Modifier, "subreg", strlen("subreg")) == 0) {
MVT VT = (strcmp(Modifier+6,"64") == 0) ?
MVT::i64 : ((strcmp(Modifier+6, "32") == 0) ? MVT::i32 :
((strcmp(Modifier+6,"16") == 0) ? MVT::i16 : MVT::i8));
Reg = getX86SubSuperRegister(Reg, VT);
}
for (const char *Name = TRI->getAsmName(Reg); *Name; ++Name)
O << (char)tolower(*Name);
return;
}
case MachineOperand::MO_Immediate:
if (!Modifier ||
(strcmp(Modifier, "debug") && strcmp(Modifier, "mem")))
O << '$';
O << MO.getImm();
return;
case MachineOperand::MO_MachineBasicBlock:
printBasicBlockLabel(MO.getMBB());
return;
case MachineOperand::MO_JumpTableIndex: {
bool isMemOp = Modifier && !strcmp(Modifier, "mem");
if (!isMemOp) O << '$';
O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() << '_'
<< MO.getIndex();
if (TM.getRelocationModel() == Reloc::PIC_) {
if (Subtarget->isPICStyleStub())
O << "-\"" << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
<< "$pb\"";
else if (Subtarget->isPICStyleGOT())
O << "@GOTOFF";
}
if (isMemOp && Subtarget->isPICStyleRIPRel() && !NotRIPRel)
O << "(%rip)";
return;
}
case MachineOperand::MO_ConstantPoolIndex: {
bool isMemOp = Modifier && !strcmp(Modifier, "mem");
if (!isMemOp) O << '$';
O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
<< MO.getIndex();
if (TM.getRelocationModel() == Reloc::PIC_) {
if (Subtarget->isPICStyleStub())
O << "-\"" << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
<< "$pb\"";
else if (Subtarget->isPICStyleGOT())
O << "@GOTOFF";
}
int Offset = MO.getOffset();
if (Offset > 0)
O << '+' << Offset;
else if (Offset < 0)
O << Offset;
if (isMemOp && Subtarget->isPICStyleRIPRel() && !NotRIPRel)
O << "(%rip)";
return;
}
case MachineOperand::MO_GlobalAddress: {
bool isCallOp = Modifier && !strcmp(Modifier, "call");
bool isMemOp = Modifier && !strcmp(Modifier, "mem");
bool needCloseParen = false;
const GlobalValue *GV = MO.getGlobal();
const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
if (!GVar) {
// If GV is an alias then use the aliasee for determining
// thread-localness.
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal());
}
bool isThreadLocal = GVar && GVar->isThreadLocal();
std::string Name = Mang->getValueName(GV);
decorateName(Name, GV);
if (!isMemOp && !isCallOp)
O << '$';
else if (Name[0] == '$') {
// The name begins with a dollar-sign. In order to avoid having it look
// like an integer immediate to the assembler, enclose it in parens.
O << '(';
needCloseParen = true;
}
if (shouldPrintStub(TM, Subtarget)) {
// Link-once, declaration, or Weakly-linked global variables need
// non-lazily-resolved stubs
if (GV->isDeclaration() ||
GV->hasWeakLinkage() ||
GV->hasLinkOnceLinkage() ||
GV->hasCommonLinkage()) {
// Dynamically-resolved functions need a stub for the function.
if (isCallOp && isa<Function>(GV)) {
FnStubs.insert(Name);
printSuffixedName(Name, "$stub");
} else {
GVStubs.insert(Name);
printSuffixedName(Name, "$non_lazy_ptr");
}
} else {
if (GV->hasDLLImportLinkage())
O << "__imp_";
O << Name;
}
if (!isCallOp && TM.getRelocationModel() == Reloc::PIC_)
O << '-' << getPICLabelString(getFunctionNumber(), TAI, Subtarget);
} else {
if (GV->hasDLLImportLinkage()) {
O << "__imp_";
}
O << Name;
if (isCallOp) {
if (shouldPrintPLT(TM, Subtarget)) {
// Assemble call via PLT for externally visible symbols
if (!GV->hasHiddenVisibility() && !GV->hasProtectedVisibility() &&
!GV->hasInternalLinkage())
O << "@PLT";
}
if (Subtarget->isTargetCygMing() && GV->isDeclaration())
// Save function name for later type emission
FnStubs.insert(Name);
}
}
if (GV->hasExternalWeakLinkage())
ExtWeakSymbols.insert(GV);
int Offset = MO.getOffset();
if (Offset > 0)
O << '+' << Offset;
else if (Offset < 0)
O << Offset;
if (isThreadLocal) {
if (TM.getRelocationModel() == Reloc::PIC_ || Subtarget->is64Bit())
O << "@TLSGD"; // general dynamic TLS model
else
if (GV->isDeclaration())
O << "@INDNTPOFF"; // initial exec TLS model
else
O << "@NTPOFF"; // local exec TLS model
} else if (isMemOp) {
if (shouldPrintGOT(TM, Subtarget)) {
if (Subtarget->GVRequiresExtraLoad(GV, TM, false))
O << "@GOT";
else
O << "@GOTOFF";
} else if (Subtarget->isPICStyleRIPRel() && !NotRIPRel &&
TM.getRelocationModel() != Reloc::Static) {
if (Subtarget->GVRequiresExtraLoad(GV, TM, false))
O << "@GOTPCREL";
if (needCloseParen) {
needCloseParen = false;
O << ')';
}
// Use rip when possible to reduce code size, except when
// index or base register are also part of the address. e.g.
// foo(%rip)(%rcx,%rax,4) is not legal
O << "(%rip)";
}
}
if (needCloseParen)
O << ')';
return;
}
case MachineOperand::MO_ExternalSymbol: {
bool isCallOp = Modifier && !strcmp(Modifier, "call");
bool needCloseParen = false;
std::string Name(TAI->getGlobalPrefix());
Name += MO.getSymbolName();
if (isCallOp && shouldPrintStub(TM, Subtarget)) {
FnStubs.insert(Name);
printSuffixedName(Name, "$stub");
return;
}
if (!isCallOp)
O << '$';
else if (Name[0] == '$') {
// The name begins with a dollar-sign. In order to avoid having it look
// like an integer immediate to the assembler, enclose it in parens.
O << '(';
needCloseParen = true;
}
O << Name;
if (shouldPrintPLT(TM, Subtarget)) {
std::string GOTName(TAI->getGlobalPrefix());
GOTName+="_GLOBAL_OFFSET_TABLE_";
if (Name == GOTName)
// HACK! Emit extra offset to PC during printing GOT offset to
// compensate for the size of popl instruction. The resulting code
// should look like:
// call .piclabel
// piclabel:
// popl %some_register
// addl $_GLOBAL_ADDRESS_TABLE_ + [.-piclabel], %some_register
O << " + [.-"
<< getPICLabelString(getFunctionNumber(), TAI, Subtarget) << ']';
if (isCallOp)
O << "@PLT";
}
if (needCloseParen)
O << ')';
if (!isCallOp && Subtarget->isPICStyleRIPRel())
O << "(%rip)";
return;
}
default:
O << "<unknown operand type>"; return;
}
}
void X86ATTAsmPrinter::printSSECC(const MachineInstr *MI, unsigned Op) {
unsigned char value = MI->getOperand(Op).getImm();
assert(value <= 7 && "Invalid ssecc argument!");
switch (value) {
case 0: O << "eq"; break;
case 1: O << "lt"; break;
case 2: O << "le"; break;
case 3: O << "unord"; break;
case 4: O << "neq"; break;
case 5: O << "nlt"; break;
case 6: O << "nle"; break;
case 7: O << "ord"; break;
}
}
void X86ATTAsmPrinter::printMemReference(const MachineInstr *MI, unsigned Op,
const char *Modifier){
assert(isMem(MI, Op) && "Invalid memory reference!");
MachineOperand BaseReg = MI->getOperand(Op);
MachineOperand IndexReg = MI->getOperand(Op+2);
const MachineOperand &DispSpec = MI->getOperand(Op+3);
bool NotRIPRel = IndexReg.getReg() || BaseReg.getReg();
if (DispSpec.isGlobalAddress() ||
DispSpec.isConstantPoolIndex() ||
DispSpec.isJumpTableIndex()) {
printOperand(MI, Op+3, "mem", NotRIPRel);
} else {
int DispVal = DispSpec.getImm();
if (DispVal || (!IndexReg.getReg() && !BaseReg.getReg()))
O << DispVal;
}
if (IndexReg.getReg() || BaseReg.getReg()) {
unsigned ScaleVal = MI->getOperand(Op+1).getImm();
unsigned BaseRegOperand = 0, IndexRegOperand = 2;
// There are cases where we can end up with ESP/RSP in the indexreg slot.
// If this happens, swap the base/index register to support assemblers that
// don't work when the index is *SP.
if (IndexReg.getReg() == X86::ESP || IndexReg.getReg() == X86::RSP) {
assert(ScaleVal == 1 && "Scale not supported for stack pointer!");
std::swap(BaseReg, IndexReg);
std::swap(BaseRegOperand, IndexRegOperand);
}
O << '(';
if (BaseReg.getReg())
printOperand(MI, Op+BaseRegOperand, Modifier);
if (IndexReg.getReg()) {
O << ',';
printOperand(MI, Op+IndexRegOperand, Modifier);
if (ScaleVal != 1)
O << ',' << ScaleVal;
}
O << ')';
}
}
void X86ATTAsmPrinter::printPICJumpTableSetLabel(unsigned uid,
const MachineBasicBlock *MBB) const {
if (!TAI->getSetDirective())
return;
// We don't need .set machinery if we have GOT-style relocations
if (Subtarget->isPICStyleGOT())
return;
O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
<< getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
printBasicBlockLabel(MBB, false, false, false);
if (Subtarget->isPICStyleRIPRel())
O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << uid << '\n';
else
O << '-' << getPICLabelString(getFunctionNumber(), TAI, Subtarget) << '\n';
}
void X86ATTAsmPrinter::printPICLabel(const MachineInstr *MI, unsigned Op) {
std::string label = getPICLabelString(getFunctionNumber(), TAI, Subtarget);
O << label << '\n' << label << ':';
}
void X86ATTAsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
const MachineBasicBlock *MBB,
unsigned uid) const
{
const char *JTEntryDirective = MJTI->getEntrySize() == 4 ?
TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
O << JTEntryDirective << ' ';
if (TM.getRelocationModel() == Reloc::PIC_) {
if (Subtarget->isPICStyleRIPRel() || Subtarget->isPICStyleStub()) {
O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
<< '_' << uid << "_set_" << MBB->getNumber();
} else if (Subtarget->isPICStyleGOT()) {
printBasicBlockLabel(MBB, false, false, false);
O << "@GOTOFF";
} else
assert(0 && "Don't know how to print MBB label for this PIC mode");
} else
printBasicBlockLabel(MBB, false, false, false);
}
bool X86ATTAsmPrinter::printAsmMRegister(const MachineOperand &MO,
const char Mode) {
unsigned Reg = MO.getReg();
switch (Mode) {
default: return true; // Unknown mode.
case 'b': // Print QImode register
Reg = getX86SubSuperRegister(Reg, MVT::i8);
break;
case 'h': // Print QImode high register
Reg = getX86SubSuperRegister(Reg, MVT::i8, true);
break;
case 'w': // Print HImode register
Reg = getX86SubSuperRegister(Reg, MVT::i16);
break;
case 'k': // Print SImode register
Reg = getX86SubSuperRegister(Reg, MVT::i32);
break;
case 'q': // Print DImode register
Reg = getX86SubSuperRegister(Reg, MVT::i64);
break;
}
O << '%';
for (const char *Name = TRI->getAsmName(Reg); *Name; ++Name)
O << (char)tolower(*Name);
return false;
}
/// PrintAsmOperand - Print out an operand for an inline asm expression.
///
bool X86ATTAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode) {
// Does this asm operand have a single letter operand modifier?
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
switch (ExtraCode[0]) {
default: return true; // Unknown modifier.
case 'c': // Don't print "$" before a global var name or constant.
printOperand(MI, OpNo, "mem");
return false;
case 'b': // Print QImode register
case 'h': // Print QImode high register
case 'w': // Print HImode register
case 'k': // Print SImode register
case 'q': // Print DImode register
if (MI->getOperand(OpNo).isRegister())
return printAsmMRegister(MI->getOperand(OpNo), ExtraCode[0]);
printOperand(MI, OpNo);
return false;
case 'P': // Don't print @PLT, but do print as memory.
printOperand(MI, OpNo, "mem");
return false;
}
}
printOperand(MI, OpNo);
return false;
}
bool X86ATTAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode) {
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
switch (ExtraCode[0]) {
default: return true; // Unknown modifier.
case 'b': // Print QImode register
case 'h': // Print QImode high register
case 'w': // Print HImode register
case 'k': // Print SImode register
case 'q': // Print SImode register
// These only apply to registers, ignore on mem.
break;
}
}
printMemReference(MI, OpNo);
return false;
}
/// printMachineInstruction -- Print out a single X86 LLVM instruction
/// MI in AT&T syntax to the current output stream.
///
void X86ATTAsmPrinter::printMachineInstruction(const MachineInstr *MI) {
++EmittedInsts;
// Call the autogenerated instruction printer routines.
printInstruction(MI);
}
/// doInitialization
bool X86ATTAsmPrinter::doInitialization(Module &M) {
if (TAI->doesSupportDebugInformation()) {
// Emit initial debug information.
DW.BeginModule(&M);
}
bool Result = AsmPrinter::doInitialization(M);
// Darwin wants symbols to be quoted if they have complex names.
if (Subtarget->isTargetDarwin())
Mang->setUseQuotes(true);
return Result;
}
void X86ATTAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) {
const TargetData *TD = TM.getTargetData();
if (!GVar->hasInitializer())
return; // External global require no code
// Check to see if this is a special global used by LLVM, if so, emit it.
if (EmitSpecialLLVMGlobal(GVar)) {
if (Subtarget->isTargetDarwin() &&
TM.getRelocationModel() == Reloc::Static) {
if (GVar->getName() == "llvm.global_ctors")
O << ".reference .constructors_used\n";
else if (GVar->getName() == "llvm.global_dtors")
O << ".reference .destructors_used\n";
}
return;
}
std::string name = Mang->getValueName(GVar);
Constant *C = GVar->getInitializer();
const Type *Type = C->getType();
unsigned Size = TD->getABITypeSize(Type);
unsigned Align = TD->getPreferredAlignmentLog(GVar);
if (GVar->hasHiddenVisibility()) {
if (const char *Directive = TAI->getHiddenDirective())
O << Directive << name << '\n';
} else if (GVar->hasProtectedVisibility()) {
if (const char *Directive = TAI->getProtectedDirective())
O << Directive << name << '\n';
}
if (Subtarget->isTargetELF())
O << "\t.type\t" << name << ",@object\n";
if (C->isNullValue() && !GVar->hasSection()) {
if (GVar->hasExternalLinkage()) {
if (const char *Directive = TAI->getZeroFillDirective()) {
O << "\t.globl " << name << '\n';
O << Directive << "__DATA, __common, " << name << ", "
<< Size << ", " << Align << '\n';
return;
}
}
if (!GVar->isThreadLocal() &&
(GVar->hasInternalLinkage() || GVar->hasWeakLinkage() ||
GVar->hasLinkOnceLinkage() || GVar->hasCommonLinkage())) {
if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
if (!NoZerosInBSS && TAI->getBSSSection())
SwitchToDataSection(TAI->getBSSSection(), GVar);
else
SwitchToDataSection(TAI->getDataSection(), GVar);
if (TAI->getLCOMMDirective() != NULL) {
if (GVar->hasInternalLinkage()) {
O << TAI->getLCOMMDirective() << name << ',' << Size;
if (Subtarget->isTargetDarwin())
O << ',' << Align;
} else if (Subtarget->isTargetDarwin() && !GVar->hasCommonLinkage()) {
O << "\t.globl " << name << '\n'
<< TAI->getWeakDefDirective() << name << '\n';
SwitchToDataSection("\t.section __DATA,__datacoal_nt,coalesced", GVar);
EmitAlignment(Align, GVar);
O << name << ":\t\t\t\t" << TAI->getCommentString() << ' ';
PrintUnmangledNameSafely(GVar, O);
O << '\n';
EmitGlobalConstant(C);
return;
} else {
O << TAI->getCOMMDirective() << name << ',' << Size;
// Leopard and above support aligned common symbols.
if (Subtarget->getDarwinVers() >= 9)
O << ',' << Align;
}
} else {
if (!Subtarget->isTargetCygMing()) {
if (GVar->hasInternalLinkage())
O << "\t.local\t" << name << '\n';
}
O << TAI->getCOMMDirective() << name << ',' << Size;
if (TAI->getCOMMDirectiveTakesAlignment())
O << ',' << (TAI->getAlignmentIsInBytes() ? (1 << Align) : Align);
}
O << "\t\t" << TAI->getCommentString() << ' ';
PrintUnmangledNameSafely(GVar, O);
O << '\n';
return;
}
}
switch (GVar->getLinkage()) {
case GlobalValue::CommonLinkage:
case GlobalValue::LinkOnceLinkage:
case GlobalValue::WeakLinkage:
if (Subtarget->isTargetDarwin()) {
O << "\t.globl " << name << '\n'
<< TAI->getWeakDefDirective() << name << '\n';
if (!GVar->isConstant())
SwitchToDataSection("\t.section __DATA,__datacoal_nt,coalesced", GVar);
else {
const ArrayType *AT = dyn_cast<ArrayType>(Type);
if (AT && AT->getElementType()==Type::Int8Ty)
SwitchToDataSection("\t.section __TEXT,__const_coal,coalesced", GVar);
else
SwitchToDataSection("\t.section __DATA,__const_coal,coalesced", GVar);
}
} else if (Subtarget->isTargetCygMing()) {
std::string SectionName(".section\t.data$linkonce." +
name +
",\"aw\"");
SwitchToDataSection(SectionName.c_str(), GVar);
O << "\t.globl\t" << name << "\n"
"\t.linkonce same_size\n";
} else {
std::string SectionName("\t.section\t.llvm.linkonce.d." +
name +
",\"aw\",@progbits");
SwitchToDataSection(SectionName.c_str(), GVar);
O << "\t.weak\t" << name << '\n';
}
break;
case GlobalValue::DLLExportLinkage:
case GlobalValue::AppendingLinkage:
// FIXME: appending linkage variables should go into a section of
// their name or something. For now, just emit them as external.
case GlobalValue::ExternalLinkage:
// If external or appending, declare as a global symbol
O << "\t.globl " << name << '\n';
// FALL THROUGH
case GlobalValue::InternalLinkage: {
if (GVar->isConstant()) {
const ConstantArray *CVA = dyn_cast<ConstantArray>(C);
if (TAI->getCStringSection() && CVA && CVA->isCString()) {
SwitchToDataSection(TAI->getCStringSection(), GVar);
break;
}
}
// FIXME: special handling for ".ctors" & ".dtors" sections
if (GVar->hasSection() &&
(GVar->getSection() == ".ctors" || GVar->getSection() == ".dtors")) {
std::string SectionName = ".section " + GVar->getSection();
if (Subtarget->isTargetCygMing()) {
SectionName += ",\"aw\"";
} else {
assert(!Subtarget->isTargetDarwin());
SectionName += ",\"aw\",@progbits";
}
SwitchToDataSection(SectionName.c_str());
} else if (GVar->hasSection() && Subtarget->isTargetDarwin()) {
// Honor all section names on Darwin; ObjC uses this
std::string SectionName = ".section " + GVar->getSection();
SwitchToDataSection(SectionName.c_str());
} else {
if (C->isNullValue() && !NoZerosInBSS && TAI->getBSSSection())
SwitchToDataSection(GVar->isThreadLocal() ? TAI->getTLSBSSSection() :
TAI->getBSSSection(), GVar);
else if (!GVar->isConstant())
SwitchToDataSection(GVar->isThreadLocal() ? TAI->getTLSDataSection() :
TAI->getDataSection(), GVar);
else if (GVar->isThreadLocal())
SwitchToDataSection(TAI->getTLSDataSection());
else {
// Read-only data.
bool HasReloc = C->ContainsRelocations();
if (HasReloc &&
Subtarget->isTargetDarwin() &&
TM.getRelocationModel() != Reloc::Static)
SwitchToDataSection("\t.const_data\n");
else if (!HasReloc && Size == 4 &&
TAI->getFourByteConstantSection())
SwitchToDataSection(TAI->getFourByteConstantSection(), GVar);
else if (!HasReloc && Size == 8 &&
TAI->getEightByteConstantSection())
SwitchToDataSection(TAI->getEightByteConstantSection(), GVar);
else if (!HasReloc && Size == 16 &&
TAI->getSixteenByteConstantSection())
SwitchToDataSection(TAI->getSixteenByteConstantSection(), GVar);
else if (TAI->getReadOnlySection())
SwitchToDataSection(TAI->getReadOnlySection(), GVar);
else
SwitchToDataSection(TAI->getDataSection(), GVar);
}
}
break;
}
default:
assert(0 && "Unknown linkage type!");
}
EmitAlignment(Align, GVar);
O << name << ":\t\t\t\t" << TAI->getCommentString() << ' ';
PrintUnmangledNameSafely(GVar, O);
O << '\n';
if (TAI->hasDotTypeDotSizeDirective())
O << "\t.size\t" << name << ", " << Size << '\n';
// If the initializer is a extern weak symbol, remember to emit the weak
// reference!
if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
if (GV->hasExternalWeakLinkage())
ExtWeakSymbols.insert(GV);
EmitGlobalConstant(C);
}
bool X86ATTAsmPrinter::doFinalization(Module &M) {
// Print out module-level global variables here.
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I) {
printModuleLevelGV(I);
if (I->hasDLLExportLinkage())
DLLExportedGVs.insert(Mang->makeNameProper(I->getName(),""));
}
// Output linker support code for dllexported globals
if (!DLLExportedGVs.empty())
SwitchToDataSection(".section .drectve");
for (StringSet<>::iterator i = DLLExportedGVs.begin(),
e = DLLExportedGVs.end();
i != e; ++i)
O << "\t.ascii \" -export:" << i->getKeyData() << ",data\"\n";
if (!DLLExportedFns.empty()) {
SwitchToDataSection(".section .drectve");
}
for (StringSet<>::iterator i = DLLExportedFns.begin(),
e = DLLExportedFns.end();
i != e; ++i)
O << "\t.ascii \" -export:" << i->getKeyData() << "\"\n";
if (Subtarget->isTargetDarwin()) {
SwitchToDataSection("");
// Output stubs for dynamically-linked functions
unsigned j = 1;
for (StringSet<>::iterator i = FnStubs.begin(), e = FnStubs.end();
i != e; ++i, ++j) {
SwitchToDataSection("\t.section __IMPORT,__jump_table,symbol_stubs,"
"self_modifying_code+pure_instructions,5", 0);
std::string p = i->getKeyData();
printSuffixedName(p, "$stub");
O << ":\n"
"\t.indirect_symbol " << p << "\n"
"\thlt ; hlt ; hlt ; hlt ; hlt\n";
}
O << '\n';
if (TAI->doesSupportExceptionHandling() && MMI && !Subtarget->is64Bit()) {
// Add the (possibly multiple) personalities to the set of global values.
// Only referenced functions get into the Personalities list.
const std::vector<Function *>& Personalities = MMI->getPersonalities();
for (std::vector<Function *>::const_iterator I = Personalities.begin(),
E = Personalities.end(); I != E; ++I)
if (*I) GVStubs.insert('_' + (*I)->getName());
}
// Output stubs for external and common global variables.
if (!GVStubs.empty())
SwitchToDataSection(
"\t.section __IMPORT,__pointers,non_lazy_symbol_pointers");
for (StringSet<>::iterator i = GVStubs.begin(), e = GVStubs.end();
i != e; ++i) {
std::string p = i->getKeyData();
printSuffixedName(p, "$non_lazy_ptr");
O << ":\n"
"\t.indirect_symbol " << p << "\n"
"\t.long\t0\n";
}
// Emit final debug information.
DW.EndModule();
// Funny Darwin hack: This flag tells the linker that no global symbols
// contain code that falls through to other global symbols (e.g. the obvious
// implementation of multiple entry points). If this doesn't occur, the
// linker can safely perform dead code stripping. Since LLVM never
// generates code that does this, it is always safe to set.
O << "\t.subsections_via_symbols\n";
} else if (Subtarget->isTargetCygMing()) {
// Emit type information for external functions
for (StringSet<>::iterator i = FnStubs.begin(), e = FnStubs.end();
i != e; ++i) {
O << "\t.def\t " << i->getKeyData()
<< ";\t.scl\t" << COFF::C_EXT
<< ";\t.type\t" << (COFF::DT_FCN << COFF::N_BTSHFT)
<< ";\t.endef\n";
}
// Emit final debug information.
DW.EndModule();
} else if (Subtarget->isTargetELF()) {
// Emit final debug information.
DW.EndModule();
}
return AsmPrinter::doFinalization(M);
}
// Include the auto-generated portion of the assembly writer.
#include "X86GenAsmWriter.inc"